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Background: This study aims to explore the associations between RBC folate,

several serum folate forms [serum total folate, 5-methyltetrahydrofolate (5-

mTHF), and unmetabolized folic acid (UMFA)], and obesity risk in middle-aged

and older populations.

Methods: Data from NHANES (2011–2018) included 11,615 participants.

Generalized linear models (GLMs) were applied to investigate associations of

RBC folate and various serum folate forms with obesity risk after multivariable

adjustment. Potential effect modifications were examined through stratified

analyses and multiplicative interaction testing.

Results: Among the total sample, middle-aged, and older participants, 4578

(39.4%), 3613 (40.0%), and 965 (37.2%) were obese, respectively. A positive

association between RBC folate and obesity risk was observed, with the highest

risks of obesity were consistently found in the fourth quartile (≥ 1,430 nmol/L)

for the middle-aged adults (OR = 1.104, 95% CI: 1.045–1.166) and the

older participants (OR = 1.157, 95% CI: 1.036–1.293). A significant negative

association between serum total folate levels and obesity risk in middle-aged

participants, with an OR of 0.804 (95% CI: 0.773–0.835) in the highest quartile

(≥ 54.2 nmol/L). Similarly, serum 5-mTHF levels were negatively associated with

obesity risk, with an OR of 0.800 (95% CI: 0.772–0.830) in the highest quartile

(≥ 51.2 nmol/L). Most importantly, older participants with UMFA levels in the

fourth quartile (≥ 1.06 nmol/L) had a higher risk of obesity (OR, 1.056; 95% CI:

1.004–1.110) compared with those with lower UMFA levels, but this association

was not found in the total participants or the middle-aged participants.
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Conclusion: Significant positive relationships exist between RBC folate and

obesity risk. Additionally, low serum 5-mTHF in middle-aged participants

and high UMFA in older adults were associated with increased obesity risk,

highlighting the importance of monitoring folate concentrations for guiding

future clinical trials on folate supplementation.
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1 Introduction

Obesity has become a growing public health problem
worldwide, with its prevalence rising significantly over the past
few decades (1). It is associated with an increased risk of various
diseases, including cardiovascular disease, diabetes mellitus, certain
cancers, and mental health disorders, all of which negatively impact
quality of life, work productivity, and healthcare costs (2). As the
global obesity epidemic continues to intensify, the need for effective
prevention and treatment strategies has become a pressing priority
in public health.

Recent studies have reported the associations between RBC
folate, serum total folate levels and obesity, but the findings
remain inconsistent. Some studies reported negative associations
between obesity and total folate levels (3), while an analysis using
NHANES data identified a positive association between obesity
and erythrocyte folate in the overall population (4). In contrast,
other studies found no significant relationship between serum
total folate and body weight in older individuals (5). Therefore,
conclusions on the as-sociation between RBC folate, serum total
folate, and obesity remain inconclusive, and more importantly, the
associations between RBC folate, serum total folate and obesity are
not consistent across populations, making it crucial to consider age
differences among groups.

Mandatory fortification and folic acid supplementation
doubled the United Staes population’s serum folate concentration
in the past 30 years. Different circulating folate forms may have
diverse health impacts. A prospective cohort study revealed
significant associations of raised 5-methyltetrahydrofolate (5-
mTHF) and unmetabolized folic acid (UMFA) levels with
increased mortality rates (6), while serum levels of 5-mTHF
and UMFA had controversial effects on kidney dysfunction
(7). It is crucial to deeply understand the effects of excessive
folate intake from supplementation and fortified foods on
health and diseases (8, 9). Further investigation is imperative
to elucidate the influence of serum folate forms on health
across diverse populations, accounting for the diverse array
of folate types. Although several works have suggested risk
of obesity linked to RBC folate and serum total folate in
general populations (3, 10), it is worth comparing the potential
differences between various serum folate forms and obesity in
middle-aged and older populations, considering the metabolic
changes with aging.

Using National Health and Nutrition Examination Surveys
(NHANES) 2011–2018 data, this study is aimed to scrutinize

associations of RBC folate and various serum folate forms (serum
total folate, 5-mTHF, and UMFA) correlation with obesity, and to
examine possible effect modifiers in United States adults.

2 Materials and methods

2.1 Study design and population

The NHANES, headed by the Centers for Disease Control and
Prevention, collects United States children and adults’ nutritional
and health data. It utilizes a complex multistage and probabilistic
sampling method for a nationally representative sample (11). All
documents pertaining to each survey are available on the NHANES
website (12).

In this study, we analyzed the NHANES 2011 to 2018 data
(n = 39,156), limiting the scope to non-pregnant persons over
20 (n = 22,370). We excluded 2,540 participants with missing
serum or RBC folate information. From the 19,830 participants
left, 7,817 were removed for missing confounder data, and 398
were taken off for having < 500 kcal/d or > 6,000 kcal/d energy
intake. Hence, 11,615 subjects were finally included in our analysis
(Supplementary Figure 1).

2.2 Measurements of RBC folate and
serum folate forms

Serum and whole blood samples were drawn and analyzed
at CDC’s Nutritional Biomarkers Lab. Field-collected specimens
should be kept cool, light-protected, processed, frozen, and shipped
overnight on dry ice, to store at≤−20◦C until analysis. RBC folates
were measured via a microbiologic assay. Five biologically active
folate forms were performed on fresh or frozen serum without
freeze thaw cycles using LC-MS/MS by the CDC laboratory (13).
Details on specimen processing and laboratory methods have been
described elsewhere (14). Long-term quality control CVs were
< 3% for 5-mTHF, and mostly < 10% for other folate forms. Serum
total folate was the sum of 5 active forms including MeFox (15).
Imputed values [limit of detection (LOD) divided by square root
of two] were used for any folate form result < LOD. If any folate
concentration was absent, no serum total folate was calculated.
The equations should be inserted in editable format from the
equation editor.
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2.3 Outcomes and covariation
assessment

For measurement of obesity, trained health technicians
measured body weight, height, and waist circumference at the
mobile examination centers (MECs). BMI was calculated as weight
(kg) divided by height squared (m2). General obesity was defined as
BMI of 30 kg/m2 or higher, while overweight was defined as a BMI
ranging from 25.0 to 29.9 kg/m2.

Demographic information, lifestyle, diet, and history of diseases
were collected by direct interview through questionnaires. Smoking
was defined as smoking at least 100 cigarettes in life. Drinking
was defined as drinking at least 12 drinks a year. Hypertension
was identified as systolic blood pressure ≥ 140 mmHg, diastolic
blood pressure ≥ 90 mmHg, or self-reported diagnosis of
hypertension. Diabetes mellitus was defined as a fasting blood
glucose level ≥ 7.0 mmol/L, or a previous diagnosis of diabetes.
Participants were asked about their physical activity during a typical
week, based on the Global Physical Activity Questionnaire (GPAQ).
Metabolic equivalent (MET) per week was calculated according to
the GPAQ guideline. Participants without any PA and performing
< 600 MET min/week were classified as inactive. Those performing
≥ 600 MET min/week were classified as active. Total energy intake
per day, total fat intake per day, total sugars intake per day, food
folate intake levels, and folate as dietary folate equivalents levels
were based on dietary interview data, from which the total intake of
the first 2 days was averaged as the participants’ intake. When data
from the second day was absent, the data of the first day represented
the typical total intake per day.

2.4 Statistical analysis

All statistical analyses accounted for complex survey design
factors for NHANES, including sample weights, stratification,
and clustering, following NHANES analytic and reporting
guidelines (12). Comparison of baseline characteristics
according to obesity status was performed by chi-square test
for categorical variables and analysis of variance (ANOVA) for
continuous variables.

Associations of obesity with RBC and other serum folate acids
were examined in total participants, as well as in the middle-aged
group (i.e., participants aged < 65 years) and in the older group
(i.e., participants aged ≥ 65 years). Logistic regression models
were used to estimate odds ratios (ORs) and 95% confidence
intervals (CIs) for the associations according to quartiles of RBC
folate or folate forms with the lowest quartile as the reference
group. The crude model adjusted for age, sex (female, male),
and ethnicity (Mexican American, Hispanic, non-Hispanic White,
non-Hispanic Black, and others); Model 1 adjusted for age, sex,
ethnicity, education level (Less than 9th grade, 9–11th grade,
high school, some college or AA degree, college graduation, or
above), marital status (Married, Widowed, Divorced, Separated,
Never married, Living with partner), ratio of family income to
poverty family (≤ 1.0, 1.0–3.0, > 3.0), physical activity status
(active vs. inactive), waist circumference, total energy intake, total
sugar intake, total fat intake, food folate intake, smoking status
(yes vs. no), drinking status (yes vs. no), diabetes mellitus (yes

vs. no), hypertension (yes vs. no); Model 2 adjusted for variables
in model 1, plus mutually adjustment for the con-centration of
other folate forms.

Stratification analyses were conducted to explore possible effect
modifications of social and demographic variables including sex,
smoking, alcohol use, diabetes, hypertension, and physical activity.
We used logistic regression models to fit multiplicative interactions
between two dichotomous variables.

A two-tailed P < 0.05 was statistically significant in all
analyses. Analyses were performed using R 3.6.2 software1 and
R package SURVEY.

3 Results

3.1 Baseline characteristics of the participants
Baseline characteristics of the study participants in total and by

obesity status were presented in Table 1. Among the 11,615 adult
participants, the prevalence of obesity was 39.4% (n = 4,578). The
median (interquartile range, IQR) of age was 47.0 (33.0, 60.0) years,
and 47.8% were men. The median (IQR) of RBC folate, serum total
folate, 5-mTHF, and UMFA were 1120.0 (871.0, 1480.0) nmol/L,
38.7 (26.3, 55.3) nmol/L, 36.4 (24.5, 52.4) nmol/L, and 0.7 (0.51,
1.07) nmol/L, respectively. Table 1 also shows that obese ones were
older and had higher proportions of women, compared to non-
obese individuals. The obese participants reported less alcohol use,
smoking, diabetes, and hypertension. They also had increased RBC
folate and total fat intake but decreased serum total folate, 5-mTHF,
and dietary folate equivalents.

3.2 Relationship of folate forms with the
risk of obesity

After adjusting for covariates in Model 2, a significant positive
association between RBC folate levels and obesity risk was observed
with ORs of 1.053 (95% CI: 1.015–1.093), 1.073 (95% CI: 1.027–
1.121), 1.105 (95% CI: 1.040–1.175) across the Q2, Q3, and Q4
groups, respectively (trend P < 0.001, Supplementary Table 1).
This associations still existed within both the middle-aged group
(quartile trend P < 0.001) (Table 2) and the older group (quartile
trend P = 0.013) (Table 3), and the highest risks of obesity were
consistently found in the top quartile (Q4) groups for the middle-
aged adults (OR = 1.104, 95% CI: 1.045–1.166) and the older
participants (OR = 1.157, 95% CI: 1.036–1.293).

However, a significant negative association was found between
serum total folate levels and risk of obesity, with ORs of
0.929 (95% CI: 0.893–0.968), 0.870 (95% CI: 0.835–0.907), 0.804
(95% CI: 0.773–0.835) observed in Q2, Q3, and Q4 groups,
respectively (quartile trend P < 0.001 in adjusted Model 2)
(Supplementary Table 1). Meanwhile, a notable negative correlation
between serum 5-mTHF levels and obesity risk was identified,
with ORs of 0.930 (95% CI: 0.895–0.966), 0.866 (95% CI: 0.829–
0.903), and 0.800 (95% CI: 0.772–0.830) observed in the Q2,
Q3, and Q4 groups, respectively (quartile trend P < 0.001)

1 http://www.R-project.org/
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TABLE 1 Characteristics of study population (N = 11,615), NHANES, United States, 2011–2018†.

Characteristics Overall, N = 11,6151 No obesity, N = 7,0371 General obesity,
N = 4,5781

P2

Age, y 47.0 (33.0, 60.0) 46.0 (31.0, 60.0) 49.0 (36.0, 60.0) < 0.001

Gender, n (%) 0.010

Male 5,568 (47.8%) 3,618 (49.3%) 1,950 (45.5%)

Female 6,047 (52.2%) 3,419 (50.7%) 2,628 (54.5%)

Ethnicity, n (%) < 0.001

Mexican American 1,487 (8.5%) 775 (7.3%) 712 (10.4%)

Other Hispanic 1,144 (5.4%) 673 (5.1%) 471 (6.0%)

Non-Hispanic White 4,855 (67.4%) 2,989 (69.1%) 1,866 (64.8%)

Non-Hispanic Black 2,482 (10.1%) 1,279 (8.3%) 1,203 (12.9%)

Other ethnicity 1,647 (8.6%) 1,321 (10.2%) 326 (5.9%)

Education level, n (%) < 0.001

Less than 9th grade 787 (3.6%) 459 (3.4%) 328 (4.0%)

9–11th grade 1,323 (8.3%) 771 (7.9%) 552 (9.1%)

High school graduate 2,569 (21.6%) 1,442 (20.1%) 1,127 (24.2%)

Some college or AA degree 3,726 (33.0%) 2,086 (30.5%) 1,640 (37.1%)

College graduate or above 3,210 (33.4%) 2,279 (38.2%) 931 (25.6%)

Marital status, n (%) < 0.001

Married 6,010 (55.2%) 3,669 (55.3%) 2,341 (55.0%)

Widowed 763 (4.9%) 438 (4.6%) 325 (5.5%)

Divorced 1,290 (10.7%) 703 (9.3%) 587 (12.8%)

Separated 382 (2.1%) 225 (2.0%) 157 (2.3%)

Never married 2,224 (18.9%) 1,421 (20.5%) 803 (16.4%)

Living with partner 946 (8.2%) 581 (8.3%) 365 (8.0%)

Physical activity, n (%) < 0.001

Active 8,306 (76.1%) 5,243 (80.4%) 3,063 (69.3%)

Inactive 3,309 (23.9%) 1,794 (19.6%) 1,515 (30.7%)

PIR 0.004

< 1 2,340 (13.7%) 1,351 (13.0%) 989 (15.0%)

1∼3 4,805 (35.7%) 2,783 (34.4%) 2,022 (37.6%)

≥ 3 4,470 (50.6%) 2,903 (52.6%) 1,567 (47.4%)

BMI (kg/m2) 28.0 (24.3, 32.7) 25.3 (22.7, 27.5) 34.3 (31.8, 38.4) < 0.001

Waist Circumference (cm) 98.2 (87.9, 109.7) 90.7 (83.0, 97.6) 113.0 (106.2, 122.0) < 0.001

Smoking, n (%) 0.031

Ever 4,974 (42.6%) 2,960 (41.2%) 2,014 (44.8%)

Never 6,641 (57.4%) 4,077 (58.8%) 2,564 (55.2%)

Alcohol use, n (%) 0.002

Ever 8,848 (81.1%) 5,428 (82.5%) 3,420 (78.7%)

Never 2,767 (18.9%) 1,609 (17.5%) 1,158 (21.3%)

Diabetes, n (%) < 0.001

Ever 1,582 (10.1%) 646 (5.8%) 936 (17.0%)

Never 10,033 (89.9%) 6,391 (94.2%) 3,642 (83.0%)

(Continued)
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TABLE 1 (Continued)

Characteristics Overall, N = 11,6151 No obesity, N = 7,0371 General obesity,
N = 4,5781

P2

Hypertension, n (%) < 0.001

Ever 4,202 (32.5%) 2,048 (25.2%) 2,154 (44.3%)

Never 7,413 (67.5%) 4,989 (74.8%) 2,424 (55.7%)

RBC folate (nmol/L) 1120.0 (871.0,1480.0) 1110.0 (854.0, 1440.0) 1150.0 (891.0, 1530.0) < 0.001

Serum total folate
(nmol/L)

38.7 (26.3, 55.3) 40.5 (27.9, 57.3) 35.6 (24.5, 51.5) < 0.001

5-mTHF (nmol/L) 36.4 (24.5, 52.4) 38.4 (26.0, 54.3) 33.5 (22.7, 48.7) < 0.001

UMFA (nmol/L) 0.70 (0.51, 1.07) 0.70 (0.51, 1.08) 0.70 (0.51, 1.06) 0.900

Total energy (kcal) 1985.0 (1570.5, 2521.5) 1995.5 (1580.0, 2507.5) 1976.5 (1549.0, 2532.0) 0.300

Total sugars (gm) 94.9 (63.7, 136.8) 95.5 (64.8, 136.5) 94.1 (62.3, 137.3) 0.500

Total fat (gm) 76.7 (56.9, 100.6) 76.0 (56.6, 98.6) 78.0 (57.3, 103.6) 0.037

Food folate (mcg) 201.5 (143.0, 277.5) 208.0 (149.5, 287.0) 189.0 (136.5, 264.5) < 0.001

Folate, DFE (mcg) 464.0 (333.0, 653.5) 480.0 (345.0, 676.5) 442.5 (313.5, 618.5) < 0.001

†Boldface indicates statistical significance (P < 0.05). 1Continuous values are given as the median (the 25% and 75% quartiles), and categorical variables are given as frequency (percentage).
2Chi-squared test with Rao and Scott’s second-order correction; Wilcoxon rank-sum test for complex survey samples. BMI, body mass index; PIR, ratio of family income to poverty; RBC folate,
red blood cell folate; 5-mTHF, 5-methylenetetrahydrofolate; UMFA, unmetabolized folic acid.

(Supplementary Table 1). This trend majorly persisted among
middle-aged participants (quartile trend P < 0.001) (Table 2), with
the lowest risk of obesity among middle-aged adults in the top
quartile (Q4) group for serum total folate and serum 5-mTHF.
However, this association was absent in the older participants
(Table 3).

No significant association between serum UMFA and obesity
risk was found in total participants (Supplementary Table 1) and the
middle-aged group (Table 2) after adjusting for covariates (Model
2). Notably, older participants with UMFA levels in the fourth
quartile (≥ 1.06 nmol/L) had a higher risk of obesity (OR, 1.056;
95% CI: 1.004–1.110) compared with those with lower UMFA levels
(Table 3).

3.3 Stratified analyses

Stratified analyses (Figures 1, 2 and Supplementary Figures 2–
5) evaluating the associations of obesity risk with RBC folate,
5-mTHF, or UMFA showed no significant modification in the
relationships between folate forms and obesity risk (P for
interactions > 0.05). And the folate-obesity associations were
not modified by smoking, alcohol use, diabetes, hypertension,
and physical activity in the current study (all P for interactions
> 0.05) (Figures 1, 2 and Supplementary Figures 2–5). In
addition, we compared folate levels between overweight and obese
individuals in middle-aged and older participants. The results
showed that in middle-aged participants, the obese group had
significantly higher RBC folate levels than the overweight group
(P < 0.05), while serum total folate and 5-mTHF levels were
significantly lower in the obese group compared to the overweight
group (P < 0.001). In contrast, among older participants, there
were no significant differences in the levels of various folate
forms between the overweight and obese groups (P > 0.05)
(Supplementary Table 2).

4 Discussion

In a representative United States adult sample, we first revealed
an age-specific association between serum folate forms and obesity
risk. Our study confirmed that increased RBC folate levels are
associated with a higher risk of obesity. Moreover, we observed that
higher serum 5-mTHF levels decreased obesity risk in the middle-
aged participants, while UMFA levels had no significant effect. In
contrast, higher levels of UMFA were associated with an increased
risk of obesity in older participants.

Past studies have linked RBC folate and serum total folate
levels with obesity, showing that RBC folate levels are higher
in obese individuals, whereas dietary folate intake is negatively
correlated with overweight and obesity (16, 17). Consistent with
these findings, our study identified a positive correlation between
RBC folate levels and obesity risk, while serum total folate and
serum 5-mTHF levels were negatively associated with obesity risk.
Notably, we observed an age-related difference in the protective
effects of increased serum total folate and serum 5-mTHF levels
against obesity. These associations were significant in middle-
aged participants but absent in older individuals, likely reflecting
age-related physiological and metabolic changes. Dietary habits
and lifestyle factors may also contribute to these age-dependent
differences, further influencing the relationship between serum
total folate, 5-mTHF, and obesity. Our findings underscore the
importance of maintaining adequate folate levels, particularly in
middle-aged individuals, to reduce the risk of obesity.

The association between low folate levels and obesity observed
in this study can be interpreted in two ways. Specifically, on the
one hand, low folate levels may contribute to the development of
obesity; on the other hand, obesity may affect folate metabolism
and utilization. Firstly, insufficient folate levels may lead to elevated
homocysteine (Hcy) concentrations, which in turn promote the
development of obesity. Previous studies have demonstrated that
individuals with obesity generally exhibit higher plasma Hcy
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TABLE 2 Associations between different folate forms and obesity in middle-aged participants† .

Variables Total Events
(%)

Crude models1 Adjusted models 12 Adjusted models 23

OR (95% CI) P OR (95%
CI)

P OR (95%
CI)

P

RBC folate – – – – – – – –

Quartiles – – – – – – – –

Q1 (< 824) 2,489 35.6 Reference – Reference – Reference –

Q2 (824 < 1,090) 2,430 39.5 1.03 (0.99, 1.07) 0.158 1.05 (1.01, 1.09) 0.021 1.05 (1.01, 1.09) 0.012

Q3 (1,090 < 1,430) 2,296 39.9 1.02 (0.98, 1.07) 0.318 1.06 (1.02, 1.10) 0.008 1.07 (1.02, 1.11) 0.004

Q4 (≥ 1,430) 1,807 46.8 1.09 (1.04, 1.14) 0.001 1.09 (1.04, 1.14) 0.001 1.10 (1.05, 1.17) 0.001

P for trend – – – < 0.001 – < 0.001 – < 0.001

Serum total folate – – – – – – – –

Quartiles – – – – – – – –

Q1 (< 25.7) 2,489 45.7 Reference – Reference – Reference –

Q2 (25.7 < 37.0) 2,430 41.8 0.94 (0.90, 0.98) 0.006 0.95 (0.91, 0.99) 0.021 0.92 (0.88, 0.96) < 0.001

Q3 (37 < 54.2) 2,337 36.7 0.88 (0.84, 0.92) < 0.001 0.90 (0.89, 0.94) < 0.001 0.85 (0.81, 0.89) < 0.001

Q4 (≥ 54.2) 1,793 33.9 0.85 (0.82, 0.88) < 0.001 0.87 (0.84, 0.91) < 0.001 0.77 (0.74, 0.81) < 0.001

Pfor trend – – – < 0.001 – < 0.001 – < 0.001

5-mTHF – – – – – – – –

Quartiles – – – – – – – –

Q1 (< 23.8) 2,491 46.0 Reference – Reference – Reference –

Q2 (23.8 < 34.8) 2,390 42.5 0.95 (0.91, 0.99) 0.010 0.95 (0.91,0 .99) 0.021 0.92 (0.88, 0.96) < 0.001

Q3 (34.8 < 51.2) 2,355 36.2 0.87 (0.83, 0.92) < 0.001 0.90 (0.86, 0.94) < 0.001 0.84 (0.80, 0.88) < 0.001

Q4 (≥ 51.2) 1,786 33.4 0.84 (0.81, 0.87) < 0.001 0.87 (0.84, 0.90) < 0.001 0.77 (0.74, 0.80) < 0.001

Pfor trend – – – < 0.001 – < 0.001 – < 0.001

UMFA – – – – – – – –

Quartiles – – – – – – – –

Q1 (< 0.46) 2,458 37.2 Reference – Reference – Reference –

Q2 (0.46 < 0.71) 2,570 40.2 0.99 (0.95, 1.03) 0.667 0.99 (0.95, 1.02) 0.458 0.98 (0.94, 1.01) 0.237

Q3 (0.71 < 1.06) 2,117 41.5 1.00 (0.96, 1.05) 0.981 0.99 (0.95, 1.03) 0.489 0.97 (0.93, 1.01) 0.133

Q4 (≥ 1.06) 1,877 41.7 0.97 (0.92, 1.03) 0.335 0.97 (0.92, 1.02) 0.252 0.94 (0.89, 1.00) 0.057

P for trend – – – 0.392 – 0.257 – 0.023

†Boldface indicates statistical significance (P < 0.05). 1Crude Model: adjusted for age, sex, ethnicity. 2Model 1: adjusted for age, sex, ethnicity, education level, marital status, ratio of family
income to poverty (PIR), waist circumference, physical activity status, total energy intake, total sugar intake, total fat intake, food folate intake, smoking, alcohol use, diabetes, hypertension.
3Model 2: adjusted for variables in model 1, plus mutually adjustment for the concentration of other folate forms.

levels compared to those with normal body weight (18, 19).
A study by Asemi et al. revealed that folate supplementation
can significantly reduce plasma Hcy concentrations and improve
serum insulin, total cholesterol, low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol (HDL-C), and the
homeostasis model assessment of insulin resistance (HOMA-IR).
In addition, folate deficiency may suppress the phosphatidylinositol
3-kinase (PI3K) signaling pathway, thereby exacerbating insulin
resistance and further impairing lipid metabolism (20). Folate
also serves as a critical cofactor in one-carbon metabolism,
which plays a key role in DNA methylation. Folate deficiency-
induced aberrant DNA methylation has broader implications for
metabolic dysregulation, including impaired glycemic control in
diabetes and hepatic lipid accumulation in non-alcoholic fatty

liver disease (21). Such epigenetic disturbances can also disrupt
energy and lipid metabolism, ultimately increasing the risk of
obesity (22–26). Previous research has indicated a correlation
between hypomethylation status and increased body weight,
particularly among women of reproductive age (27). Moreover,
methylenetetrahydrofolate reductase (MTHFR) is a key enzyme
that catalyzes the conversion of 5,10-methylenetetrahydrofolate
to 5-methyltetrahydrofolate. The C677T polymorphism in the
MTHFR gene, especially the TT genotype, has been associated
with reduced folate levels and a higher risk of obesity (28–30).
Notably, this polymorphism is also linked to insulin resistance and
NAFLD progression, potentially through disrupted homocysteine
metabolism and methylation capacity (31, 32). On the other
hand, low serum folate levels may also be a consequence of
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TABLE 3 Associations between different folate forms and obesity in older participants† .

Variables Total Events
(%)

Crude models1 Adjusted models 12 Adjusted models 23

OR (95% CI) P OR (95%
CI)

P OR (95%
CI)

P

RBC folate – – – – – – – –

Quartiles – – – – – – – –

Q1 (< 824) 405 35.3 Reference – Reference – Reference –

Q2 (824 < 1,090) 501 39.3 1.08 (0.95, 1.22) 0.231 1.07 (0.95, 1.21) 0.265 1.08 (0.96, 1.23) 0.210

Q3 (1,090 < 1,430) 566 36.0 1.03 (0.91, 1.15) 0.672 1.06 (0.95, 1.19) 0.305 1.09 (0.97, 1.22) 0.157

Q4 (≥ 1,430) 1,121 37.5 1.07 (0.96,1.19) 0.247 1.09 (0.98,1.20) 0.117 1.16 (1.04,1.29) 0.014

P for trend – – – 0.265 – 0.120 – 0.013

Serum total folate – – – – – – – –

Quartiles – – – – – – – –

Q1 (< 25.7) 427 45.9 Reference – Reference – Reference –

Q2 (25.7 < 37.0) 466 39.0 1.00 (0.88, 1.12) 0.938 1.02 (0.91, 1.14) 0.758 1.01 (0.90, 1.14) 0.861

Q3 (37 < 54.2) 573 35.7 1.00 (0.89, 1.12) 0.942 1.02 (0.92, 1.13) 0.703 1.00 (0.90, 1.12) 0.943

Q4 (≥ 54.2) 1127 33.8 0.96 (0.87, 1.06) 0.404 1.01 (0.92, 1.11) 0.878 0.97 (0.87, 1.09) 0.632

P for trend – – – 0.559 – 0.738 – 0.650

5-mTHF – – – – – – – –

Quartiles – – – – – – – –

Q1 (< 23.8) 423 44.9 Reference – Reference – Reference –

Q2 (23.8 < 34.8) 484 39.8 1.02 (0.92, 1.14) 0.714 1.04 (0.93, 1.16) 0.485 1.03 (0.92, 1.15) 0.619

Q3 (34.8 < 51.2) 564 35.8 1.03 (0.92, 1.15) 0.638 1.05 (0.95, 1.17) 0.325 1.03 (0.93, 1.15) 0.585

Q4 (≥ 51.2) 1122 33.8 0.97 (0.88, 1.07) 0.547 1.02 (0.93, 1.12) 0.670 0.98 (0.89, 1.09) 0.752

P for trend – – – 0.747 – 0.455 – 0.868

UMFA – – – – – – – –

Quartiles – – – – – – – –

Q1 (< 0.46) 330 32.7 Reference – Reference – Reference –

Q2 (0.46 < 0.71) 549 38.4 1.05 (0.95, 1.17) 0.335 1.05 (0.96, 1.16) 0.294 1.06 (0.96, 1.17) 0.237

Q3 (0.71 < 1.06) 737 38.3 1.03 (0.93, 1.15) 0.554 1.05 (0.96, 1.15) 0.289 1.07 (0.97, 1.17) 0.198

Q4 (≥ 1.06) 977 37.1 1.09 (0.99, 1.19) 0.095 1.09 (1.00, 1.18) 0.055 1.12 (1.03, 1.22) 0.017

P for trend – – – 0.178 – 0.080 – 0.034

†Boldface indicates statistical significance (P < 0.05). 1Crue Model: adjusted for age, sex, ethnicity. 2Model 1: adjusted for age, sex, ethnicity, education level, marital status, ratio of family
income to poverty (PIR), waist circumference, physical activity status, total energy intake, total sugar intake, total fat intake, food folate intake, smoking, alcohol use, diabetes, hypertension.
3Model 2: adjusted for variables in model 1, plus mutually adjustment for the concentration of other folate forms.

obesity. Metabolic alterations induced by obesity may impair
folate utilization and increase the individual requirement for
folate. Several studies have shown that despite comparable folate
intake, individuals with obesity tend to have significantly lower
serum folate concentrations than those with normal body weight
(3, 33, 34). Interestingly, it has also been observed that while
fasting serum folate levels are lower in individuals with obesity,
their RBC folate concentrations are paradoxically higher (4, 35),
which may reflect a compensatory mechanism whereby decreased
serum folate levels stimulate enhanced folate uptake by RBCs.
Mechanistic studies suggest that obesity is associated with increased
activity of cytochrome P450 2E1 (CYP2E1), an enzyme that
metabolizes folate as a substrate (36). Therefore, enhanced folate
degradation mediated by CYP2E1 may be one of the mechanisms

contributing to reduced serum folate levels in obese individuals.
Additionally, the accumulation of adipose tissue in obesity may
elevate circulating estrogen levels, which has also been proposed as
a contributing factor to folate deficiency (37).

Folic acid, commonly used in supplements and food
fortification, demonstrates limited reduction in the human
gut and methylation in the liver, leading to unmetabolized folic
acid (UMFA) in circulation when consumed excessively (38).
Numerous studies have associated folic acid intake with non-
cancer health outcomes, particularly metabolic diseases. For
instance, UMFA has been linked to an increased risk of gestational
diabetes mellitus (GDM) in Chinese populations (39, 40). Animal
studies further demonstrate that excessive perinatal folic acid
supplementation induces insulin resistance, dyslipidemia, and
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FIGURE 1

The association between RBC folate and obesity in middle-aged participants in subgroups. Adjusted for age, sex, ethnicity, education level, marital
status, ratio of family income to poverty (PIR), waist circumference, physical activity status, total energy intake, total sugar intake, total fat intake,
food folate intake, smoking, alcohol use, diabetes, hypertension. RBC folate, red blood cell folate.

disruptions in glucose and hepatic fat metabolism in both mice
(41) and rat offspring (42–44). In line with these findings, our
study revealed a positive association between high serum UMFA
concentrations and obesity in older adults, while no such link
was observed in middle-aged individuals. Potential mechanisms
underlying this relationship include UMFA-induced disruptions
in DNA and protein methylation, resulting in abnormal gene
expression associated with obesity. These disruptions may impair
the functionality of proteins critical for metabolic regulation,
influencing lipid synthesis, breakdown, and energy balance,
ultimately leading to increased fat accumulation and obesity risk.
An-other plausible explanation is the disruption of intracellular
folate metabolism. Accumulated UMFA, closely associated with
the saturation of dihydrofolate reductase (DHFR), may inhibit
DHFR activity in a competitive or non-competitive manner,

depending on intracellular dihydrofolate (DHF) concentrations—a
key intermediate in the thymidylate synthesis pathway (45). This
inhibition could result in DHF accumulation, which is a potent
inhibitor of methylenetetrahydrofolate reductase (MTHFR),
thereby disrupting the one-carbon cycle (46–48). Such disruptions
can impair essential cellular processes, including DNA synthesis,
repair, and methylation, particularly in older adults who experience
a decline in folic acid conversion efficiency (49).

When exploring the age-specific associations between
folate and obesity risk, we systematically adjusted for potential
confounding factors such as smoking, alcohol use, diabetes,
hypertension, and physical activity. The results showed
that even after incorporating these important confounding
factors into the adjustment, the association between folate and
obesity remained stable and did not change significantly. This
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FIGURE 2

The association between RBC folate and obesity in older participants in subgroups. Adjusted for age, sex, ethnicity, education level, marital status,
ratio of family income to poverty (PIR), physical activity status, total energy intake, total sugar intake, total fat intake, food folate intake, smoking,
alcohol use, diabetes, hypertension. RBC folate, red blood cell folate.

finding preliminarily indicates that folate may play a role in
pathways such as adipocyte metabolism and DNA methylation,
and it is less likely to be influenced by external factors like
smoking, alcohol use, diabetes, hypertension, or physical activity,
indicating a potentially close and stable underlying associations
between folate and obesity. In addition to the factors we have
investigated, the impact of environmental factors on obesity
should not be overlooked. Environmental exposure to different
compounds may increase the risk of obesity. Pollutants in
the environment, such as persistent organic pollutants (POPs)
and heavy metals, may disrupt the human endocrine system,
affect hormonal balance, and thereby alter the mechanisms
of fat metabolism and energy regulation (50). Considering
that obesity is a complex disease caused by multiple factors,
it is crucial to adopt a multi-factor approach for prospective

obesity treatment. This means that when formulating obesity
treatment strategies, we should not only focus on an individual’s
nutritional intake and metabolic status but also take environmental
factors into account. By comprehensively evaluating various
factors such as environmental exposure, lifestyle, genetic
factors, and metabolic characteristics, we can gain a more
comprehensive understanding of the pathogenesis of obesity.
This will enable us to develop more targeted and effective
intervention measures, opening new avenues for the prevention
and treatment of obesity.

From a public health perspective, it is crucial to continuously
monitor the folate status of the United States population,
particularly among older adults, to ensure the safety of folic acid
fortification programs (51, 52). In terms of nutritional intervention,
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we believe it is essential to pay particular attention to the absorption
and conversion capacity of folic acid in older individuals, aiming
to reduce the levels of UMFA, thus potentially lowering the risk
of obesity among the older population. Given the essential role
of folate in one-carbon metabolism and DNA methylation, we
recommend meeting the nutritional needs of older adults by
directly supplementing with active folate forms. This approach
may help maintain adequate folate levels while contributing to a
reduction in obesity risk.

This study has several notable strengths, including a nationally
representative large sample size, standardized measurement
protocols, and detailed data on various serum folate forms.
The use of comprehensive adjustments for potential confounders
allowed for a more robust investigation into the associations
between RBC folate, different serum folate forms, and obesity.
Moreover, the application of NHANES sampling weights enhances
the generalizability of the findings to the broader United States
population. However, our analysis also has some limitations to
be addressed. First, the cross-sectional nature of the study only
provided association clues and limited causative inferences and
generalization to other populations. Second, due to the lack of
available data in the selected NHANES cycles, it was not possible
to account for the potential influence of vitamin B12, vitamin
B6, S-adenosylmethionine (SAM), and homocysteine levels when
exploring the relationship between folate status and obesity. This
may have limited a more comprehensive understanding of the
underlying mechanisms. It remains unclear whether folate status in
obesity is a causal factor or a biomarker response to weight changes.
Given folate’s role in one-carbon metabolism and mandatory
fortification policies, further research is crucial for deeper insights.

5 Conclusion

In conclusion, using a large, representative data of United States
adults, we found that there were significant positive relationships
of RBC folate with the risk of obesity. Additionally, our findings
indicate a nuanced relationship showing low serum 5-mTHF levels
associated with a higher risk of obesity among the middle-aged
adults. Conversely, in older participants, elevated serum UMFA
levels are associated with a higher risk of obesity. Given prevalent
folic acid fortification and supplementation use, our findings
underscore the need for monitoring folate form concentrations,
potentially guiding future clinical trials on folate supplementation.
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