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Objective: Prior research has suggested links between skeletal muscle mass 
and visceral fat volume with kidney stone formation. However, the link between 
the skeletal muscle-to-visceral fat ratio (SVR) and kidney stone risk remains to 
be clarified. This study aims to explore the relationship between SVR and the 
risk of kidney stones, analyzing data from the National Health and Nutrition 
Examination Survey (NHANES).

Methods: The research encompassed 8,522 individuals from NHANES surveys 
from 2011 to 2018. Kidney stones were diagnosed through a standardized 
questionnaire, and SVR was calculated using dual-energy X-ray absorptiometry 
(DXA). Participants were grouped into quartiles based on their SVR. All data 
underwent weighting according to official guidelines. Logistic regression 
models assessed the correlation between SVR and kidney stone incidence, and 
subgroup analysis was employed to investigate its stability.

Results: Among the participants, 675 individuals, representing 8.73%, received a 
diagnosis of kidney stones, with an average age of 39.29 years (±0.28). Findings 
indicate that lower SVR correlates with increased kidney stone risk. Within the 
comprehensively adjusted multivariate model, compared to the lowest SVR 
quartile, the second, third, and fourth quartiles demonstrated significantly 
reduced risks, with ORs of 0.63 (95% CI = 0.47–0.84), 0.57 (95% CI = 0.42–
0.79), and 0.39 (95% CI = 0.25–0.61), respectively. Restricted cubic spline (RCS) 
regression models demonstrated a non-linear relationship between SVR and 
kidney stone risk. The subgroup analysis demonstrated no significant differences 
in weighted associations across subgroups (interaction p-value > 0.05), except 
for BMI, which had a significant interaction (interaction p-value < 0.05).

Conclusion: The findings underscore that lower SVR correlates with 
increased kidney stone risk, a relationship that remains consistent across most 
demographics.
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1 Introduction

Kidney stone disease, a prevalent urological disorder, has an 
escalating global incidence, representing a significant public health 
issue (1, 2). The prevalence of kidney stones varies markedly across 
regions, with rates as high as 12–18% (3, 4). Kidney stones not only 
inflict severe pain but also lead to renal impairment and other 
complications (2, 5), underscoring the importance of researching 
preventive and early intervention strategies.

In recent years, research has expanded beyond traditional risk 
factors like diet, genetics, and environmental influences to include 
the influence of body composition, particularly the roles of body 
fat distribution and skeletal muscle mass in the formation of kidney 
stones (6, 7). Visceral fat buildup is recognized as a risk factor for 
various metabolic diseases, including cardiovascular diseases 
(CVD) and type 2 diabetes, and may indirectly participate in 
kidney stone formation by altering metabolic and endocrine 
environments (7–9). On the other hand, a higher skeletal muscle 
mass is generally considered a protective factor for health, 
enhancing metabolic well-being and reducing the risk of various 
illnesses (10–12).

While previous research has examined the individual associations 
between skeletal muscle mass and visceral fat area with kidney stone 
risk, the collective impact of the skeletal muscle-to-visceral fat ratio 
(SVR) remains underexplored. SVR, as an integrated body 
composition marker, may provide a more precise reflection of an 
individual’s health status and disease risk (13). This study utilizes 
large-scale data from the National Health and Nutrition Examination 
Survey (NHANES), applying dual-energy X-ray absorptiometry 
(DXA) to precisely determine SVR and investigate its correlation with 
kidney stone risk. We hypothesize that an elevated SVR correlates with 
a reduced likelihood of developing kidney stones, and this association 
remains consistent across different groups.

2 Methods

2.1 Study population

This cross-sectional study analyzed NHANES database data from 
2011 to 2018, updated every 2 years. Conducted post-approval from 
the National Center for Health Statistics’ Ethics Review Board and 
with participant consent, the study filtered 8,522 suitable subjects 
from an initial 39,156 based on inclusion and exclusion criteria. 
Exclusions were individuals under 20 years (n = 16,539), missing 
kidney stone questionnaire data (n = 48), those not undergoing DXA 
(n = 11,889), and lacking essential covariate information (n = 2,158). 
Refer to Figure 1 for the detailed selection process.

2.2 DXA measurements and definition of 
SVR

Whole-body DXA scans were conducted on non-pregnant 
participants aged 8–59, excluding recent users of radiographic contrast 
agents such as barium or those over 450 pounds or 6 feet 5 inches tall. 
All DXA scans were strictly quality-controlled to ensure accuracy. 
Skeletal muscle mass was estimated from the total lean mass of the 

limbs (arms and legs), and the SVR was calculated as the ratio of 
non-abdominal lean mass to visceral fat area (kg/cm2).

Visceral fat area was specifically measured using the Hologic 
APEX software during DXA scans. The visceral adipose tissue (VAT) 
mass and volume were determined at the approximate intervertebral 
space of L4 and L5 vertebrae, which is located within the abdominal 
cavity. The boundaries of the visceral fat area were automatically 
defined by the Hologic software based on this region. Participants 
were then categorized into quartiles based on their SVR for analysis.

2.3 Diagnosis of kidney stones

Kidney stone diagnoses relied on participants answering “Have 
you ever had kidney stones?” The reliability of self-reported kidney 
stone history is supported by prior research (14).

2.4 Definition of covariates

This research includes a variety of covariates associated with SVR 
and kidney stone risk, divided into three main categories: demographic 
indicators, lifestyle factors, and health status. Demographic indicators 
comprise age, sex, race, marital status, level of education, and poverty 
income ratios (PIR). Lifestyle factors cover alcohol consumption 
(categorized into lifelong abstainers who drank less than 12 times, 

 

FIGURE 1

The participant flow diagram.
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former drinkers who drank 12 times or more but abstained in the past 
year, and current drinkers who have consumed alcohol 12 times or 
more in their lifetime and at least once in the last year) (15), smoking 
status (based on whether an individual has smoked over 100 cigarettes 
in their lifetime), sedentary behavior (daily sitting time exceeding 5 h), 
and physical activity level (assessed by the duration of moderate to 
intense activity lasting at least 10 min per week beyond regular work 
and commuting, with less than 10 min classified as inactive) (16). 
Health indicators are collected using standardized questionnaires and 
clinical evaluations, including body mass index (BMI), estimated 
Glomerular Filtration Rate (eGFR), diabetes, hypertension, 
hyperlipidemia, and the prevalence of CVD.

2.5 Statistical analysis

Statistical analyses incorporated NHANES’s sampling weights. 
Continuous variables are reported as weighted means and standard 
errors, while categorical variables are shown as weighted counts and 
proportions. Analyses involved weighted linear regression and 
chi-square tests. Multivariable logistic regression models were used to 
investigate the association between SVR and the incidence of kidney 
stones, providing odds ratios (ORs) and 95% confidence intervals 
(CIs). Models were stratified by covariates: unadjusted crude model; 
Model 1 adjusted for basic demographics; Model 2 further considered 
lifestyle and health status. Restricted cubic spline (RCS) regression 
models examined the dose–response relationship between SVR and 
kidney stone risk, with subgroup analyses for robustness. All analyses 
were performed using R software (version 4.3.2), with a significance 
level set at p < 0.05.

3 Results

3.1 Baseline characteristics of participants

From the 2011–2018 NHANES database across four cycles, a total 
of 8,522 participants were enrolled and grouped into quartiles based 
on their SVR. Table 1 indicates that the average age of the participants 
was 39.06 ± 0.28 years. Among them, 675 were diagnosed with kidney 
stones. Participants in the higher SVR quartiles typically were younger, 
predominantly male and non-Hispanic Black, more often unmarried 
with higher educational attainment and PIR, lower BMIs, and were 
more likely to be non-smokers and current drinkers. They also tended 
to lead more active lifestyles, sit less, have higher eGFR, and have 
lower rates of hypertension, diabetes, hyperlipidemia, and CVD. In 
contrast, those in the lower SVR quartiles had a higher incidence of 
kidney stones.

3.2 Association between SVR and kidney 
stones

The logistic regression analysis in Table 2 shows that for each unit 
increase in SVR, there was a significant decrease in kidney stone risk 
(OR = 0.03, 95% CI: 0.01–0.09, p < 0.0001). Even with adjustments for 
all covariates, this significant negative correlation persisted, with every 
incremental increase in SVR associated with a further decrease in risk 

(OR = 0.12, 95% CI: 0.03–0.52, p = 0.01). Relative to the bottom 
quartile of SVR, the second, third, and fourth quartiles had 
progressively lower risks of developing kidney stones (OR = 0.63, 95% 
CI: 0.47–0.84; OR = 0.57, 95% CI: 0.42–0.79; OR = 0.39, 95% CI: 
0.25–0.61). These findings indicate that higher SVR is significantly 
associated with a reduced risk of kidney stones. The RCS regression 
analysis demonstrated a notable non-linear association between SVR 
and the risk of kidney stones, showing a pronounced decrease in risk 
with increasing SVR levels (Figure 2).

3.3 Subgroup analysis

Figure 3 illustrates the subgroup analysis, highlighting how SVR 
correlates with the risk of kidney stones across various demographic 
categories. In the multivariable model that adjusted for all covariates 
except the stratifying factors, most subgroups did not show significant 
variances in the relationship between SVR and kidney stone incidence 
(interaction p-values >0.05). However, it is important to note that the 
p-value for BMI was <0.05, indicating a significant interaction 
between BMI and SVR. This suggests that BMI plays a significant role 
in modulating the relationship between SVR and kidney stone risk.

4 Discussion

This study is the first systematic exploration of the association 
between the SVR and kidney stone risk using the NHANES database. 
The results reveal a significant inverse correlation between SVR and 
kidney stone risk, indicating that higher SVR is associated with a 
lower risk of kidney stones. This finding not only supports the positive 
relationship between muscle mass and renal health but also suggests 
a detrimental role for visceral fat in the formation of kidney stones, 
with lower SVR (reflecting higher visceral fat relative to muscle mass) 
being associated with increased kidney stone risk. These findings 
provide further evidence for SVR as a potential biomarker to predict 
kidney stone risk, highlighting the importance of considering overall 
body composition—particularly the balance between skeletal muscle 
and visceral fat—when developing clinical prevention strategies for 
kidney stones.

Firstly, the findings suggest that a higher SVR significantly 
correlates with a decreased likelihood of developing kidney stones, 
aligning with prior studies. These studies have linked increased muscle 
mass with various health benefits, such as enhanced insulin sensitivity, 
reduced inflammation levels, and increased metabolic rates (10, 12, 
17). As a primary organ for glucose and lipid metabolism, increased 
muscle mass may help stabilize metabolism and reduce the 
accumulation of substances in urine that could lead to stone formation 
(17, 18). Additionally, skeletal muscle, being a major site for protein 
metabolism, offers protective benefits to kidney health. Higher muscle 
mass has been associated with improved glomerular filtration rates, 
potentially lowering kidney stone risk (19, 20). Furthermore, skeletal 
muscle not only serves as an organ for motor output but also plays 
critical roles in energy metabolism and endocrine regulation (21–23). 
It secretes various myokines, such as myonectin, which are known to 
improve insulin sensitivity and reduce inflammation, potentially 
decreasing the concentrations of calcium and oxalate in urine, thus 
reducing stone formation (24). Increased muscle mass promotes the 
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TABLE 1 Baseline characteristics of the study population by quartiles of SVR.

Variable SVR (kg/m2) quartiles P-value

Overall Q1 (≤0.17) Q2 (0.18–
0.24)

Q3 (0.25–
0.38)

Q4 (≥0.39)

Age, y, mean (SE) 39.29 (0.28) 46.62 (0.27) 41.76 (0.29) 37.39 (0.42) 31.61 (0.35) <0.0001

Sex, n (%) <0.0001

  Female 4,242 (48.96) 1,502 (67.47) 1,001 (44.18) 909 (43.13) 830 (41.46)

  Male 4,280 (51.04) 621 (32.53) 1,140 (55.82) 1,220 (56.87) 1,299 (58.54)

Race, n (%) <0.0001

  Mexican American 1,233 (9.93) 501 (13.88) 369 (12.26) 239 (8.87) 124 (4.81)

  Non-Hispanic White 3,148 (63.50) 833 (66.21) 799 (63.25) 729 (61.15) 787 (63.40)

  Non-Hispanic Black 1742 (10.58) 182 (4.18) 346 (8.10) 512 (12.49) 702 (17.37)

  Other Hispanic 843 (6.85) 278 (7.82) 206 (6.53) 203 (7.13) 156 (5.93)

  Other Race 1,556 (9.15) 329 (7.90) 421 (9.86) 446 (10.36) 360 (8.48)

Marital status, n (%) <0.0001

  Divorced/Separated/

Widowed 1,190 (13.22) 462 (21.50) 304 (13.66) 246 (11.14) 178 (6.79)

  Married/Living with a 

partner 5,086 (62.26) 1,391 (66.23) 1,440 (69.50) 1,260 (62.12) 995 (51.41)

  Never married 2,246 (24.52) 270 (12.26) 397 (16.84) 623 (26.74) 956 (41.80)

Education levels, n (%) <0.0001

  High school and below 3,236 (32.89) 969 (38.60) 862 (35.81) 740 (30.26) 665 (27.03)

  Above high school 5,286 (67.11) 1,154 (61.40) 1,279 (64.19) 1,389 (69.74) 1,464 (72.97)

Poverty ratio, n (%) 0.03

  <1.3 2,694 (22.47) 774 (24.91) 647 (21.39) 612 (20.04) 661 (23.54)

  1.3–3.5 3,092 (34.78) 742 (34.51) 800 (36.10) 768 (33.52) 782 (34.96)

  >3.5 2,736 (42.76) 607 (40.58) 694 (42.52) 749 (46.43) 686 (41.50)

BMI, n (%) <0.0001

  <25 2,696 (31.43) 208 (7.77) 416 (17.87) 707 (32.59) 1,365 (66.61)

  25–29.99 2,732 (33.10) 652 (30.33) 806 (39.35) 776 (39.51) 498 (23.35)

  ≥30 3,094 (35.47) 1,263 (61.89) 919 (42.79) 646 (27.90) 266 (10.04)

Smoke, n (%) <0.001

  No 5,156 (59.04) 1,224 (53.55) 1,295 (59.32) 1,317 (60.38) 1,320 (62.76)

  Yes 3,366 (40.96) 899 (46.45) 846 (40.68) 812 (39.62) 809 (37.24)

Alcohol user, n (%) <0.0001

  Never 1,082 (9.42) 379 (12.54) 244 (9.06) 239 (8.44) 220 (7.72)

  Former 769 (8.09) 269 (11.85) 213 (9.22) 164 (6.14) 123 (5.22)

  Now 6,671 (82.49) 1,475 (75.61) 1,684 (81.72) 1726 (85.42) 1786 (87.06)

Moderate recreational 

activity, n (%) <0.0001

  No 3,712 (39.04) 1,202 (52.84) 1,025 (42.63) 841 (35.15) 644 (25.95)

  Yes 4,810 (60.96) 921 (47.16) 1,116 (57.37) 1,288 (64.85) 1,485 (74.05)

Sitting time, n (%) 0.2

  <5 3,086 (33.09) 778 (30.71) 797 (32.98) 758 (34.15) 753 (34.48)

  ≥5 5,436 (66.91) 1,345 (69.29) 1,344 (67.02) 1,371 (65.85) 1,376 (65.52)

Hypertension, n (%) <0.0001

  No 6,557 (77.96) 1,357 (64.07) 1,576 (73.72) 1722 (83.04) 1902 (90.62)

(Continued)
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uptake of glucose from the bloodstream, helping to maintain normal 
blood sugar levels, which is important for kidney health (25). 
Moreover, skeletal muscle is a key regulator of inflammation. 
Myokines, secreted by muscle tissue, act as anti-inflammatory agents, 
and their presence reduces the levels of pro-inflammatory cytokines 
(26). These mechanisms contribute to improved kidney function and 
may help in reducing the risk of kidney stones by preventing the 
inflammatory conditions that alter the urine composition, making it 
more conducive to stone formation. Our results support these 
findings, demonstrating that an increase in SVR (as a marker of higher 
muscle mass relative to visceral fat) is significantly associated with 
reduced kidney stone risk across various quartiles of SVR. This 
relationship remains robust after adjusting for potential confounders 
such as age, BMI, and other health factors.

On the other hand, visceral fat, as a metabolically active tissue, 
secretes various pro-inflammatory and metabolic active substances, 
like interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and 
leptin (27, 28), which could potentially elevate the risk of stone 
formation by enhancing the excretion of calcium and oxalate in the 
urine and altering its pH and composition (29). Visceral fat’s secretion 
of pro-inflammatory cytokines and adipokines contributes to systemic 
inflammation, which can impair kidney function by increasing the 
levels of oxidative stress. This promotes the formation of urinary 
crystals and stones (30). Moreover, visceral fat alters the kidney’s 
ability to concentrate urine, potentially leading to the supersaturation 
of stone-forming substances like calcium, oxalate, and uric acid (31). 
These alterations, in combination with an inflammatory environment, 
create conditions that are highly favorable for kidney stone formation. 

TABLE 1 (Continued)

Variable SVR (kg/m2) quartiles P-value

Overall Q1 (≤0.17) Q2 (0.18–
0.24)

Q3 (0.25–
0.38)

Q4 (≥0.39)

  Yes 1965 (22.04) 766 (35.93) 565 (26.28) 407 (16.96) 227 (9.38)

Diabetes, n (%) <0.0001

  No 7,749 (92.83) 1738 (85.40) 1917 (91.09) 2016 (96.54) 2078 (98.10)

  Borderline 160 (1.71) 69 (2.89) 46 (2.21) 28 (0.96) 17 (0.79)

  Yes 613 (5.47) 316 (11.71) 178 (6.69) 85 (2.50) 34 (1.10)

Hyperlipidemia, n (%) <0.0001

  No 3,209 (37.64) 351 (15.69) 591 (27.96) 892 (41.09) 1,375 (65.10)

  Yes 5,313 (62.36) 1772 (84.31) 1,550 (72.04) 1,237 (58.91) 754 (34.90)

CVD, n (%) <0.0001

  No 8,438 (99.25) 2082 (98.29) 2,121 (99.24) 2,113 (99.62) 2,122 (99.82)

  Yes 84 (0.75) 41 (1.71) 20 (0.76) 16 (0.38) 7 (0.18)

eGFR (mL/min), mean 

(SE)

101.54 (0.39) 98.03 (0.56) 100.23 (0.45) 102.37 (0.63) 105.44 (0.59) <0.0001

Kidney stone, n (%) <0.0001

  No 7,847 (91.27) 1846 (84.95) 1960 (91.19) 2000 (92.99) 2041 (95.79)

  Yes 675 (8.73) 277 (15.05) 181 (8.81) 129 (7.01) 88 (4.21)

SVR, skeletal muscle mass to visceral fat area ratio; eGFR, estimated glomerular filtration rate; BMI, body mass index; CVD, cardiovascular disease.

TABLE 2 Association of the quartiles of SVR with kidney stone.

Exposure Crude model Model 1 Model 2

OR (95% CI) p-value OR (95% CI) P-value OR (95% CI) P-value

SVR 0.03 (0.01,0.09) <0.0001 0.07 (0.02,0.23) <0.0001 0.12 (0.03,0.52) 0.01

SVR quartile

  Q1 (≤0.17) 1 (Ref.) 1 (Ref.) 1 (Ref.)

  Q2 (0.18–0.24) 0.55 (0.42,0.71) <0.0001 0.58 (0.44,0.76) <0.001 0.63 (0.47,0.84) 0.003

  Q3 (0.25–0.38) 0.43 (0.33,0.55) <0.0001 0.50 (0.37,0.67) <0.0001 0.57 (0.42,0.79) 0.001

  Q4 (≥0.39) 0.25 (0.18,0.35) <0.0001 0.32 (0.22,0.46) <0.0001 0.39 (0.25,0.61) <0.001

  P for trend <0.0001 <0.0001 <0.0001

Crude model: unadjusted model.
Model 1: adjusted for age, sex, race, education levels, marital status, poverty ratio.
Model 2: additionally adjusted for BMI, smoking, alcohol user, recreational activity, sitting time, eGFR, hypertension, diabetes, hyperlipidemia and CVD.
SVR, skeletal muscle mass to visceral fat area ratio; OR, odds ratio; CI, confidence interval.
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Therefore, reducing visceral fat may not only lower systemic 
inflammation but also improve renal function, mitigating the risk of 
kidney stones. In our analysis, we observed that lower SVR, which 
corresponds to higher visceral fat relative to skeletal muscle mass, is 
associated with increased kidney stone risk. This highlights the 
detrimental role of visceral fat in the development of kidney stones. 
The significant association between lower SVR and higher kidney 
stone incidence further underscores the importance of managing 
visceral fat in kidney stone prevention.

Compared to prior research, a key innovation of this study is the 
use of SVR as a comprehensive body composition index. Although 
elevated visceral fat is associated with a heightened risk of kidney 
stones and higher muscle mass has been shown to potentially reduce 
this risk, previous studies typically considered the effects of each 
independently. By integrating these indicators, SVR offers a more 
comprehensive assessment of body composition, aiding in the more 
accurate prediction of kidney stone risk. Additionally, improved 
metabolic states associated with lower excretion of uric acid and 
calcium salts are directly related to the mechanisms of kidney stone 
formation (32). Also, a higher muscle mass combined with lower 
visceral fat may promote better energy utilization and reduced levels 
of systemic inflammation, thereby lowering the risk of kidney stones.

Additionally, the interaction between BMI and SVR warrants 
further attention, as our analysis suggests that BMI significantly 
influences the relationship between SVR and kidney stone risk. Higher 
BMI, particularly when associated with increased visceral fat, can 
exacerbate the adverse effects of visceral fat on kidney stone formation 
(9). Visceral fat, being metabolically active, contributes to systemic 
inflammation and altered urine composition, both of which can 

enhance the likelihood of stone formation (33). This highlights that 
while skeletal muscle mass may confer protective benefits against 
kidney stones, the positive effects of higher muscle mass may 
be diminished in individuals with elevated BMI due to the concurrent 
presence of excessive visceral fat. Thus, BMI should be considered a 
key factor when interpreting the relationship between SVR and kidney 
stone risk, emphasizing the importance of managing body fat to 
mitigate stone formation risk.

Furthermore, the study revealed that the relationship between 
SVR and kidney stone risk is consistent across different population 
subgroups, indicating that SVR may be a widely applicable biomarker 
for assessing kidney stone risk. This is particularly important as it 
offers a potential screening tool for clinical use to identify high-risk 
individuals early and potentially mitigate their risk through lifestyle 
interventions, such as exercise and dietary adjustments.

Nevertheless, this study also presents certain constraints. Given 
that NHANES is a cross-sectional study, it is not possible to determine 
causality; specifically, whether an increase in SVR directly leads to a 
decreased risk of kidney stones. Additionally, while DXA technology, 
used for assessing body composition, is one of the gold standards, its 
accuracy may be affected by body shape and posture. Diagnosis of 
kidney stones relies on self-reporting, which may be subject to recall 
bias. Moreover, although adjustments were made for various potential 
confounders, there might still be unaccounted variables that could 
affect the results. Another potential limitation is the lack of 
differentiation between different types of kidney stones. Since most 
kidney stones are calcium oxalate, we recognize that the biochemical 
and physiological pathways involved in stone formation could differ 
between stone types.

FIGURE 2

Depicts the association between SVR and kidney stone occurrences. The ORs, shown as solid lines, were adjusted for factors including age, sex, race, 
marital status, educational attainment, poverty index, BMI, smoking habits, alcohol consumption, recreational activities, sitting duration, eGFR, 
hypertension, diabetes, hyperlipidemia, and CVD. The corresponding 95% CIs are indicated by shaded regions.
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FIGURE 3

Presents a subgroup analysis of SVR and kidney stone.
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Future research should validate these findings through a 
prospective design and explore the relationship between SVR and 
kidney stone risk across different populations to fully understand its 
biological basis. Furthermore, exploring the potential of dietary and 
lifestyle modifications to enhance SVR and consequently prevent the 
formation of kidney stones remains a crucial avenue for future 
research. In conclusion, our findings underscore the importance of 
considering comprehensive body composition indicators in clinical 
practice, offering new insights and directions for future studies.

5 Conclusion

This research, utilizing the NHANES dataset, examined the 
correlation between SVR and the risk of kidney stones, finding that 
lower SVR is associated with a higher risk of kidney stones. These 
findings highlight the possibility of optimizing body composition as a 
means to prevent kidney stones, providing a biological basis for future 
targeted prevention measures. Although there are design limitations, 
these findings provide a foundation for further prospective research 
and the development of personalized intervention strategies.
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