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The protein content of flaxseed (Linum usitatissimum) is a crucial factor

influencing its nutritional value and quality. Spectral technology combined with

advancedmodelingmethods o�ers a fast, accurate, and cost-e�ective approach

for predicting protein content. In this study, visible-near infrared hyperspectral

imaging (VNIR-HIS) technology was combined with fractional order ant colony

optimization (FOACO) to determine the protein content of flaxseed. Thirty

flaxseed varieties commonly cultivated in Northwest China were selected, and

hyperspectral data along with protein content measurements were collected.

A joint x-y distance algorithm was applied to divide the dataset into calibration

and prediction sets after removing outliers. Partial least squares regression (PLSR)

models were developed based on both raw and preprocessed spectra, with the

Savitzky-Golay (SG) smoothing method found to provide superior performance.

The performance of wavelength selection methods based on FOACO, principal

component analysis (PCA), and ant colony optimization (ACO) was compared

using PLSR andmultiple linear regression (MLR)models. The FOACO-MLRmodel

achieved a prediction accuracy of 0.9248, a root mean square error (RMSE) of

0.4346, a relative prediction deviation (RPD) of 3.6458, and a mean absolute

error (MAE) of 0.3259. The results show that the FOACO-MLR model provides

significant advantages in predicting flaxseed protein content, particularly in terms

of prediction accuracy and stability of characteristic bands. By combining VNIR-

HIS technologywith the FOACOwavelength selection algorithm, this study o�ers

an e�cient and rapid method for determining the protein content of flaxseed,

providing reliable technical support for the precise detection of nutritional

components.

KEYWORDS

hyperspectral imaging, wavelength selection, visible-near infrared, protein content,

fractional order ant colony optimization

1 Introduction

Whole flaxseed comprises 30−41% fat, 20–35% dietary fiber, 20–30% protein, 4–8%
water, 3–4% ash, and 1% simple sugars (1). Flaxseed protein is particularly rich in essential
amino acids, notably lysine and arginine, which contribute significantly to cardiovascular
health and immune function (2). Beyond being a vital nutrient component, protein also
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plays a crucial role in determining the flavor and texture of
flaxseed products. The accurate measurement of protein content
is essential not only for assessing its nutritional and health benefits
but also for influencing themarket positioning of the product.With
advancements in technology, the continuous innovation inmodern
testing methods provides more efficient and precise approaches
to meet the increasing demand for food quality and safety in
the marketplace.

Currently, the protein content in flaxseed is primarily assessed
through chemical and instrumental analysis methods (3). Chemical
analysis methods include the traditional Kelectroschner method (4)
and the Dumas combustion method (5), both of which estimate
protein content indirectly by measuring the nitrogen content
of the sample. While these methods are accurate, they often
require extended time and complex operational procedures (6).
In contrast, instrumental analysis methods, such as visible and
near-infrared hyperspectral imaging system (VNIR-HIS) (7) and
fourier transform infrared spectroscopy (FTIR) (8), enable rapid
determination of protein content by analyzing the absorption
properties of a sample at specific wavelengths. These techniques
are non-destructive, rapid, and efficient, making them particularly
suitable for large-scale detection and quality control. The principle
behind VNIR-HIS technology involves capturing the reflection
and absorption information of the sample at various wavelengths
to provide detailed spectral data for each pixel (9). Each pixel
contains a set of spectral data that reflects the material composition
at that specific location. Consequently, the spectrum provides
compositional information about the sample. The integration
of spectral analysis with stoichiometry enables the detection of
the chemical composition of the sample (10, 11). As a non-
destructive testing method, spectroscopy technology allows for
rapid analysis of sample composition while obtaining high-
precision compositional information without altering the physical
structure of the seed. Thus, VNIR-HIS technology can detect not
only the protein content of flax but also analyze the distribution,
shape, and other characteristics of flaxseeds. This approach
facilitates the combination of component detection and spatial
distribution analysis, thereby offering comprehensive data support
for food processing and quality control.

In addition to providing useful spectral data, complete
hyperspectral images may contain numerous uncorrelated
variables, which can diminish the robustness and prediction
accuracy of the calibration model (12). Each sample point typically
encompasses hundreds or even thousands of bands of information,
resulting in increased data redundancy. This redundancy not only
escalates the burden of storage and computation but may also
obscure critical feature information (12). Therefore, to mitigate
redundancy while retaining the essential physical information
of the spectra (13), band selection techniques have emerged to
enhance analysis efficiency and model accuracy. Beyond traditional
principal component analysis (PCA) (14), a variety of modern
techniques are widely employed for band selection, including
heuristic search-based algorithms such as genetic algorithm (GA)
(15), particle swarm optimization (PSO) (16), and ant colony
optimization (ACO) (17) etc.

Fractional calculus refers to the extension of traditional
integer order calculus, wherein the order of differentiation

can be any real or complex number. This mathematical
framework is widely utilized across various fields, including
mathematics, physics, engineering, control theory, and biology.
Compared to traditional calculus, fractional calculus offers greater
flexibility and expressiveness in addressing complex phenomena,
particularly those involving memory effects, long-term memory,
and nonlocality (18). In recent years, the application of fractional
calculus to group intelligence has emerged as a promising area of
research, garnering increasing attention. Researchers have begun to
investigate its application to various types of differential equations,
particularly in the context of fractional order evolutionary
equations, optimal control, and optimal feedback control (19).
Notably, the ACO has been enhanced through fractional calculus to
modify the pheromone update mechanism (20). Furthermore, the
combination of fractional order ant colony optimization (FOACO)
with genetic algorithms has yielded improved results (21). The
FOACO enhances the traditional pheromone updating mechanism
by incorporating concepts from fractional calculus, resulting in a
smoother and more flexible search process that is better suited for
high-dimensional and complex optimization problems.

PCA is one of the most widely used unsupervised
dimensionality reduction techniques (22). In the context of
feature wavelength screening, PCA evaluates the significance of
each wavelength by calculating its contribution to each principal
component. Typically, the wavelength associated with the principal
component that exhibits a higher contribution is regarded as the
most representative feature wavelength. By retaining a selection
of principal components, the dimensionality of the data can be
reduced while preserving the most representative information
(23). Although PCA is an effective method for dimensionality
reduction in hyperspectral data processing, it has limitations,
including the neglect of low variance features and assumptions
of linearity.

The ACO is inspired by the foraging behavior of ants in nature
(24). ACO enhances problem-solving by simulating the process
of ants searching for food, wherein they gradually accumulate
pheromones and select the shortest path. This algorithm possesses
strong global search capabilities and effectively avoids becoming
trapped in local optimal solutions (25). Consequently, ACO is
extensively employed in hyperspectral band selection to identify
the most informative subset among a vast array of bands, thereby
improving both the predictive performance and stability of the
model (20). ACO’s advantage lies in its ability to guide the search
process through the pheromone update mechanism, allowing
the ants to progressively converge toward the global optimal
solution within the solution space. Furthermore, ACO does not
necessitate extensive prior knowledge and exhibits good flexibility
and scalability. However, due to the localized nature of the
pheromone updating process, the search may be less efficient and
risk converging to a local optimal solution.

To address these challenges, the FOACO is introduced
for hyperspectral band selection. This approach effectively
mitigates the limitations of PCA and ACO in band selection
by enhancing global search capabilities, smoothing path
selection, and addressing nonlinear relationships. FOACO
regulates the nonlinear pheromone diffusion process through the
introduction of a smoothing mechanism based on fractional-order
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calculus, resulting in smoother pheromone updates and
reducing instability associated with local update rules (18).
This mechanism enhances the continuity and flexibility of path
updating, improves global search capabilities, and prevents the
traditional ACO from becoming trapped in local optimal solutions.
Additionally, it addresses the shortcomings of PCA, which may
overlook key features with low variance during band selection.
Consequently, FOACO overcomes the limitations of both PCA
and ACO in hyperspectral data analysis, significantly enhancing
prediction accuracy and model stability, particularly in waveband
selection and global search capabilities, thereby demonstrating
clear advantages.

In this study, FOACO will be utilized to select the optimal
bands to enhance the prediction accuracy of the protein content
in flaxseed. By integrating the partial least squares regression
(PLSR) model with the multiple linear regression (MLR) model,
we will investigate the selection of the most informative bands
from hyperspectral data and develop an accurate prediction model
for protein content. Through the optimization of band selection,
we aim to improve prediction accuracy and offer new insights
and methodologies for the application of hyperspectral imaging
technology in agricultural research.

2 Materials and methods

2.1 Experimental data set

The dataset in this study comprises 30 flaxseed varieties widely
cultivated in northwestern China, as shown in Table 1. All varieties
were harvested from the experimental bases of the flax breeding
team at the Crop Institute, Gansu Academy of Agricultural
Sciences, including the Zhangye Experimental Station in Gansu
(100.37◦ E, 38.84◦ N), the Jingtai Experimental Station in Gansu
(104.07◦ E, 37.18◦ N), the Lanzhou New Area Experimental Station
in Gansu (103.70◦ E, 36.56◦ N), and the internal experimental
station of the Academy (103.68◦ E, 36.09◦ N). After harvesting
from the experimental fields, 20 plants were randomly sampled
from each experimental plot. Following seed threshing, drying,
and cleaning to remove chaff and residual seeds smaller than half
the normal seed size, random sampling was conducted with four
replicates. In each replicate, 30 g of seeds (with a moisture content
of 9%) was weighed using an electronic balance with a precision
of 1/1,000 g, placed in nylon mesh bags, and taken back to the
laboratory. The samples were then left in a room-temperature,
ventilated environment for 7 days before hyperspectral images
were acquired. Once the hyperspectral images were obtained,
the samples were immediately sent to the Gansu Academy of
Agricultural Sciences for analysis of each variety’s protein content,
oil content, linoleic acid, and lignan.

2.2 Hyperspectral bands—data collection
and processing

2.2.1 Hyperspectral imaging systems
The Gaia Field portable hyperspectral system, provided by

Sichuan Shuangli Spectral Imaging Technology Co., LTD., is

TABLE 1 Flaxseed varieties.

No. Variety

1 Onyc

2 Shuang You Ma 1

3 Shuang Ya 12

4 Shuang Ya 14

5 Shuang Ya 15

6 Zhang Ya 3

7 Ba 6

8 Ba 5

9 Ba 4

10 Ba 3

11 Hua Ya 5

12 Hua Ya 6

13 Ding Ya 17

14 Hei Ya 2

15 Ning Ya 10

16 Ba 9

17 Ba 11

18 Gan Ya 3

19 Yan Za 10

20 Jin Ya 7

21 Yi Ya 3

22 Ba Ya 18

23 Ba 14

24 901 Ba Ya 15

25 139 Ba Ya 17

26 Hua Ya l

27 Hua Ya 2

28 Hua Ya 3

29 Hua Ya 4

30 Ba 2

depicted in Figure 1. This system comprises the GaIAField-V10E
hyperspectral camera, a 2,048 × 2,048 pixel imaging lens, an HSI-
CT-150 × 150 standard white board (PTFE), an HISA-DB indoor
imaging camera, four groups of shadow light sources, a HISA-TP-
L-A tripod control, and hyperspectral data acquisition software
known as Spec View. It features a spectral range of 380–1,018 nm,
encompassing 320 bands, and offers a spectral resolution of 2.8 nm.
The system has a numerical aperture of F/2.4, a slit size of 30 ×

14.2mm, utilizes SCMOS detectors, and supports a built-in push-
scan and autofocus imaging mode with a 14-bit dynamic range.
The core components of the system include a standardized light
source, a spectral camera, an electronic control mobile platform,
a computer, and control software. Its working principle involves
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FIGURE 1

Hyperspectral imaging system.

push-scan imaging technology, which, in conjunction with the
array detector and spectrometer, allows for real-time data collection
as the slit and lens of the spectrometer move relative to each other,
ultimately resulting in the assembly of a complete data cube.

2.2.2 Image acquisition and calibration
Before image acquisition, the hyperspectrometer and darkbox

light source were started and preheated for 30min. The instrument
parameters were configured, the camera exposure time was 49ms,
the gain was set to 2, the frame rate was 18.0018Hz, and the forward
scanning speed was 0.00643 cm/s. Among the 30 flaxseed varieties,
50 seeds were randomly selected as samples for hyperspectral image
acquisition and placed in the darkbox on the mobile platform in
sequence. Then these 50 seeds were used as the same region of
interest (ROI) to obtain the average spectral curve of these 50 seeds.
Each variety was collected three times, and finally all varieties were
collected 90 times, a total of 4,500 seeds were scanned, and 90
average spectral curves were obtained. Due to the differences in
the internal nutrients of individual seeds, the spectral curve may be
biased. To reduce this effect, this study averaged the spectral curves
of 50 seeds of each variety to establish a prediction model. This
method helps to smooth small changes and reduce measurement
noise, thereby providing a reliable representation of the spectral
characteristics of each variety. The three repeated acquisitions of
each variety further ensured the reliability of the data, enhanced
the robustness of the data set, and facilitated subsequent analysis.

After acquisition, the original hyperspectral image was
subjected to black and white correction to eliminate the dark
current noise introduced by the camera. The correction formula is
shown in Equation 1:

RT =
I−Id
Iw−Id

(1)

After the original hyperspectral image was corrected for black
and white to remove dark current noise, ENVI5.3 was used to
define regions of interest (ROI) for flaxseeds and background.

Then a support vector machine (SVM) was applied for supervised
classification to distinguish between seeds and background. The
classification results were converted into a vector to generate a
mask image, which was used to remove background pixels. Finally,
the average spectrum of all seed pixels in the mask region was
calculated as the spectrum of the sample.

2.2.3 Sample set segmentation
Several dataset delineation methods have been proposed,

including Kennard-Stone (KS), Sample Set Delineation Based on
Joint X-Y Distance (SPXY), and duplex (26). The SPXY algorithm
extends the KS algorithm by incorporating spectral variables (x)
and chemical values (y), thereby creating a more representative
dataset (27). In this study, sample set partitioning based on the
joint X-Y distance (SPXY) was used to allocate caraway seed protein
content into modeling and prediction sets in a 2:1 ratio. The
reasonableness of the sample division was assessed by calculating
the maximum, minimum, mean, and standard deviation of the
samples. The dataset consists of 90 samples, divided into a training
set of 60 samples and a test set of 30 samples. The results are
presented in Table 2, which illustrates the similarity of the mean
values of protein content in both the test and training sets,
confirming a consistent distribution across the groups. Therefore,
the overall division of the sample set is deemed reasonable.

2.2.4 Spectral data pre-processing
Experimentally collected spectral information, while

containing valuable data relevant to the sample, often includes
interfering elements such as random noise, background
interference, stray light, and spectral variations induced by
the sampling device (28). Therefore, the application of spectral
pre-processing is essential for removing irrelevant information
and noise, which helps mitigate the effects of interference from
scattering and background baseline drift in the spectral data prior
to the establishment of wavelength selection methods. Spectral
preprocessing enhances the model’s capacity to account for spectral
variations associated with compound concentrations, thereby
improving both accuracy and predictive power. In this study,
five distinct preprocessing methods were investigated. The first-
order derivative (1D) technique reduces translational signals and
eliminates interference caused by light scattering and path length
variations (29). The Standard Normal Transform (SNV) removes
bias and scale effects from the spectra, standardizing the spectral
values at each wavelength point to achieve zero mean and unit
variance, thus enhancing the comparability and accuracy of the
data (30). Multiplicative scattering correction (MSC) enhances the
accuracy and reliability of spectral data by correcting for scattering
effects in the spectral signal and eliminating the influences of
sample morphology and surface state (31). The moving average
(MA) preprocessing method employs a sliding window to smooth
the spectral data, reducing noise and minimizing frequency
variations, which in turn improves signal stability and consistency
(32). Lastly, the SG smoothing filter is a widely used technique for
smoothing spectral data by fitting local polynomials, which reduces
noise while preserving the morphology of spectral features (33).

Frontiers inNutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2025.1551029
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2025.1551029

TABLE 2 Descriptive statistics for the training and test sets.

Dataset Protein

Number of samples Maximum (%) Minimum (%) Average (%) Standard deviation

Training set 60 28.46 23.01 25.1 1.54

Testing set 30 27.76 23.07 25.21 1.28

2.3 Construction of wavelength selection
method

2.3.1 PCA
In the process of band selection, the spectral data of the training

set are first standardized to ensure a consistent scale across each
band, thereby mitigating the excessive influence of certain bands
on the analysis results due to their large value ranges (34). PCA
is then applied to reduce the dimensionality of the standardized
data, selecting the top five principal components with the highest
cumulative contribution rates to ensure that they explain the
majority of the variability in the data. These principal components
typically encapsulate the main information of the dataset while
effectively eliminating redundancy and noise. By extracting the
load values (eigenvectors) of each principal component, the
contribution of each band to the principal component can be
analyzed. The absolute value of the load indicates the importance of
each band within the principal component, with larger load values
signifying a stronger correlation with the principal component
(23). Consequently, bands exhibiting a high absolute load value are
selected, as they strongly correlate with the principal components
and represent the most informative characteristics of the data.

2.3.2 Band selection based on ACO
Through the steps of initializing parameters, designing a

fitness function, constructing paths, and updating pheromones,
the ACO gradually optimizes a subset of wavelengths to enhance
the predictive performance of the model (35). During the iterative
process, ants select wavelength variables based on pheromone
concentration and heuristic information along the path. The
pheromone concentration highlights high-quality paths through
an update mechanism (36), which guides the ants in identifying
key wavelengths and excluding redundant variables. The fitness
function is typically defined as a PLSR model (37), which evaluates
prediction accuracy using metrics such as mean square error
and coefficient of determination. Ultimately, the algorithm mines
optimal wavelength combinations through a combination of global
search and local optimization, thereby enhancing the model’s
predictive ability and robustness. By adjusting parameters such as
the number of ants and the pheromone volatility coefficient, the
ACO can effectively balance exploratory and convergence speeds
(38), making it applicable to the challenge of selecting complex,
high-dimensional wavelength data.

In the context of band selection using ACO, each ant
progressively selects a series of bands to form a combination,
which constitutes the ant’s path. This path signifies the journey of
the ant from the starting point to a complete band combination,
achieved through the selection of various bands. If a particular

path is frequently traversed by previous ants and demonstrates
superior performance, the pheromone concentration along this
path will increase, thereby attracting more ants to favor this
route. Conversely, heuristic information reflects the relationship
or superiority between the current band and the subsequent band,
such as the standard deviation of the band. Each ant’s path is
evaluated based on its performance, and pheromone concentration
on paths that yield favorable results will rise, further encouraging
other ants to select these paths.

2.3.3 Band selection based on FOACO
In traditional calculus, the most commonly utilized operations

are integro-order differentiation and integration, including first-
order and second-order derivatives (18). These operations describe
the rate of change of a function at a specific point; for instance, the
first-order derivative indicates the rate of change, while the second-
order derivative reflects the curvature of the curve, signifying
acceleration or curvature. For example, for the function y =

f (x)and its first order derivativey
′

= f
′

(x) = lim1x→0
f (x+1x)−f (x)

1 x .
Fractional calculus is an extension of traditional integer

calculus, focusing on the quantitative analysis of integration and
differentiation of functions with non-integer orders, which can be
real numbers, complex numbers, or even functions of variables
(39). For instance, aD

α
x f (x)represents the a derivative of f (x),

where a and x denote the upper and lower bounds of the integral
(or derivative), and α signifies the fractional order. When a is an
integer, fractional calculus reduces to the familiar integer calculus;
specifically, when α = 2, aD

α
x f (x) corresponds to the second

derivative of the function. The exploration of fractional calculus
began in 1695 when the German mathematician Leibniz and the
French mathematician Leibniz discussed the implications of a
derivative of order 1/2 (40).

Figure 2A illustrates that the fluctuations generated by
fractional calculus exhibit significant smoothness, with a more
uniform and stable color gradient, minimal oscillation, and
an absence of sudden fluctuations. This gradual change is
softer compared to the traditional integer-order derivative in
both temporal and spatial contexts, which aids in progressively
mitigating the influence of local extrema, thereby reducing the
likelihood of falling into local optima and enhancing the algorithm’s
global search capability. In contrast, the integer-order derivative
depicted in Figure 2B demonstrates sharp and direct fluctuations,
steep color gradients, high oscillation frequencies, and pronounced
multi-peak and multi-valley characteristics. While this behavior is
more suitable for sensitive analyses of instantaneous changes and
local phenomena, it also renders the system more susceptible to
noise and short-term fluctuations, resulting in unstable outcomes.
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FIGURE 2

Integral three-dimensional images. (A) Fractional calculus; (B) Integer Order Calculus.

The FOACO is an optimization method derived from the
classical ACO, designed to enhance search efficiency and stability
in high-dimensional feature selection tasks. In the ACO, ants
select paths based on the pheromone concentration of the current
route and a heuristic function. Pheromone updates typically rely
on an accumulation mechanism of integer order (21). However,
this mechanism can lead to excessive sensitivity or instability in
pheromone updates, causing the algorithm to become trapped in
local optima or exhibit slow convergence. Common definitions of
fractional calculus include the Grünwald-Letnikov (18), Riemann-
Liouville (41), and Caputo (42) definitions. In this study, we
employed the Grünwald-Letnikov definition of fractional calculus
to update the pheromone concentration within the algorithm.
Grunwald-Letnikov defines the formula as follows:

Dα f (t) = limh → 0
1
hα

⌊t/h⌋
∑

k = 0
(−1)k( α

k
) f (t − kh) (2)

In Equation 2, Dα f (t) represents the fractional derivative of
the function f (t), which is defined at time t. Dα denotes the
fractional derivative operator, where α (0 < α ≤ 1) is a
real number, and indicates the order of the fractional derivative.
Where h is the discrete time step, and the limit h → 0
ensures that the discrete approximation can fully approximate the
continuous fractional derivative; The fractional binomial coefficient
( α
k
) is defined as

(

α(α−1)···(α−k+1)
k!

)

. Under non-integer order

α, reasonable weights are assigned to historical function values,
reflecting the influence of system memory effect. The alternating
sign of (−1)k in the summation term helps to balance the
positive and negative contributions, so that the summation process
can accurately simulate the behavior of traditional differential
operations. This formula not only expands the theoretical scope of
classical calculus, but also provides a solid theoretical foundation
for fractional-order ant colony algorithms to deal with complex and
dynamically changing system problems in the field of optimization
and control.

The Grünwald-Letnikov fractional derivative enhances the
historical behavior of the modeling function by incorporating a

non-integer order smoothing factor through weighted summation.
By leveraging the smoothness of the Grünwald-Letnikov fractional
derivative, the ants’ path selection is influenced not only by
the current pheromone concentration but also by the smoothed
historical trend of pheromone changes. This approach facilitates
a more time-dependent and stable decision-making strategy.
Following the introduction of the fractional order pheromone
decay mechanism and the fractional derivative, the revised
pheromone update formula is presented as follows:

τij(t + 1) = (1 − ρ) · τij(t) +
t

∑

t
′
= 0

( α

t
′ )(−1)t

′

· τij(t − t
′

) (3)

In Equation 3, ρ denotes the pheromone evaporation
coefficient, which quantifies the natural attenuation of pheromone.
The binomial coefficient ( α

t
′ ) assigns a weight to a historical

time point, signifying that the current time point is influenced
by the values of preceding time points. τij(t − t

′

) represents the
pheromone concentration at various time steps in the history,
specifically from node i to node j.

After the pheromone is updated by the fractional derivative,
the transition probability of the ants is adjusted accordingly,
and the transition probability function is modified to the
fractional form:

pij (t) =
(Dα τij (t))

α
· η

β
ij

∑

k ∈ allowed (Dα τik (t))α · η
β

ik
(4)

In Equation 4,Dα represents the fractional differential operator,
indicating that the fractional derivative is applied to the pheromone
concentration τij. τij denotes the pheromone strength on the path
(i, j), while ηij refers to the heuristic information for the path
(i, j), which is typically the inverse of the distance. Parameters α

and β regulate the significance of the pheromone and the heuristic
information, respectively.

In this manner, ants can make more coherent and globally
optimized decisions by utilizing the history of pheromone changes.
This approach effectively balances the influence of local and global
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information, allowing ants to consider both past experiences and
global data when selecting a path. Consequently, this enhances
the global search capability of the algorithm, helps to avoid
premature convergence, and facilitates the identification of a more
optimal path.

Based on the aforementioned theoretical framework, the overall
flow of the FOACO wavelength selection algorithm is constructed
as follows:

(1) Initialization of Parameters: Parameters such as the number
of ants, the number of iterations, and the pheromone
evaporation coefficient are initialized. Additionally,
pheromone update parameters, including the weight of
pheromone and heuristic information, are determined. The

fractional order is set to manage the accumulation and decay
of pheromone.

(2) Path Construction: Each ant begins from a randomly
selected node (band), integrating pheromone concentration
and heuristic information to progressively select bands and
construct a path.

(3) Calculation of Fitness Value: The model computes the
prediction error; a higher fitness value indicates a superior
quality of band combination, which leads to more accurate
prediction results.

(4) Pheromone Update: Pheromone concentration and path
quality are used to update the pheromone levels, incorporating
a fractional derivative to refine the control over pheromone
accumulation and decay. Although pheromone values

FIGURE 3

Flow model diagram for FOACO band selection.

TABLE 3 Prediction results of partial least squares regression model based on raw and preprocessed spectra.

Preprocessing methods Cal Pre

R² RMSE RPD MAE R² RMSE RPD MAE

None 0.9436 0.3380 4.2114 0.2735 0.8026 0.7296 2.1658 0.6005

1st 0.9107 0.4254 3.3459 0.3499 0.7257 0.8275 1.9095 0.6361

SNV 0.9095 0.4281 3.3248 0.3545 0.8303 0.6510 2.4274 0.5033

MSC 0.9096 0.4278 3.3267 0.3603 0.8394 0.6333 2.4952 0.4912

MA 0.9283 0.3810 3.7354 0.3221 0.8535 0.6047 2.6129 0.4809

SG 0.9411 0.3456 4.1188 0.2834 0.8794 0.5487 2.8797 0.4918

R², efficient of determination; RMSE, Root Mean square error; RPD, relative forecast deviation; MAE, Mean Absolute error.
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FIGURE 4

Flaxseed spectral reflectance curves. (A) Raw spectral curve of flaxseed; (B) 1stDer preprocess spectral curve. (C) SNV preprocess spectral; curve of

flaxseed; (D) MSC preprocess spectral curve; (E) MA preprocess spectral curve of flaxseed; (F) SG preprocess spectral curve of flaxseed.

diminish over time, the update process is influenced by
path fitness, with paths exhibiting higher fitness enhancing
their pheromone concentration to attract more ants,
thereby accelerating algorithm convergence and optimizing
band selection.

(5) Calculation of Transition Probability: By combining
pheromone concentration and heuristic information after
fractional derivative processing, the selection probability
for each band is calculated. This determines the subsequent
band choice for each ant and facilitates the ongoing path
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construction. This step further refines the path selection
process, aiding the ant colony in identifying the optimal
band combination.

Figure 3 shows the specific process of FOACO
band selection.

2.4 Model evaluation methods

Model evaluation is a key part of the study, where the
performance of the model is measured by a combination of
multiple metrics for both the calibration and prediction sets.
Specifically, the evaluation metrics include the coefficient of
determination (R²), root mean square error (RMSE), relative
prediction deviation (RPD), and mean absolute error (MAE),
which are able to comprehensively assess the model’s fitting
effect, prediction accuracy and error level, and thus provide an
in-depth comparison and analysis of the model’s performance

(43). In the calibration set (Cal) and prediction set (Pre)
performance evaluation, the evaluation metrics of Cal are used
to measure the fitting ability of the model on training data,
while the evaluation metrics of Pre are used to reflect the
prediction performance of the model on unknown data (44).
In general, a better model should have high R² and RPD
on both calibration and prediction sets, as well as low values
on RMSE and MAE, indicating that the model can not only
fit the training data effectively, but also provide accurate
prediction results.

3 Results and discussion

3.1 Selection of spectral representation and
optimal preprocessing

After measuring the protein content of 30 flaxseed varieties,
the original spectral data, along with seven preprocessed datasets,

FIGURE 5

Characteristic wavelength extraction based on PCA-loading.

FIGURE 6

Key bands based on ACO selection.
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FIGURE 7

Key bands based on FOACO selection.

TABLE 4 Prediction results [values of R2, RMSEP, relative prediction deviation (RPD), mean absolute error (MAE)] using partial least squares regression

(PLSR) and multiple linear regression (MLR) models at full wavelength and selected wavelengths for principal component analysis (PCA), ant colony

optimization (ACO), and fractional order ant colony optimization (FOACO).

Wavelength selection Calibration Prediction

Models R² RMSE RPD MAE R² RMSE RPD MAE

PLSR None 0.9436 0.3380 4.2114 0.2735 0.8026 0.7296 2.1658 0.6005

PCA 0.9209 0.4060 3.7833 0.3025 0.8404 0.5337 3.1826 0.4979

ACO 0.9277 0.3755 3.8243 0.2697 0.8958 0.5115 3.2128 0.4063

FOACO 0.9306 0.3677 4.0059 0.2805 0.9205 0.4468 3.2582 0.4226

MLR None ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

PCA 0.9326 0.3626 0.2870 3.8607 0.8808 0.5471 3.1200 0.3912

ACO 0.9351 0.3558 3.9246 0.2853 0.9124 0.4690 3.3787 0.3569

FOACO 0.9377 0.3485 4.1231 0.2678 0.9248 0.4346 3.6458 0.3259

The asterisk symbol (∗*) denotes exclusion of 320-band data from MLR modeling due to the method’s requirement that predictor variables must be fewer than available samples. Bold values
highlight optimal performance metrics across comparative methods.

were combined with the actual protein content data to develop
a PLSR prediction model for flaxseed protein. The PLSR model
enhances performance by calculating latent variables and selecting
the optimal number of these variables through a cross-validation
method. Subsequently, the cross-validation metrics, R² and RMSE
were employed to evaluate and determine the most effective
preprocessing method. Table 3 presents the results, revealing
that all preprocessing methods, with the exception of the first-
order derivative, improve the model’s accuracy compared to the
original spectral modeling. Notably, the model demonstrates peak
performance when the SG method is utilized as the preprocessing
technique. For the calibration and validation sets, the R² values
are 0.9411 and 0.8794, respectively, while the RMSE values
are 0.3456 and 0.5487, and the RPD values are 4.1188 and
2.8797. Consequently, SG has been identified as the most effective
preprocessingmethod. Figure 4 illustrates the average spectra of the
30 different flaxseed varieties alongside the average spectrogram
of five preprocessed samples. The SG method effectively smooths
the spectral data and reduces noise, thereby enhancing the
robustness and reliability of the data by minimizing the influence of

outliers, which in turn improves the model’s stability and accuracy.
Therefore, the SG preprocessing method is employed for further
feature extraction.

3.2 Model and performance analysis

3.2.1 Selection of characteristic wavelength
After conducting PCA on the sample spectra of the training set,

the principal component with the highest cumulative contribution
rate among the first five components is selected. Subsequently, the
characteristic wavelength exhibiting the highest correlation with
the corresponding principal components is identified based on
the load values of these components. The distribution of feature
wavelengths selected using the PCA-loading method across the full
spectrum is illustrated in Figure 5. ACO gradually selects bands
to maximize classification performance or minimize redundancy
by simulating ant foraging behavior and utilizing pheromone
concentration alongside heuristic information, such as band
relevance and redundancy. During the band selection process,
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FIGURE 8

PLSR and MLR prediction results based on selected wavelengths; (A) the e�ect of PLSR prediction model based on PCA selected bands; (B) the e�ect

of PLSR prediction model based on ACO selected bands; (C) the e�ect of PLSR prediction model based on FOACO selected bands; (D) the e�ect of

MLR prediction model based on PCA selected bands; (E) the e�ect of MLR prediction model based on ACO e�ects of MLR prediction models for

selected bands; (F) e�ects of MLR prediction models for selected bands based on FOACO.

each ant is guided by the pheromone concentration, favoring
bands with stronger pheromone signals, thus progressively moving
toward the optimal solution. The key bands identified through
the ACO method are illustrated in Figure 6. FOACO enhances
the ACO by incorporating fractional derivatives to optimize the
pheromone concentration update method, resulting in improved

global exploration capabilities and a smoother search path for band
selection. During the search process, ants utilize both pheromone
concentration and heuristic information, gradually converging on
an optimal band combination characterized by high correlation
and low redundancy. The key bands selected through the FOACO
method are illustrated in Figure 7. In this study, both ACO and
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FIGURE 9

Prediction intervals and residuals based on selected wavelengths. (A) PLSR prediction intervals and residuals of selected bands based on PCA; (B)

PLSR prediction intervals and residuals based on ACO selected bands; (C) PLSR prediction intervals and residuals of the selected bands based on

FOACO; (D) The MLR prediction intervals and residuals of the selected bands based on PCA; (E) MLR prediction intervals and residuals based on ACO

selected bands; (F) MLR prediction intervals and residuals of bands selected based on FOACO.

FOACO are configured to select 20 optimal bands. Subsequently,
the data from these optimized bands are input into regression
models, and the performance of various band selection methods is
systematically evaluated using the PLSR and MLR models.

3.2.2 Comparison of models
PLSR and MLR models are employed to model and analyze the

selection results of various band selection methods, including PCA,
ACO, and FOACO, while comparing the predictive performance
of each method. As indicated in Table 4, the PLSR model
demonstrates that the FOACO method yields the best results,
achieving a prediction set R² of 0.9205, an RPD of 3.2582, an

RMSE of 0.4468, and an MAE of 0.4226. When compared to
the original data without selected bands, R² increases by 14.8%,
RPD improves by 50.4%, RMSE decreases by 38.4%, and MAE
decreases by 29.64%, highlighting the significant impact of FOACO
on enhancing the prediction performance of the PLSR model. In
the MLR model, FOACO also exhibits strong performance, with
a prediction set R² of 0.9248, an RPD of 3.6458, an RMSE of
0.4346, and an MAE of 0.3259. Relative to the FOACO-PLSR,
R² increases by ∼0.47%, RMSE decreases by around 2.73%, RPD
improves by about 11.91%, and MAE decreases by∼22.86%. These
findings indicate that the FOACO-MLR model outperforms the
combined PLSR model across all evaluation metrics, particularly
in terms of prediction performance. The analysis suggests that the
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FOACO method presents significant advantages in both modeling
approaches, effectively enhancing the accuracy and stability of
spectral data modeling, thereby providing more reliable prediction
outcomes. While the ACO and PCA methods contribute to some
extent in improving model performance, the FOACO method
demonstrates superior efficacy in enhancing both the accuracy and
stability of the model.

To visualize the improvement in the predictive performance of
the model, a scatter plot is employed to illustrate the degree of fit
between the predicted values and the true values. The scatter plot
effectively highlights the strengths and weaknesses of each method
by comparing the fit of the predicted values to the true values. A
distribution of points that is closer to the 45◦ diagonal indicates
better predictive performance of the model (45). By observing
Figure 8, which depicts the correlation between predicted and true
values for each model, it is evident that the FOACO method
demonstrates a better fit in the MLR model compared to PCA and
ACO. The proximity of the predicted values to the true values is
significantly higher, indicating a superior fit.

3.2.3 Model diagnostics
The use of residual plots enhances the credibility of model

results. These plots not only provide a visual representation of
the model’s predictive performance but also assist in identifying
error distributions, quantifying uncertainty, and optimizing model
performance (46). In this study, the FOACOmethod demonstrated
excellent performance in both PLSR and MLR models. As shown
in Figures 9A–E, a systematic comparison of prediction intervals
and residuals highlights significant differences among the PCA-
based, ACO-based, and FOACO-based approaches. Specifically, the
PLSR and MLR models using PCA (Figures 9A, D) exhibit broader
prediction intervals and greater residual dispersion, indicating
limitations in conventional dimensionality reduction. In contrast,
ACO (Figures 9B, E) reduces residual magnitudes compared
to PCA, though residual variability remains. Building on the
improvements observed in the FOACO-PLSR model (Figure 9C),
where residuals cluster near zero and prediction intervals narrow,
the FOACO-MLR model (Figure 9F) achieves the most significant
error control, demonstrating the smallest residual magnitudes
and the tightest prediction intervals among all comparative
methods. The comparison of residual plots suggests that FOACO
employs a more efficient optimization mechanism, substantially
enhancing model performance-particularly in improving accuracy
and controlling prediction errors. These results further illustrate
that the FOACO method not only improves prediction accuracy
but also effectively reduces model uncertainty, thereby providing
more reliable and stable prediction outcomes for spectral data
modeling.

4 Conclusion

This study verified the feasibility of vision-near-infrared
hyperspectral imaging in the determination of protein content
in 30 flax seed varieties. A novel, simplified and stable
protein content evaluation model was constructed by selecting
characteristic wavelength with different algorithms. In the process
of characteristic wavelength selection, compared with traditional

PCA and classical ACO methods, FOACO method shows
obvious advantages in data dimensionality reduction, error control
and model stability under both PLSR and MLR models. In
particular, the combination of FOACO and MLR is superior in
terms of overall prediction accuracy, error control and model
robustness. The results showed that wavelength selection based on
hyperspectral imaging technology combined with FOACOmethod
and prediction model constructed by MLR model effectively
simplified the spectral data dimension and improved the prediction
ability of the model, providing a new technical idea for rapid
and non-destructive detection of flax seed protein content. It also
provides strong support for the quality testing and food safety
management of other agricultural products.
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