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Cognition is a mental process of understanding and learning driven by memory. 
Recent advances in molecular biology and neuroscience have revealed a fascinating 
interplay between cognitive function and microRNAs (miRNAs). The ketogenic diet 
(KD) is a low-carbohydrate, high-fat, and adequate-protein diet that triggers the 
synthesis of ketone bodies, establishing ketosis. Recent and accumulating studies 
on human and animal models have shown that the KD benefits neurodegenerative 
diseases, where cognition is affected. The KD can also modulate miRNAs, molecules 
that are dysregulated in the brains of individuals with Alzheimer’s disease, where 
cognition is lost. In this mini-review, we provide an overview of the function of 
miRNAs in neurodevelopment and cognition. We also explore how the KD in 
human studies can enhance cognitive function and highlight the protective role 
of microRNAs in neurological conditions.
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Introduction

Cognitive function refers to the mental processes involved in acquiring knowledge, 
reasoning, and manipulating information. It includes the domains of language abilities, 
perception, memory, learning, decision-making, and attention (1). Conventional models of 
human cognition have been hypothesized by cognitive scientists within an information-
processing paradigm. The mechanisms underlying cognitive processes remain an active area 
of research. One growing focus is the role of micronutrients (2, 3) and/or a dietary regimen 
known as the KD (4) in regulating cognitive function, with microRNAs (miRNAs) emerging 
as key contributors (5). miRNAs are short, non-coding RNA molecules that play a significant 
role in post-transcriptional gene regulation in several organs and tissues. They are also used 
as diagnostic tools in some conditions (6, 7). In addition, Orellana et al. proposed miRNAs as 
potential biomarkers in neurodegenerative disease, identifying four miRNAs with variable 
expression in patients with Alzheimer’s disease (AD) and frontotemporal dementia (8). The 
regulatory role of miRNAs has profound implications for cognitive function, as numerous 
miRNAs are expressed in the brain and actively participate in various neurological processes 
(9) and cognitive performance (10). In this mini-review, we provide an overview of the role of 
miRNAs in sustaining neurodevelopment and cognition functions. We also discuss how the 
KD affects neurological conditions by modulating miRNAs, its potential benefits in AD, and 
which conserved miRNAs were found to be linked to this condition.
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miRNAs sustain neurodevelopment and 
cognitive functions

MiRNAs play an important role in synaptic function and 
neurotransmission (11). The impact of miRNAs on cognitive function 
begins during the development of cortical neurons, oligodendrocytes, 
and astroglia (12). These small regulators are essential for the 
formation and maintenance of neural circuits. miR-124 is the most 
abundant miRNA in the brain and is known to promote neuronal 
differentiation and axon growth (13), while miR-9, a neuronal-specific 
miRNA, is highly expressed in the brain (14), where it controls neural 
stem cell numbers (15). miR-132 regulates neuronal differentiation 
and maturation and participates in axon growth, neural migration, 
and plasticity (16). On the other hand, miR-219 is crucial for the 
coordinated transition of oligodendrocyte progenitor cells to 
oligodendrocytes and subsequent myelin formation (17). Although 
miR-138 expression is also elevated in oligodendrocytes (17), 
miR-199a-5p and miR-145 play a critical role in their maturation (18).

Synaptic plasticity (SP) is crucial for cognitive function, serving 
as the foundation for integrated neuronal communication (19). SP is 
at the core of cognitive function, which includes long-term 
potentiation and long-term depression, with underlying biochemical 
mechanisms that support learning and memory (20). miR-134 has 
been found to play a critical role in modulating SP. For instance, 
miR-134 inhibits the translation of Lim kinase 1 (LIMK1), which is 
involved in actin polymerization and dendritic morphology (21). 
Disruption of miR-134 leads to dysregulation of synaptic plasticity 
and impaired learning and memory (22). Meanwhile, miR-34a (23) 
and miR-34c (24) mediate synaptic and memory deficits. The miR-29 
family is differentially regulated in the adult hippocampus during 
learning (25). In addition, miR-466f-3p appears to positively regulate 
neuronal plasticity by influencing cAMP response element-binding 
protein (CREB) activity during spatial learning and memory 
formation in mice (26). Furthermore, studies on miRNAs in brain 
tissue have shown that circulating miRNAs are also linked to cognitive 
function (27, 28). miR-212 and miR-484 are essential for synaptic 
function and neurotransmission (29, 30). Lower expression of 
miR-484 and miR-197-3p has been associated with accelerated 
cognitive decline, with downregulation of miR-484 specifically linked 
to an increased risk of AD development (30). Some studies have found 
correlations between specific circulating miRNAs and cognitive 
performance. For instance, Junyi Ma et  al. found an association 
between miR-330-3p in serum and executive function (27). 
MiR-181a-5p, miR-148-3p, and miR-146a-5p showed a significant 
negative correlation with cognitive function and similar beta-amyloid 
protein (Aβ) 42/40 ratio values, suggesting their potential as 
biomarkers for AD (31). In addition, Aβ can inhibit the expression of 
miR-15a, thereby inducing the expression of Bag5 and activating the 
protective mechanism of Bag5 against Aβ-induced apoptosis (32). 
Moreover, miR-206 and miR-132 were positively correlated with the 
Montreal Cognitive Assessment (MoCA) score in patients with mild 
cognitive impairment (MCI). Circulating miR-206 and miR-132, 
which are upregulated in patients with MCI, are proposed as potential 
biomarkers for MCI diagnosis (28). Notably, of the 17 miRNAs 
reported here, 11—miR-9, miR-29, miR-34a, miR-132, miR-138, 
miR-145, miR-148, miRNA-181a-5p, miR-199a-5p, miR-206, and 
miR-219—are highly conserved across species. This characteristic 
often enhances the value of basic research from a translational 

perspective, particularly in AD, where understanding both 
pathogenesis and treatment-specific health outcomes is crucial (left 
panel in Figure 1).

Biochemical pathways in ketogenesis

The biochemistry of ketone body synthesis begins during fasting. 
Cellular oxaloacetate levels are insufficient to condense with 
acetyl-CoA for citrate formation, leading to a delay in the citric acid 
cycle. The essential biochemical process for the KD occurs primarily 
in the mitochondria of liver cells and follows these biosynthetic steps: 
(i) condensation of two molecules of acetyl-CoA to form 
acetoacetyl-CoA; the reaction is catalyzed by the enzyme 
3-ketothiolase. (ii) The acetoacetyl-CoA reacts with another 
acetyl-CoA in the presence of a water molecule, forming 3-hydroxy-
3-methylglutaryl-CoA (HMG-CoA) and free CoA, with the reaction 
catalyzed by HMG-CoA synthase. It is worth noting that this critical 
step is facilitated by thioester bond hydrolysis, which offsets the 
unfavorable formation of acetoacetyl-CoA. HMG-CoA lyase cleaves 
3-hydroxy-3-methylglutaryl-CoA into acetyl-CoA and acetoacetate, 
the first ketone body. Acetoacetate, a β-ketoacid, has two fates: 
spontaneous decarboxylation to acetone (the second ketone body) or 
reduction by NADH-dependent 3-hydroxybutyrate dehydrogenase to 
form 3-hydroxybutyrate (BHB), the third ketone body (33). Ketosis is 
elicited not only during fasting but can also occur when minimal 
amounts of carbohydrates are consumed. For instance, 3 days of 
consuming 20–30 g of carbohydrates or limiting carbohydrate intake 
to less than 5% of total daily calories can induce ketosis. The use of this 
nutritional scheme dates back to over 100 years when it was adopted 
to manage a form of drug-resistant childhood epilepsy. The 
neuroprotective effect is considered to be directly due to ketone bodies 
(34). The KD is a valuable nutrition strategy in the management of 
recurrent migraines (35). In addition to its antioxidant capabilities, the 
absence of glycemic peaks during ketosis also causes the production 
of advanced glycation end products (36, 37).

Ketogenic diet and its impact on cognitive 
function: evidence from human studies

Decline in cognitive function is age-dependent and could be a 
potential target for extending cognitive health span, in contrast to 
dementia, including AD (38). The prevalence of dementia worldwide 
affects more than 55 million people, the majority of whom have AD 
(39). This situation also leads to onerous burdens on society. In 
developed countries, the U.S. alone has 6.9 million people aged 65 and 
older living with AD, according to data updated in 2024 (40). Similarly, 
developing countries account for 5% of the overall prevalence (41). 
This disorder affects not only the individual patients but also their 
families and caregivers. Diagnosing dementia is quite challenging as 
the MCI test may not always provide a clear indication. Clinical trials 
have suggested that different types of the KD significantly improve the 
quality of life and daily function and eased AD-related cognitive 
impairment, especially in individuals without the epsilon 4 allele of 
the apolipoprotein E gene (APOE ɛ4). This suggests that ketone body 
metabolism is related to APOE ɛ4 status (37). Individuals harboring 
APOE ε4 appear to be  at higher risk, as recently reported in a 

https://doi.org/10.3389/fnut.2025.1545832
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Abrego-Guandique et al. 10.3389/fnut.2025.1545832

Frontiers in Nutrition 03 frontiersin.org

meta-analysis conducted in Italy (42), showing a transitional stage 
between normal brain aging and dementia. Therefore, it is crucial to 
find effective prevention therapies to delay the onset of disease and 
slow cognitive decline. Some studies have explained the mechanisms 
underlying the protective effect of the KD on AD. By increasing BHB, 
the KD compensates for the brain’s glucose hypometabolism, 
providing an alternative and efficient energy source (43). In addition, 
the KD helps clear amyloid-beta (Aβ) plaques, decrease tau 
hyperphosphorylation, and improve mitochondrial function. Clinical 
and preclinical studies have demonstrated cognitive improvements 
and biomarker modulation, highlighting the KD as a potential 
therapeutic approach for managing AD (44). It also reduces 
neuroinflammation by suppressing the NLRP3 inflammasome and 
lowering the levels of pro-inflammatory cytokines such as IL-1β and 
TNF-α. These findings suggest that the KD shows promise in delaying 
and/or mitigating cognitive decline symptoms sustained by 
neuroinflammation (45).

Ketogenic diet and miRNAs

The modulation of miRNAs by dietary regimens, including the 
ketogenic diet, is well-documented (46, 47). Micronutrients influence 
miRNA synthesis epigenetically, with recent evidence suggesting a role 
for exogenous food-derived miRNAs (48). BHB acts as a signaling 
molecule, regulating miRNA expression and other epigenetic 
processes (49). The KD modulates miRNAs that regulate genes 
involved in metabolic and inflammatory pathways, with normalization 
of antioxidant and anti-inflammatory miRNAs in obese participants 
post-diet, suggesting an epigenetic role (37, 50). In fact, miR-34a 

downregulates SIRT1, a hypothalamic NAD + -dependent deacetylase 
that regulates energy balance, and enhances mitochondrial biogenesis, 
fatty acid oxidation, and ketogenesis (51, 52). However, studies on 
miRNAs as predictors of the KD’s therapeutic effects are scarce, with 
the majority of them focusing on obesity, where circulating miRNA 
profiles may indicate the risk of complications and monitor weight 
loss outcomes (53).

Ketogenic diet and miRNA in neurological 
conditions

Emerging evidence underscores the complex interplay between 
miRNAs, the KD, and cognition, with brain-derived neurotrophic 
factor (BDNF) serving as a pivotal link. BDNF is essential for 
neurogenesis, synaptogenesis, and memory. It is influenced by 
miRNAs that regulate its activity and inflammatory pathways (54). 
The KD promotes neuroprotective effects by modulating miRNA 
expression (55) and enhancing BDNF function and synaptic activity. 
Furthermore, the diet’s impact on gut-derived butyrate, which is 
known to reduce neuroinflammation, highlights its role in 
supporting cognitive processes (right panel in Figure  1) (56). 
Recently, the KD, followed for a minimum of 6 months as a 
treatment for childhood epilepsy, significantly reduced the number 
of seizures in seven of eight pediatric patients treated with this 
nutritional regimen. KD-induced modifications in eleven relevant 
miRNAs were monitored in peripheral blood mononuclear cells 
(PMBCs). Seven miRNAs were found to be downregulated by the 
KD in these patients: miR-3978, miR-6726-3p, miR-130a-3p, 
miR-4758, miR-6745, miR-532, and miR-185-5p. Meanwhile, four 

FIGURE 1

miRNAs in neurodevelopment and cognitive function (on the left). The relationship between miRNAs and their roles in neurodevelopment, synaptic 
plasticity, and circulating biomarkers in cognitive function and neurological health. Green circles highlight miRNAs associated with positive effects, 
while red circles represent miRNAs linked to negative effects. MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment. The ketogenic 
diet sustains cognition (on the right). In the blue circle, the ketone bodies produced during the KD; in the dark red circle, the effects of the KD on the 
microbiome’s synthesis of butyrate. Created in BioRender. Created with BioRender.com.
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were upregulated: miR-4538, miR-602, miR-330-5p, and miR-4673 
(57). In a group of patients with pediatric autism, following 
4 months of a KD, the levels of miR-134-5p and miR-132-3p were 
significantly reduced, while the levels of miR-125b-5p remained 
unchanged and the levels of miR-375-3p increased (56). Finally, our 
research focused on a 6-week the KD in obese women who self-
reported experiencing migraine. We observed a downregulation of 
miR-211-5p, no changes in brain-enriched miR-382-5p and 
miR-342-5p, and an upregulation of miR-590-5p, miR-660-3p, 
miR-34a-5p and, miR-26b-5p (35, 58). Furthermore, it was observed 
that miRNA-34a, miRNA-132, miRNA-134, and miRNA-330 are 
commonly associated with neurodevelopment and cognitive 
functions in animal studies, with miRNA-34a being notably 
conserved across species.

Critical considerations of the KD

While the KD shows potential in modulating miRNAs and 
influencing cognitive and neurological conditions, the findings must 
be approached with caution. It was reported that low-carbohydrate 
diet regimens were associated with less confusion and faster response 
during an attention vigilance task, with a positive impact on cognitive 
behavior even when followed for 1 year (59, 60). Confounding factors 
must also be considered, such as individual variability due to genetic 
polymorphism differences, basal metabolism, and adherence to the 
diet, all of which significantly influence the outcomes. For instance, 
genetic polymorphisms in pathways related to lipid metabolism or 
inflammation may alter the miRNA response to the KD, leading to 
variable effects on cognitive and neuroprotective outcomes (61). In 
addition, the KD is associated with potential health risks that must not 
be overlooked. These include nutrient deficiencies, gastrointestinal 
disturbances, dyslipidemia, and, in some cases, long-term 
cardiovascular risks (62, 63). In fact, the low-carb pattern is considered 
to be more beneficial than very low-carbohydrate diets in terms of 
cardiovascular mortality (64). These adverse effects highlight the need 
for personalized approaches when considering the KD as a 
therapeutic intervention.

Conclusion

In conclusion, understanding the complex interplay between 
metabolism during the KD, miRNAs, and cognitive function is 

important for calibrating the KD regimen to delay neurodegenerative 
diseases by activating endogenous miRNAs and, consequently, 
multiple molecular and cellular pathways. Notably, the network of 
miRNAs and their influence on the KD and cognitive function is a 
promising area of research in neuroscience to delay the onset of AD.
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