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Objectives: This study aims to explore the correlation between Pyridoxal 
5′-Phosphate (PLP) levels and lipid profiles in adult individuals, utilizing data 
from the National Health and Nutrition Examination Survey (NHANES) database.

Methods: The research included individuals aged 20 years and above, extracted 
from the NHANES database, covering the period from 2005 to 2010. The 
primary objective was to scrutinize the relationship between PLP and lipid 
profiles. This was accomplished by employing weighted, multivariable logistic 
regression to ascertain these associations. Furthermore, to assess the variability 
within different demographic segments, interaction analyses were conducted. 
Additionally, restricted cubic spline (RCS) methodology was implemented to 
delve into potential nonlinear dynamics between PLP concentrations and lipid 
levels.

Results: A cohort of 6,459 individuals was included in this study. Our data 
indicated that 51.60% of the participants were under 50 years old, while 
48.40% were over 50, comprising 48.83% males and 51.17% females. PLP levels 
demonstrated a negative correlation with low-density lipoprotein cholesterol 
(LDL-C) levels. After controlling for confounding variables, a one-unit increment 
in PLP correlates with a reduction of 17.7% in LDL-C concentrations (OR: 0.823, 
95% CI: 0.823–0.824, p < 0.001). PLP levels exhibited a positive correlation 
with high-density lipoprotein cholesterol (HDL-C), which increased as PLP 
levels rose. After controlling for all covariates, a one-unit increase in PLP levels 
corresponded to a 1.952-fold enhancement in the probability of high HDL-C 
levels (OR: 1.952, 95% CI: 1.951–1.953, p < 0.001). The relationship between PLP 
and HDL-C levels was nonlinear. Subgroup analyses indicated that PLP levels 
and HDL-C concentrations are positively correlated, especially among diabetic 
patients and non-drinkers.

Conclusion: PLP levels are inversely associated with LDL-C and positively 
associated with HDL-C, with stronger effects observed in diabetic patients and 
non-drinkers. These findings underscore the potential clinical utility of PLP 
supplementation as a preventive measure against cardiovascular and metabolic 
diseases.
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1 Introduction

The lipid profiles consist principally of low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), 
triglycerides (TG), total cholesterol (TC), and apolipoprotein B 
(Apo B), and others (1). As societies have evolved and lifestyles 
changed, cardiovascular diseases have emerged as leading causes of 
global mortality (2). Dyslipidemia is a key risk factor for 
atherosclerosis and cardiovascular disease (3), with LDL-C 
specifically implicated in atherosclerosis through its effects on 
endothelial dysfunction and vascular smooth muscle impairment 
(4). HDL-C comprises various particle subpopulations, each 
differing in size, shape, charge, and lipid and protein content. While 
HDL-C performs diverse roles and may help prevent atherosclerosis, 
the specific contributions of its different subpopulations remain 
poorly understood (5). Moreover, high triglyceride levels are 
increasingly associated with various health issues, including 
metabolic heart diseases such as ischemic heart disease (6). Elevated 
Apo B levels, prevalent in patients with atherosclerotic vascular 
alterations, are recognized as a significant risk factor for 
atherosclerosis and indicative of atherogenic lipoproteins (7). 
Therefore, elucidating the mechanisms of lipid regulation is 
essential for preventing and treating related diseases.

Vitamin B6 is a water-soluble vitamin that is rapidly digested and 
eliminated, therefore its toxicity is usually regarded minimal. 
However, extremely high ingestion levels can result in peripheral 
nerve damage (8). Research indicates that Vitamin B6 may protect 
against coronary heart disease (9). Oral supplementation of Vitamin 
B6 has been shown to mitigate lipid accumulation and dyslipidemia 
in Sprague–Dawley rats on a high-fat diet by reducing fatty acid and 
cholesterol synthesis, and enhancing fatty acid breakdown and 
cholesterol transport (10). PLP, the active form of Vitamin B6, 
participates in numerous enzymatic processes in the body, especially 
in amino acid metabolism (11). Plasma levels of PLP have been 
linked to chronic conditions such as cardiovascular disease and 
certain cancers, and inversely associated with various inflammation 
markers in both clinical and population-based studies (12). Although 
some research suggests that PLP may play a crucial role in fat 
metabolism, the specific mechanisms remain largely unexplored (13). 
Moreover, the relationship between PLP and lipid levels has been 
insufficiently investigated. Addressing this gap, this article examines 
the association between PLP levels and the lipid profiles of adults 
using the NHANES database, aiming to provide foundational 
evidence and theoretical support for further research.

2 Methods

2.1 Study population

This study utilized data from the Nationwide Health and 
Nutrition Examination Survey (NHANES), which is a regularly 
conducted health and nutrition survey by the Centers for Disease 
Control and Prevention’s National Center for Health Statistics 
(NCHS). The NHANES is a nationally representative, cross-sectional 
survey targeting non-institutionalized U.S. residents. Every 2 years, 
approximately 5,000 residents are randomly selected from counties 
across the country, with each participant assigned multiple sample 

weights. More details are available on the NCHS website.1 The 
NHANES protocol was approved by the National Center for Health 
Statistics (NCHS) Research Ethics Review Board,2 and written 
informed consent was obtained from all adult participants (14).

For this analysis, the dataset included U.S. adults aged 20 years 
and older who were part of the NHANES database from 2005 to 
2010, and who had complete data on PLP and lipid profiles, excluding 
pregnant or lactating women. The final sample comprised 6,459 
participants. Figure 1 details the participant selection process.

Participant demographics collected included age, gender, race, 
education level, marital status, and household poverty-to-income 
ratio (PIR). Clinical data encompassed body mass index (BMI), 
blood pressure, smoking history, alcohol consumption history, 
hypertension history, diabetes mellitus history, levels of PLP, LDL-C, 
HDL-C, TG, T, Apo B, fasting blood glucose, uric acid, glycosylated 
hemoglobin, fasting insulin, white blood cells, red blood cells, and 
hemoglobin. This information was obtained from the interview 
questionnaires and physical examination records in the 
NHANES database.

2.2 Detection of PLP

PLP levels were quantified using high-performance liquid 
chromatography (HPLC) with fluorescence detection. The mobile 
phase consisted of 50 mM potassium phosphate buffer (pH 3.0) and 
methanol, with a flow rate of 1.0 mL/min. The excitation and 
emission wavelengths were set to 290 nm and 395 nm, respectively.

PLP levels were measured in nmol/L.

2.3 Measurement of blood lipids

Blood samples were processed, stored, and transported to the 
University of Minnesota in Minneapolis for analysis. The biochemical 
analyzer at the facility was used to measure the concentrations of 
LDL-C, HDL-C, TG, and TC. Apolipoprotein B levels were 
determined through an immunochemical reaction.

2.4 Covariates

Beckman Coulter counting and quantification methods were 
used to determine the number of red blood cells, white blood cells, 
and hemoglobin concentration. The concentration of glycosylated 
hemoglobin was determined using a glycated hemoglobin analyzer. 
Fasting blood glucose was assessed using an enzymatic approach, 
fasting insulin was measured with a two-site enzyme immunoassay, 
and serum uric acid was quantified using a timed endpoint method. 
The age, gender, race, education level, and PIR were self-reported. 
BMI values were collected by calculating their weight and height. A 
smoking history was defined as having smoked at least 100 
cigarettes throughout their lifetime. Drinking history was defined 

1 https://www.cdc.gov/nchs/nhanes/index.htm

2 http://www.cdc.gov/nchs/nhanes/irba98.htm
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as more than 12 drinks per year. Hypertension is described as being 
informed by a doctor or other health expert that you have high 
blood pressure. The presence or absence of diabetes was categorized 
into three conditions based on participant responses: yes, no, 
and borderline.

2.5 Statistical analysis

In this study, MEC 2-year cycle weights (WTMEC2YR) were 
applied for statistical analysis. Missing data were addressed through 
multiple imputation. Continuous data were presented as 
mean ± standard deviation ( x  ± s), while categorical variables were 
represented as frequency (percentage,%). When continuous numerical 
variables followed a normal distribution and had homogeneous 
variance, an independent sample t test was utilized. The Wilcoxon 
rank-sum test was employed for variables that did not follow a normal 
distribution across the two groups, while the Chi-square or Fisher’s 
exact test was used for categorical variables. The association between 
continuous numerical variables and categorical variables was 
examined using one-way analysis of variance. The data were divided 
into two groups based on the mean values of LDL-, HDL-C, TG, TC, 
apolipoprotein B, age, and PIR, and then transformed into categorical 
variables. PLP was separated into four categories based on quartile 
values and then converted into categorical variables. Initially, the 
distribution of the four groups of data was evaluated using the 
PLP quartile.

Weighted univariate regression was employed to analyze the 
relationship between each vaxbarriable and PLP. Significant 
variables (p < 0.01) were included in the further analysis models. 
The association between PLP and lipid profile was evaluated using 
weighted multivariate logistic regression. In model 1, the variables 
were not modified, however in model 2, they were adjusted for 
age, gender, race, education, marital status, PIR, history of 
hypertension, diabetes, smoking history, and history of alcohol 
intake. Model 3 adjusted the following variables: BMI, fasting 
insulin, fasting blood glucose, uric acid, glycosylated hemoglobin, 
white blood cell count, red blood cell count, and hemoglobin. In 

the subgroup analysis, we grouped patients according to gender, 
race, education, history of hypertension, history of diabetes, 
history of smoking, history of alcohol consumption, family PIR, 
and age. Heterogeneity between subgroups was further assessed 
by interaction analysis. Restricted cubic spline analysis (RCS) was 
used to assess the nonlinear association between PLP and lipids. 
A two-sided p < 0.05 was considered statistically different in all 
statistics. We used SPSS 26.0 software and R software (version 4.2) 
for data processing.

3 Results

3.1 Baseline characteristics

Table  1 illustrates that the study included a total of 6,459 
participants, with 51.60% under the age of 50 and 48.40% over the age 
of 50. Of these participants, 48.83% were male and 51.17% were 
female. The participants were divided into four groups based on the 
quartiles of their PLP levels. With escalating PLP levels, several trends 
emerged: there was a rise in the percentage of males, smokers, 
married individuals, and those without diabetes, as well as an increase 
in high TC and HDL-C prevalence. Conversely, there was a decline 
in BMI, fasting glucose (FG), and glycated hemoglobin 
(HbA1c) levels.

3.2 Multifactorial logistic regression 
analysis

Table 2 details the results from a multivariate regression analysis 
examining the relationship between PLP levels and lipid profiles. PLP 
levels were inversely related to LDL-C levels. Specifically, Model 1 
showed that an increase in PLP concentration was associated with a 
reduced risk of elevated LDL-C levels. After adjusting for covariates 
in Models 3, each one-unit increase in PLP level was associated with 
a 17.7% decrease in the risk of high LDL-C levels (OR: 0.823, 95% CI: 
0.823–0.824, p < 0.001).

FIGURE 1

Flow chart of participant selection for the study population.
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TABLE 1 Baseline characteristic of participants.

Variables Total 
(n = 6,459)

Q1 (n = 1,611) Q2 (n = 1,615) Q3 (n = 1,614) Q4 (n = 1,619) p

Age, N (%) <0.001

<50 years 3,333 (51.60) 727 (45.13) 882 (54.61) 941 (58.30) 783 (48.36)

≥50 years 3,126 (48.40) 884 (54.87) 733 (45.39) 673 (41.70) 836 (51.64)

Gender, N (%) <0.001

Male 3,154 (48.83) 608 (37.74) 762 (47.18) 915 (56.69) 869 (53.68)

Female 3,305 (51.17) 1,003 (62.26) 853 (52.82) 699 (43.31) 750 (46.32)

Race, N (%) <0.001

Mexican American 1,170 (18.11) 241 (14.96) 339 (20.99) 339 (21.00) 251 (15.50)

Other Hispanic 596 (9.23) 137 (8.50) 154 (9.54) 164 (10.16) 141 (8.71)

Non-Hispanic White 3,155 (48.85) 760 (47.18) 758 (46.93) 761 (47.15) 876 (54.11)

Non-Hispanic Black 1,247 (19.31) 412 (25.57) 290 (17.96) 269 (16.67) 276 (17.05)

Other Race 291 (4.51) 61 (3.79) 74 (4.58) 81 (5.02) 75 (4.63)

Education, N (%) <0.001

Less Than 9th Grade2 817 (12.65) 230 (14.28) 230 (14.24) 186 (11.52) 171 (10.56)

9-11th Grade 1,016 (15.73) 351 (21.79) 278 (17.21) 214 (13.26) 173 (10.69)

High School Grad 1,543 (23.89) 437 (27.13) 389 (24.09) 388 (24.04) 329 (20.32)

Some College or AA degree 1762 (27.28) 380 (23.59) 466 (28.85) 444 (27.51) 472 (29.15)

College Graduate or above 1,321 (20.45) 213 (13.22) 252 (15.60) 382 (23.67) 474 (29.28)

Marital Status (%) <0.001

Married 3,455 (53.49) 756 (46.93) 851 (52.69) 913 (56.57) 935 (57.75)

Widowed 570 (8.82) 202 (12.54) 133 (8.24) 102 (6.32) 133 (8.21)

Divorced 671 (10.39) 215 (13.35) 171 (10.59) 135 (8.36) 150 (9.26)

Separated 230 (3.56) 68 (4.22) 63 (3.90) 56 (3.47) 43 (2.66)

Never married 1,035 (16.02) 246 (15.27) 259 (16.04) 272 (16.85) 258 (15.94)

Living with partner 498 (7.71) 124 (7.70) 138 (8.54) 136 (8.43) 100 (6.18)

Smoking, N (%) <0.001

No 2,981 (46.15) 884 (54.87) 762 (47.18) 683 (42.32) 652 (40.27)

Yes 3,478 (53.85) 727 (45.13) 853 (52.82) 931 (57.68) 967 (59.73)

Drinking, N (%) <0.001

No 5,661 (87.65) 1,370 (85.04) 1,419 (87.86) 1,439 (89.16) 1,433 (88.51)

Yes 798 (12.35) 241 (14.96) 196 (12.14) 175 (10.84) 186 (11.49)

Hypertension, N (%) <0.001

No 2,333 (36.12) 723 (44.88) 586 (36.28) 489 (30.30) 535 (33.05)

Yes 4,126 (63.88) 888 (55.12) 1,029 (63.72) 1,125 (69.70) 1,084 (66.95)

DM, N (%) <0.001

No 5,594 (86.61) 1,310 (81.32) 1,400 (86.69) 1,428 (88.48) 1,456 (89.93)

Yes 748 (11.58) 268 (16.64) 191 (11.83) 156 (9.67) 133 (8.21)

Borderline 117 (1.81) 33 (2.05) 24 (1.49) 30 (1.86) 30 (1.85)

PIR <0.001

<2.56 3,224 (49.91) 982 (60.96) 826 (51.15) 769 (47.65) 647 (39.96)

≥2.56 3,235 (50.09) 629 (39.04) 789 (48.85) 845 (52.35) 972 (60.04)

TG (mg/dL) 123.24 ± 65.66 128.15 ± 64.13 122.73 ± 64.71 124.48 ± 66.74 118.69 ± 66.33 <0.001

TC (mg/dL) 194.95 ± 39.74 193.11 ± 40.85 193.18 ± 38.62 195.5 ± 39.85 197.46 ± 39.63 <0.001

(Continued)
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Furthermore, PLP levels were positively associated with HDL-C 
levels, which increased as PLP concentrations rose. In Model 3, after 
adjusting for all covariates, each unit increase in PLP level led to a 
0.952-fold increase in the likelihood of elevated HDL-C levels (OR: 
1.952, 95% CI: 1.951–1.953, p < 0.001).

For TG, the relationship varied across different models and 
quartiles: In Model 1, PLP levels were negatively associated with 
TG levels. In Model 2, negative correlations were observed in 
quartiles Q2 and Q4, but a positive correlation appeared in 
quartile Q3. In Model 3, a negative correlation persisted in the Q2 
group, while positive correlations emerged in the Q3 and 
Q4 groups.

Regarding TC, correlations also differed by model and quartile: In 
Model 1, an inverse relationship was seen in the Q2 group, while 
positive associations were noted in the Q3 and Q4 groups. In Model 
2, PLP levels were positively associated with TC levels. In Model 3, 
PLP levels showed a negative correlation in the Q2 group but positive 
correlations in the Q3 and Q4 groups.

Apo B levels had variable correlations with PLP across the models: 
Models 1 and 2 demonstrated a negative association. Models 3 showed 
negative correlation in the Q2 group, positive correlation in the Q3 
and Q4 group.

In the different models, PLP levels were all negatively correlated 
with LDL-C levels, and PLP levels were all positively correlated with 
HDL-C levels; as PLP levels increased, HDL-C levels increased. 
Therefore, we  performed RCS analysis targeting the correlation 
between PLP level and HDL-C level. Figure  2 illustrate this 
nonlinear correlation.

3.3 Subgroup analysis: the correlation 
between PLP level and HDL-C level

Subgroup analyses were conducted to verify the stability of the 
results. PLP was positively correlated with HDL-C, especially in 

non-drinkers and diabetics. As illustrated in Figure  3, PLP levels 
interacted with gender, race, and diabetes status, but no interactions 
were found with age, education level, hypertension, smoking, alcohol 
consumption, or PIR.

4 Discussion

This study utilized the NHANES database to examine the 
relationship between PLP levels and lipid profiles in U.S. adults. 
In three models, PLP levels were found to have a negative 
correlation with LDL-C and a positive correlation with 
HDL-C. HDL-C levels increased with higher PLP concentrations, 
particularly among individuals with diabetes and non-drinkers, 
and a nonlinear relationship between PLP and HDL-C was 
observed. After adjusting for all covariates, each one-unit increase 
in PLP was associated with a 12.8% reduction in the likelihood of 
elevated LDL-C (OR: 0.872, 95% CI: 0.871–0.872, p < 0.001) and 
a 1.952-fold increase in the likelihood of elevated HDL-C (OR: 
1.952, 95% CI: 1.951–1.953, p < 0.001). Additionally, PLP levels 
were associated with total cholesterol, triglycerides, and Apo B, 
although these relationships were not consistent across models. 
These findings suggest that PLP may play a significant role in 
regulating lipid metabolism.

Vitamin B6 exists in various forms within our diet, yet only PLP 
functions as an enzyme cofactor. Non-phosphorylated forms of 
vitamin B6 are absorbed in the intestine and subsequently converted 
into the active PLP form by specialized enzymes. PLP-dependent 
processes include amino acid and neurotransmitter metabolism, folate 
and one-carbon metabolism, protein and polyamine synthesis, 
carbohydrate and lipid metabolism, mitochondrial function, and 
erythropoiesis (15).

This study is the first to specifically investigate the relationship 
between PLP levels and lipid profiles. Previous studies have 
focused on the impact of vitamin B6 supplementation on blood 

TABLE 1 (Continued)

Variables Total 
(n = 6,459)

Q1 (n = 1,611) Q2 (n = 1,615) Q3 (n = 1,614) Q4 (n = 1,619) p

HDL-C (mg/dL) 54.62 ± 15.88 51.08 ± 14.51 53.53 ± 15.49 54.95 ± 16.06 58.06 ± 16.36 <0.001

LDL-C (mg/dL) 115.68 ± 34.96 116.39 ± 35.24 115.12 ± 34.81 115.66 ± 35.09 115.66 ± 34.75 <0.001

ApoB (mg/dL) 94.06 ± 24.39 95.22 ± 24.64 93.32 ± 24.49 93.75 ± 24.28 94.12 ± 24.18 <0.001

UA (umol/L) 5.53 ± 1.43 5.53 ± 1.52 5.49 ± 1.42 5.54 ± 1.39 5.53 ± 1.37 <0.001

Insulin (uU/mL) 12.78 ± 11.77 14.98 ± 15.74 13.27 ± 11.80 12.32 ± 9.65 10.55 ± 8.01 <0.001

HbA1c (%) 5.70 ± 1.01 5.90 ± 1.17 5.70 ± 1.01 5.64 ± 0.99 5.58 ± 0.84 <0.001

WBC (1,000 cells/uL) 6.77 ± 2.35 7.36 ± 3.38 6.82 ± 1.93 6.56 ± 1.80 6.32 ± 1.78 <0.001

RBC (million cells/uL) 4.70 ± 0.50 4.62 ± 0.51 4.71 ± 0.49 4.76 ± 0.49 4.71 ± 0.51 <0.001

HG (g/dL) 14.27 ± 1.55 13.85 ± 1.65 14.30 ± 1.53 14.50 ± 1.47 14.42 ± 1.45 <0.001

FG (mg/dL) 107.47 ± 32.36 112.51 ± 39.40 107.51 ± 32.39 106.35 ± 31.32 103.56 ± 23.84 <0.001

BMI (kg/m2) 29.00 ± 6.80 30.96 ± 8.34 29.31 ± 6.57 28.24 ± 5.84 27.49 ± 5.59 <0.001

Q1: ≤ 27.6 nmol/L, Q2: 27.6–45.3 nmol/L, Q3: 45.3–79.5 nmol/L, Q4: ≥ 79.5 nmol/L. PIR, Poverty-to-income ratio; TG, Triglycerides; TC, Total Cholesterol; HDL-C, High-density lipoprotein 
cholesterol; LDL-C, Low-density lipoprotein cholesterol; DM, Diabetes mellitus; ApoB, Apolipoprotein (B); UA, uric acid; HbA1c, Glycohemoglobin; WBC, White blood cell count; RBC, Red 
blood cell count; HG, Hemoglobin; FG, Fasting glucose; BMI, body mass Index.
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lipid levels. In one study, 12 dialysis patients receiving vitamin B6 
and folic acid supplementation over 68 months exhibited 
significantly lower LDL-C levels, though TC, TG, and HDL-C 
levels remained largely unchanged (16). Vitamin B6 has also been 
shown to provide protective effects against coronary heart disease, 
particularly among women, individuals with obesity, and smokers 
(9). Additionally, vitamin B6 has been found to improve 
non-alcoholic fatty liver disease in mice through the PPAR and 
TLR4/NF-κB signaling pathways (17).

In our study, PLP levels were positively associated with HDL-C 
levels, with a stronger correlation observed in diabetic patients. This 
aligns with previous research showing that PLP deficiency impairs 
insulin secretion in rats, whereas PLP supplementation helps prevent 
diabetic complications and improves outcomes in gestational diabetes 
(18). Vitamin B6 has also been found to reduce insulin resistance, 
which is often induced by lipogenesis and fat distribution in obese 
individuals. Diabetic patients tend to have larger adipocytes compared 

to non-diabetics; insulin sensitivity is inversely related to adipocyte 
size (19, 20), and markers of insulin resistance are significantly 
associated with lower HDL-C levels (21).

Our study further indicated an inverse relationship between 
PLP levels and LDL-C levels. Although previous studies have not 
provided direct evidence of a definitive association, some suggest 
that low vitamin B6 intake may be linked to an increased risk of 
cardiovascular disease. One study reported that individuals with 
plasma PLP levels below 30 nmol/L had a significantly higher risk 
of coronary heart disease than those with levels above 
30 nmol/L. Additionally, the combination of low PLP and abnormal 
lipid levels was associated with an even greater risk of coronary 
heart disease (22). Recent research has found that serum PLP levels 
are negatively correlated with all-cause mortality, cardiovascular 
mortality, and CVD risk in US adults, with a dose–response 
relationship (23). Other studies have produced similar findings 
(24). Some researchers, however, noted that the association between 

TABLE 2 Association of PLP with lipid profiles.

Model 1 Model 2 Model 3

OR (95%CI) p value OR (95%CI) p value OR (95%CI) p value

LDL-C

Q1 Ref Ref Ref

Q2 0.876 (0.875–0.876) <0.001 0.846 (0.846–0.847) <0.001 0.823 (0.823–0.824) <0.001

Q3 0.865 (0.865–0.866) <0.001 0.835 (0.834–0.835) <0.001 0.81 (0.81–0.811) <0.001

Q4 0.936 (0.935–0.936) <0.001 0.894 (0.894–0.895) <0.001 0.872 (0.871–0.872) <0.001

HDL-C

Q1 Ref Ref Ref

Q2 1.368 (1.367–1.368) <0.001 1.526 (1.525–1.527) <0.001 1.413 (1.413–1.414) <0.001

Q3 1.684 (1.683–1.684) <0.001 2.097 (2.096–2.098) <0.001 1.891 (1.89–1.892) <0.001

Q4 2.122 (2.121–2.123) <0.001 2.234 (2.233–2.236) <0.001 1.952 (1.951–1.953) <0.001

TG

Q1 Ref Ref Ref

Q2 0.838 (0.838–0.838) <0.001 0.91 (0.91–0.911) <0.001 0.984 (0.983–0.984) <0.001

Q3 0.937 (0.937–0.938) <0.001 1.123 (1.123–1.124) <0.001 1.252 (1.251–1.253) <0.001

Q4 0.75 (0.749–0.75) <0.001 0.98 (0.98–0.981) <0.001 1.13 (1.13–1.131) <0.001

TC

Q1 Ref Ref Ref

Q2 0.996 (0.996–0.997) <0.001 1.04 (1.039–1.04) <0.001 0.984 (0.983–0.984) <0.001

Q3 1.111 (1.11–1.111) <0.001 1.224 (1.223–1.224) <0.001 1.163 (1.163–1.164) <0.001

Q4 1.288 (1.287–1.288) <0.001 1.366 (1.366–1.367) <0.001 1.294 (1.293–1.295) <0.001

Apo B

Q1 Ref Ref Ref

Q2 0.904 (0.904–0.905) <0.001 0.923 (0.922–0.923) <0.001 0.989 (0.988–0.989) <0.001

Q3 0.857 (0.857–0.858) <0.001 0.897 (0.896–0.897) <0.001 1.163 (1.163–1.164) <0.001

Q4 0.909 (0.909–0.909) <0.001 0.995 (0.994–0.995) <0.001 1.294 (1.293–1.295) <0.001

Model 1: adjusted for no variable. Model 2: adjusted for age, gender, race, education, marital status, PIR, drinking, BMI, smoking, hypertension, DM. Model 3: adjusted for age, gender, race, 
education, marital status, PIR, drinking, BMI, smoking, hypertension, DM, UA, Insulin, HbA1c, WBC, RBC, HG, FG. OR, Odds Ratio; CI, Confidence Interval. PIR, Poverty-to-income ratio; 
TG, Triglycerides; TC, Total Cholesterol; HDL-C, High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; DM, Diabetes mellitus; ApoB, Apolipoprotein (B); UA, 
uric acid; HbA1c, Glycohemoglobin; WBC, White blood cell count; RBC, Red blood cell count; HG, Hemoglobin; FG, Fasting glucose; BMI, body mass Index.
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low plasma PLP levels and poor cardiovascular outcomes may differ 
by gender, with a stronger and more independent link observed in 
women (25). However, a study has found that there is no 
relationship between PLP and the risk of myocardial infarction 
(26). Considering these research findings, the relationship between 
PLP and cardiovascular diseases is complex and multifaceted, 
warranting further studies to elucidate their specific mechanisms 
and impacts.

The factors influencing PLP levels are not fully established. Aging 
and smoking are known to reduce plasma PLP concentrations, while 
moderate alcohol consumption may amplify these effects. Some 
studies suggest that the influence of moderate alcohol intake on 
plasma PLP levels may be partly due to the vitamin B6 content in beer 
(27). Other research has indicated no significant decrease in PLP 
levels between the ages of 60 and 90; however, age-related shifts in 
body composition, such as an increased fat-to-lean mass ratio, may 
negatively impact vitamin B6 status (28).Analysis of data from the 
National Diet and Nutrition Survey Rolling Program found that 
dietary B vitamin intake and plasma PLP levels decline with age and 
lifestyle factors, particularly among older adults who smoke and take 
multiple medications (polypharmacy) (29). Additionally, some 
studies have associated abdominal obesity with lower vitamin B6 
levels (30).

The direct correlation between TC, TG, ApoB, and PLP is 
exceedingly limited. However, there are a few literature reports 
that have explored the association between vitamin B6 and these 
lipid indicators. In our research findings, TC, TG, and ApoB 
exhibit inconsistent correlations with PLP. Previous studies have 
indicated that supplementation with vitamin B6 does not 

significantly affect serum cholesterol levels (31). Nonetheless, 
animal studies have demonstrated that oral administration of 
vitamin B6 can inhibit the synthesis of fatty acids and 
cholesterol, promote the breakdown of fatty acids, and enhance 
cholesterol transport (10). Furthermore, an experiment 
involving Japanese quail showed that injection of vitamins C, 
B6, and B12 into fertilized eggs resulted in hatched quails with 
significantly reduced plasma total lipids and cholesterol levels 
(32). Additionally, a randomized controlled trial revealed that 
supplementation with a complex containing multiple B vitamins 
led to significant reductions in fasting glucose, triglycerides, 
and total cholesterol levels (33). These findings suggest that 
vitamin B6 may hold potential for regulating blood lipid  
levels.

Given that humans cannot synthesize vitamin B6 
endogenously (34), dietary intake is critical. To optimize PLP 
levels, individuals should prioritize foods rich in vitamin B6, such 
as bonito, tuna, chicken liver, fish, and potatoes (35). For high-risk 
populations (diabetics or those with dyslipidemia), 
supplementation under medical supervision may be warranted. 
Additionally, smoking cessation is advised, as this factor 
exacerbates PLP depletion (29).

This cross-sectional study, based on a large-scale, 
representative survey, thoroughly controlled for confounding 
factors and was the first to examine the association between PLP 
and lipid profiles. However, several limitations should be noted: (i) 
Data on factors influencing lipid levels, such as lipid-lowering 
medication use and body weight management, were incomplete 
and therefore could not be included as variables. (ii) Due to the 

FIGURE 2

Nonlinear association between PLP Levels and HDL-C (restricted cubic spline analysis).

https://doi.org/10.3389/fnut.2025.1545301
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhang et al. 10.3389/fnut.2025.1545301

Frontiers in Nutrition 08 frontiersin.org

cross-sectional design and lack of follow-up data, establishing 
causality is challenging.

5 Conclusion

In summary, blood lipid levels have long been a primary 
concern for clinicians due to the distinct health impacts of 
different lipid components. Our study found that PLP levels 
were inversely associated with LDL-C levels and positively 
associated with HDL-C levels; specifically, an increase in PLP 
levels corresponded with higher HDL-C levels. Additionally, a 
nonlinear relationship between PLP and HDL-C levels was 
observed. While vitamin B6 or PLP supplementation appears to 
benefit blood lipid profiles and may aid in clinical diagnosis and 

treatment, further research is needed to elucidate the precise 
mechanisms involved.
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