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This study aims to explore the transformative role of Artificial Intelligence
(AI) in food manufacturing by optimizing production, reducing waste, and
enhancing sustainability. This review follows a literature review approach,
synthesizing findings from peer-reviewed studies published between 2019 and
2024. A structured methodology was employed, including database searches
and inclusion/exclusion criteria to assess AI applications in food manufacturing.
By leveraging predictive analytics, real-time monitoring, and computer vision,
AI streamlines workflows, minimizes environmental footprints, and ensures
product consistency. The study examines AI-driven solutions for waste reduction
through data-driven modeling and circular economy practices, aligning the
industry with global sustainability goals. Additionally, it identifies key barriers
to AI adoption—including infrastructure limitations, ethical concerns, and
economic constraints—and proposes strategies for overcoming them. The
findings highlight the necessity of cross-sector collaboration among industry
stakeholders, policymakers, and technology developers to fully harness AI’s
potential in building a resilient and sustainable food manufacturing ecosystem.
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1 Introduction

The escalating demands for sustainable solutions in food manufacturing emphasize

the industry’s critical role in addressing global environmental challenges, resource

inefficiencies, and quality inconsistencies. Artificial intelligence (AI) is emerging as a

transformative force, offering innovative pathways to optimize production, minimize

waste, and enhance sustainability. However, despite rapid advancements, there remains

a significant gap in understanding how AI applications can be effectively integrated into

foodmanufacturing to meet sustainability goals. The integration of advanced technologies,

including AI-driven tools, predictive analytics, and automation, has redefined traditional

processes, emphasizing the inseparability of technological advancement and ecological

sustainability (1). These developments align with the overarching concept of planetary

health, which highlights the interconnection between human wellbeing and the Earth’s

ecosystems (2).
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This study aims to fill this knowledge gap by systematically

analyzing AI’s role in transforming food manufacturing processes,

focusing on efficiency improvements, environmental benefits, and

real-world implementation challenges. Recent advancements in

Industry 4.0 & 5.0 technologies, such as cyber-physical systems,

Internet of Things (IoT) devices, and data-driven methodologies,

have enabled significant improvements in the food supply chain (3).

These innovations facilitate real-time monitoring and optimization

of production processes, enhancing resource allocation, reducing

waste, and improving product quality (4). Furthermore, AI-

driven tools have proven instrumental in predictive maintenance

and operational efficiency, transforming conventional systems

into highly optimized and scalable frameworks (5, 6). Despite

these technological breakthroughs, many food manufacturers face

barriers to AI adoption, including a lack of clear implementation

strategies, high infrastructure costs, and resistance to change.

The increasing consumer demand for environmentally friendly

production methods and healthier food products has also driven

a shift toward sustainability-focused manufacturing. Digitalization

strategies, including AI-enabled analytics and smart sensors,

offer practical solutions for reducing resource consumption and

ensuring consistent product quality (7, 8). AI further supports

the implementation of circular economy principles by enabling

the repurposing of food by-products and improving demand

forecasting to prevent overproduction (2, 9). However, several

challenges hinder the widespread adoption of AI in food

manufacturing. These include the difficulty of integrating AI into

legacy systems, a shortage of skilled professionals, and ethical

concerns related to data privacy and algorithmic bias (3, 10).

Overcoming these barriers is imperative to unlocking the full

potential of AI and ensuring its transformative impact extends

across the entire food manufacturing ecosystem, from production

to distribution and waste management.

To ensure a structured and comprehensive assessment of AI

applications in food manufacturing, this study follows a literature

review methodology. The review process involved a structured

search across databases including Scopus, and Web of Science,

applying predefined inclusion and exclusion criteria. Studies

published between 2019 and 2024 were considered, focusing on

peer-reviewed journal articles and conference proceedings. Gray

literature and non-English studies were excluded to maintain

research quality. Keywords such as “Artificial Intelligence in Food

Manufacturing," “AI for Sustainability in Food Processing," and “AI-

driven Quality Control in Food Industry" were used to retrieve

relevant articles. To enhance reliability, two independent reviewers

conducted data extraction and categorized the findings.

Building on this foundation, this study provides a

comprehensive review of AI-driven advancements in food

manufacturing, addressing key industry needs such as:

• Optimizing efficiency: using AI tools like predictive analytics

and machine learning (ML) to streamline workflows and

reduce waste.

• Advancing sustainability: reducing environmental footprints

and supporting circular economy practices.

• Addressing critical adoption barriers: including

infrastructural challenges, ethical considerations, and

economic constraints, with innovative strategies to ensure

seamless integration into legacy systems.

• Proposing forward-looking solutions: aligning AI

advancements with global sustainability goals,

fostering resilience and scalability within the food

manufacturing ecosystem.

• Bridging technological innovation with ecological

responsibility: offering actionable frameworks for stakeholders

to navigate opportunities and challenges.

By systematically analyzing existing literature and industry

trends, this study bridges the gap between AI’s potential

and its practical implementation in food manufacturing. The

insights presented in this review could serve as a valuable

resource for industry stakeholders, policymakers, and researchers

seeking to leverage AI for sustainable, efficient, and high-quality

food production.

2 Methods

2.1 Search strategy and eligibility criteria

This literature review adhered to the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) guideline

(11). A comprehensive search was conducted across Scopus, and

Web of Science to identify relevant peer-reviewed studies published

between 2019 and 2024. The search terms were designed using

a combination of controlled vocabulary and free-text keywords

related to AI applications in food manufacturing, sustainability, and

quality assurance. The search strings included:

• “Artificial Intelligence" OR “AI-driven technologies" AND

“Food Manufacturing" OR “Food Processing".

• “Machine Learning" OR “Deep Learning" AND “Sustainable

Food Systems".

• “Predictive Analytics" AND “AI for Food Waste

Management".

Searches were concluded in January 2025, ensuring the

inclusion of the most recent advancements in AI-driven food

manufacturing innovations.

The inclusion criteria were:

• Peer-reviewed primary research articles, systematic reviews,

and meta-analyses focused on AI applications in food

manufacturing, sustainability, and quality assurance.

• Studies that explicitly discuss the implementation of AI in food

production, waste management, or sustainability efforts.

• Research published in English-language journals within

the time-frame 2019–2024 to ensure relevance to current

technological trends.

• Studies providing empirical insights into AI-driven predictive

modeling, resource optimization, quality control, and circular

economy practices in food manufacturing.

The exclusion criteria were:
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• Protocol papers, gray literature (e.g., dissertations, white

papers, and technical reports), editorials, and opinion pieces.

• Non-English publications due to language constraints in

this review.

• Studies that lacked substantial discussion of AI applications in

food manufacturing or focused on unrelated industries.

• Publications prior to 2019, as AI’s role in food manufacturing

has significantly evolved over the past decade, making older

studies less relevant.

2.2 Data screening, extraction, and
synthesis

The selection process followed a rigorous two-stage

screening process to ensure the relevance and quality of the

included studies. Initially, titles and abstracts were screened

using COVIDENCE program (12) and a custom Python

algorithm developed by the authors to filter studies based

on predefined inclusion and exclusion criteria. Studies that

passed the preliminary screening underwent a full-text review,

where two independent reviewers (KA and PG) assessed

the articles based on relevance, quality, and methodological

rigor. Any discrepancies in selection were resolved through

consensus or consultation with a third reviewer. The review

methodology followed a narrative synthesis approach,

summarizing key themes across selected studies, identifying

emerging trends, technological gaps, and challenges in AI-driven

food manufacturing.

2.3 Data items and variables of interest

Data extraction was performed using a structured data

extraction form developed in Microsoft Excel and a custom Python

algorithm developed by the authors for qualitative synthesis. The

key variables collected included:

• AI implementation details: type of AI technology used (e.g.,

machine learning, deep learning, predictive analytics).

• Sustainability impact: resource optimization, waste reduction,

energy efficiency, and circular economy applications.

• Quality control measures: AI-driven food safety solutions,

real-time monitoring, and process automation.

• Challenges and adoption barriers: ethical concerns,

regulatory challenges, infrastructure limitations, and

economic constraints.

• Key findings and recommendations: summary of results,

proposed AI-driven strategies, and future research directions.

All extracted data were independently verified by two

reviewers, ensuring accuracy and consistency in analysis.

Any disagreements were resolved through discussion

to maintain methodological integrity. The synthesized

findings from the reviewed studies are presented in the

following sections, detailing AI’s transformative impact on

food manufacturing.

3 Key challenges in traditional food
manufacturing

Food manufacturing involves the large-scale production,

processing, and packaging of food products for distribution and

sale (13–15). It transforms raw agricultural materials, such as

grains, fruits, vegetables, meat, and dairy, into finished goods

that are safe, convenient, and appealing to consumers. This

process includes sourcing raw materials from farms, fisheries,

or other agricultural enterprises, followed by processing through

mechanical techniques (e.g., cutting, grinding, mixing), thermal

treatments (e.g., cooking, pasteurizing, sterilizing), and chemical

methods to enhance shelf life and quality (16–20).

Processed food products are packaged in containers such as

cans, boxes, bottles, or pouches to maintain freshness and enable

efficient storage and transportation. Quality control is of crucial

importance for food manufacturing (21), with stringent checks

conducted to meet regulatory standards, such as those set by the

Food and Drug Administration (FDA)1 in the United States or

the Food Safety and Standards Authority of India (FSSAI).2 These

measures ensure that the final products are safe for consumption

and free of contaminants (22, 23).

The industry encompasses diverse products, including

processed foods, ready-to-eat meals, beverages, and functional

foods enriched with nutrients. However, traditional food

manufacturing faces significant challenges:

• Resource-intensive processes: conventional food

manufacturing heavily relies on energy, water, and raw

materials. Processes like cooking, freezing, and sterilization

consume vast amounts of energy (24), while cleaning and

preparation require substantial water usage (25).

• High waste generation: by-products such as peels and residues

are often discarded rather than repurposed, contributing to

inefficiencies and environmental harm (26).

• Supply chain inefficiencies: poor coordination and logistical

gaps lead to significant food losses, with∼14% of food globally

lost between harvest and retail (27).

• Limited traceability: traditional systems often lack the ability

to track products effectively through the supply chain,

impacting food safety and recall efficiency (28).

• Overprocessing and overpackaging: excessive processing and

packaging waste resources, degrade product quality, and

increase environmental footprints (29).

• Environmental impact: energy consumption and waste

decomposition contribute to greenhouse gas emissions (30),

while water-intensive processes exacerbate water stress in

vulnerable regions.

Table 1 summarizes these critical challenges, linking them to

their respective environmental, operational, and societal impacts,

along with key references supporting each aspect. Addressing

these challenges requires a paradigm shift in traditional food

manufacturing practices. Technological advancements, such as IoT,

1 https://www.fda.gov

2 https://fssai.gov.in
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AI, and robotics, are pivotal in overcoming these inefficiencies

by optimizing resource utilization, improving traceability, and

reducing waste (37, 41). Integrating sustainable practices, such

as repurposing by-products into bioenergy or animal feed

(42), and adopting energy-efficient technologies can significantly

mitigate environmental impacts while enhancing productivity

and reliability.

3.1 Persistent ine�ciencies and
resource-intensive processes

Food manufacturing is a critical component of the global food

supply chain (43), yet it faces persistent inefficiencies and remains

highly resource-intensive, creating challenges for sustainability,

economic viability, and environmental health (44). The industry

relies heavily on energy, water, and raw materials (45, 46). Thermal

processes, such as cooking, drying, and freezing, are particularly

energy-intensive, with refrigerated warehouses alone accounting

for up to 20% of the industry’s energy consumption (24). Similarly,

water usage is significant (25), required for washing, cleaning,

and preparing raw materials. The water footprint of processed

foods often exceeds that of raw counterparts. Additionally,

food processing generates considerable waste (26), including by-

products such as peels and residues, much of which is underutilized

or discarded.

Supply chain inefficiencies and logistical challenges exacerbate

these issues (32). Poor coordination leads to significant food

losses, with the FAO estimating that 14% of food is lost

globally between harvest and retail (27). Equipment failures,

unoptimized workflows, and production downtime further hinder

operational efficiency, increasing costs and resource wastage.

Over-processing and over-packaging degrade product quality,

consume excess resources, and contribute to higher energy

usage, with over-processing often diminishing the nutritional

profile of food products (29). These inefficiencies collectively

impact environmental sustainability. Energy consumption and

waste decomposition contribute to greenhouse gas emissions

(30), intensifying climate change. Water-intensive processes

exacerbate water stress, particularly in regions where freshwater

resources are already scarce. Additionally, the underutilization

of food by-products adds to landfill waste, further straining

environmental systems.

3.2 Environmental footprint and
unsustainable waste generation

The food manufacturing sector exerts a profound influence

on environmental sustainability due to its intensive energy use,

significant water consumption, and extensive waste generation.

As a pivotal element of global food production, the sector’s

ecological footprint has come under increasing scrutiny (34).

Energy-intensive processes, such as cooking, sterilization, and

freezing, are primary contributors to greenhouse gas emissions,

with refrigerated storage accounting for a substantial portion of

energy consumption, further intensifying the industry’s carbon

footprint (33). Similarly, water-intensive operations, including

washing raw materials and cleaning equipment, exacerbate water

stress, particularly in regions already facing freshwater scarcity (47).

The challenge of waste generation compounds these issues, as

substantial by-products, including peels, husks, and residues, are

often discarded or underutilized, leading to increased methane

emissions from landfill decomposition (31). Alarmingly, up to

40% of global food waste occurs during the manufacturing stage,

representing a significant loss of both resources and economic value

(48). The environmental burden is further heightened by effluents

containing chemical additives, fertilizers, and preservatives, which

pollute water systems and strain ecosystems (39). Additionally, the

reliance on nonrenewable resources and linear production models

undermines sustainability efforts, with limited adoption of circular

economy practices, such as converting food waste into bioenergy or

animal feed (40).

To address these pressing environmental challenges,

systemic transformations in food manufacturing are

imperative. Enhancing resource efficiency, reducing waste,

and adopting innovative waste management solutions are

essential for mitigating the industry’s environmental impact.

Advancements in waste valorization technologies and the

integration of renewable energy systems offer significant

potential to align the sector with global climate objectives

and the United Nations Sustainable Development Goals (SDGs),

fostering a more sustainable and resilient food manufacturing

ecosystem (39, 49).

3.3 Limitations in maintaining consistent
product quality

Food manufacturing is a cornerstone of the global food

supply chain, yet maintaining consistent product qualityposes

significant challenges due to the inherent complexity of processes

and variability in raw materials (35, 36). Product quality

in this industry is affected by numerous factors, including

inconsistent moisture content, temperature fluctuations

during processing, and deviations in raw material properties

(50). These variations can lead to production inefficiencies,

diminished product quality, and increased waste, ultimately

impacting consumer satisfaction and market competitiveness

(51). For instance, in food extrusion processes, undetected

abnormalities in feed materials, such as varying moisture

content, can compromise the texture and quality of final

products (50).

Moreover, ensuring quality standards across diverse product

lines remains a daunting task. Traditional quality control

measures, including manual inspections and routine sampling,

are often inadequate in detecting subtle deviations, especially

in high-speed production environments (52). While advanced

technologies, such as near-infrared spectroscopy and process

modeling, have demonstrated potential in addressing these

limitations, their implementation requires significant investments

and skilled operators (36). Inconsistent quality not only increases

economic losses due to rework and recalls but also poses risks

to brand reputation and regulatory compliance. Addressing
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TABLE 1 Key challenges in traditional food manufacturing and their impact.

Challenge Description References

Resource-intensive processes Energy-demanding operations (e.g., cooking, freezing) and high water use for cleaning/preparation drive costs

and environmental impact

(24, 25)

High Waste Generation Discarded by-products (e.g., peels, residues) lead to methane emissions and inefficient resource utilization (26, 31)

Supply chain inefficiencies Poor logistics and coordination cause significant food losses, affecting resource efficiency and food security (27, 32)

Environmental footprint High greenhouse gas emissions from energy use and water stress in regions with limited freshwater exacerbate

climate impacts

(33, 34)

Limited traceability Inefficient tracking systems hinder food safety, recalls, and supply chain efficiency (28)

Overprocessing and overpackaging Excess processing degrades nutrition, while overpackaging increases waste and resource use (29, 30)

Maintaining product quality Variability in raw materials and process inefficiencies affect consistency, leading to waste and economic losses (35, 36)

Adopting advanced technologies High costs, skill gaps, and regulatory barriers slow IoT, AI, and robotics integration (37, 38)

Unsustainable waste management Limited adoption of circular economy practices (e.g., bioenergy conversion) and reliance on linear models

exacerbate inefficiencies

(39, 40)

these challenges demands a strategic integration of real-time

monitoring tools, predictive quality control systems, and

continuous process optimization to ensure consistency and

uphold consumer trust in the evolving landscape of food

manufacturing (38, 53).

4 AI-driven applications in sustainable
food manufacturing

The challenges faced by traditional food manufacturing,

such as resource-intensive processes, waste generation, and

inconsistent product quality, demand innovative solutions to

achieve sustainability goals. AI has emerged as a transformative

tool to address these issues by optimizing processes, enhancing

quality, and reducing environmental impacts. AI-powered heat

drying technologies, for example, improve energy efficiency and

reduce carbon footprints while preserving the nutritional and

sensory properties of food products (54). Similarly, real-time AI

monitoring in supply chain management minimizes food loss,

ensures efficient resource utilization, and improves traceability

(7, 55). Additionally, AI-based additive manufacturing enables

personalized food production while maintaining high quality and

safety standards through advanced data analysis (56). Figure 1

provides a visual representation of the diverse applications of AI

in sustainable food manufacturing, highlighting its potential to

streamline production, enhance efficiency, and foster innovation.

Moreover, a detailed summary of key AI-driven applications and

their associated benefits is provided in Table 2.

Despite its transformative potential, AI integration faces

barriers, including ethical concerns, data privacy issues, and

the need for robust datasets (7, 55). However, the adoption

of AI technologies offers significant opportunities to mitigate

environmental impacts, optimize production, and align food

manufacturing with global sustainability objectives. By addressing

inefficiencies and environmental challenges, AI not only reshapes

the industry but also sets a foundation for more resilient and

eco-conscious food systems.

4.1 Product optimization

Product optimization is vital for sustainable food

manufacturing, focusing on maximizing efficiency while

minimizing resource usage. AI has transformed this domain,

enabling precise control and adaptability in production

workflows. By leveraging advanced data analytics algorithms,

manufacturers can forecast production demands, automate

scheduling, and optimize resource allocation, reducing

errors and environmental impact. Advanced tools like

Digital Twin (DT) systems allow manufacturers to simulate

processes, benchmark sustainability metrics, and refine

operations for greater efficiency (67, 68). AI-driven process

optimization enhances shelf-life extension, particularly in

dairy production, where it predicts spoilage risk and optimizes

storage conditions (69). Additionally, AI-driven resource

allocation models inspired by frameworks such as Unified

Modeling Language (UML) enhance production adaptability

(70, 71).

4.1.1 Streamlining workflows and resource
allocation

Streamlining workflows and optimizing resource allocation

are critical to improving sustainability in food manufacturing.

Lean manufacturing strategies, particularly in regions like Brazil

and Peru, have reduced inefficiencies and waste, achieving

annual research growth of 5.96% since 2019 (67). Technologies

such as IoT and DT systems provide real-time tracking and

virtual simulations to optimize production processes and

benchmark sustainability metrics (68). AI enhances these

efforts by enabling predictive analytics and automating resource

allocation. Models inspired by biological systems, like endocrine

regulation principles, and frameworks such as UML align

dynamic production needs with available resources (70, 71).

These innovations reduce bottlenecks, improve scheduling,

and minimize idle time, contributing to cost savings and

environmental sustainability.
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FIGURE 1

Illustration of AI-driven innovations enhancing sustainability in food manufacturing processes.

TABLE 2 AI-driven applications in sustainable food manufacturing and their benefits.

AI application Description and impact Key benefits

Heat drying optimization Enhances energy efficiency while maintaining food nutritional and

sensory qualities (54)

Reduced carbon footprint, preserved food quality,

lower operational costs

Real-time supply chain monitoring Tracks and optimizes supply chain operations, reducing waste and

improving traceability (7, 55)

Reduced food loss, enhanced traceability,

improved decision-making

Additive manufacturing Enables personalized food production while maintaining quality and

safety through data analysis (56)

Customizable food products, consistent quality

assurance, reduced waste in production

Predictive maintenance Anticipates equipment failures, reducing downtime and ensuring

efficiency (57, 58)

Reduced unplanned interruptions, prolonged

equipment lifespan, lower maintenance costs

By-product utilization Repurposes food by-products into functional ingredients, promoting

circular economy principles (59, 60)

Reduced waste generation, development of

value-added products, enhanced sustainability

Real-time quality monitoring Assesses food quality continuously using advanced sensors and AI

(61, 62)

Improved food safety, minimized spoilage,

enhanced consumer trust

Computer vision for quality assessment Automates inspections with image processing and ML for accurate

quality control (63, 64)

Enhanced defect detection, reduced manual

errors, faster processing times

Inspection automation Uses AI and ML to automate quality grading, ensuring consistency

(65, 66)

Consistent quality assurance, reduced reliance on

manual inspections, increased operational

efficiency

4.1.2 Predictive maintenance for reduced
downtime

Predictive maintenance (PdM) uses advanced data analytics

and ML to preempt equipment failures, ensuring smooth

operations and reducing downtime. Techniques like Xtreme

Gradient Boosting and ARIMA-ANN hybrid models enable

early fault detection, while vibration sensors provide real-

time monitoring to prevent interruptions (57, 58). Hybrid

algorithms improve accuracy in identifying potential issues,

which is critical in preventing spoilage and delays. By extending

equipment lifespan and improving operational reliability,

PdM reduces energy use and material waste, contributing to

sustainability goals. Additionally, data mining offers insights

into performance trends, helping manufacturers maintain

consistent quality and reliability (72–74). This proactive

approach ensures economic efficiency while minimizing

environmental impact.

4.1.3 Ingredient and process optimization for
cost-e�ciency

Ingredient and process optimization leverage tools like data

envelopment analysis (DEA) and AI to enhance cost-efficiency

without compromising quality. DEA evaluates multiple input-

output relationships, facilitating cost-effectivemixture designs (75).

AI systems generate least-cost formulations based on real-time

ingredient costs and inventory data, optimizing resource utilization

and reducing expenses (76). Case studies highlight innovations

such as incorporating vegetable proteins in chicken nuggets, which

improve nutritional value and texture while reducing costs (77).

Heat exchanger efficiency is significantly improved through AI-

based modeling, which predicts and regulates thermal exchange

in food manufacturing environments (78). These approaches

demonstrate how targeted optimization can balance economic

gains, product quality, and sustainability, fostering growth in the

food manufacturing industry.
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4.2 Waste reduction and circular economy

The food manufacturing industry plays a dual role as a

critical economic driver and a significant contributor to waste

and environmental challenges (79–81). Integrating AI into food

manufacturing offers transformative solutions to reduce waste and

align practices with circular economy principles (60, 82). Waste

reduction focuses on minimizing excess production, optimizing

resource utilization, and mitigating environmental harm. The

circular economy further advances these efforts by promoting the

reuse, recycling, and repurposing of materials to create a closed-

loop system that maximizes resource efficiency (59, 83).

AI-driven technologies empower manufacturers to implement

smarter production strategies, minimize inefficiencies, and

repurpose by-products, reducing environmental footprints

(80, 82). For example, predictive analytics and real-timemonitoring

enable precise inventory management and energy optimization

(79, 81). By aligning production with market demand and utilizing

by-products, manufacturers achieve cost savings and sustainability

goals (59, 60). The following subsections explore specific AI-

driven solutions in preventing overproduction, optimizing energy

efficiency, and utilizing food by-products for secondary purposes.

4.2.1 AI-driven analytics to prevent
overproduction

Overproduction in food manufacturing leads to significant

waste, primarily due to inaccurate demand forecasting and

inefficient resource management. AI-driven analytics provide

advanced solutions to align production volumes with actual market

demands, thereby mitigating overproduction. AI systems can

analyze extensive datasets, including historical sales, market trends,

and external factors such as weather patterns, to predict consumer

demand with high precision. This process, known as demand

sensing, enables manufacturers to adjust production schedules

proactively in response to real-time data, reducing the likelihood

of overproducing perishable goods (84).

For instance, technologies like digital twins simulate

production processes and optimize resource use in real-time,

minimizing inefficiencies (80). Big data analytics further enhance

demand forecasting by providing insights into consumer

behavior and market trends. These capabilities enable just-in-time

production strategies, reducing excess inventory and associated

waste. The adoption of Industry 4.0 technologies, including AI,

has also addressed barriers to circular economy practices in

food supply chains (79). However, the effectiveness of AI-driven

analytics depends on the quality and comprehensiveness of the

data collected. Manufacturers must invest in robust data collection

and management systems to ensure accurate demand forecasting.

Moreover, integrating AI solutions requires addressing challenges

such as high implementation costs, the need for skilled personnel,

and the development of standardized governance frameworks to

manage ethical considerations (85).

4.2.2 Energy-e�cient process optimization
Energy efficiency is pivotal for sustainable food manufacturing,

addressing both environmental impacts and operational costs.

Optimization techniques, such as those applied in agricultural

systems, demonstrate potential for enhancing energy efficiency

in food production (82). AI-powered heat drying technologies

improve energy efficiency and reduce carbon footprints while

preserving the nutritional and sensory properties of food products

(86). Digitalization amplifies these efforts by enabling precise

control and resource management, facilitating cost-effective

production aligned with circular economy principles (81). AI

and IoT technologies monitor energy usage across production

lines, optimizing processes to minimize waste and reduce carbon

emissions. These integrated strategies offer dual benefits: advancing

sustainability goals and delivering economic advantages. To fully

leverage these benefits, widespread adoption of energy-efficient

practices remains critical.

4.2.3 Utilizing food by-products for secondary
purposes

Utilizing food by-products offers a transformative approach to

sustainable food manufacturing, fully embracing circular economy

principles. By reimagining by-products as resources rather than

waste, manufacturers can reduce environmental impact and

enhance product portfolios. Studies highlight the potential of by-

products, such as dietary fibers, to serve as functional ingredients

in various applications (59, 60). Innovative uses of by-products

include incorporating fruit peels into health-oriented powders

or enriching bakery items with dietary fibers. This not only

minimizes waste but also caters to the rising demand for sustainable

and health-conscious products. However, consumer acceptance

is critical. Effective marketing and communication strategies are

needed to ensure the success of value-added products derived

from food waste (83). Challenges such as high initial technology

costs and regulatory uncertainties remain barriers to widespread

adoption. Collaborative efforts among industry stakeholders,

researchers, and policymakers are vital for scaling up these

practices. Developing cost-effective technologies, understanding

consumer preferences, and establishing supportive regulatory

frameworks can further promote the integration of by-products

into mainstream production.

4.3 Quality control and assurance

Maintaining high standards of quality control and assurance

in food manufacturing is essential not only for consumer safety

but also for sustainability. AI technologies are increasingly

being integrated into these processes to address challenges like

contamination, spoilage, and over-processing. The application

of ML algorithms and computer vision enables real-time

monitoring, predictive analytics, and automation, which help

identify defects and deviations from quality benchmarks at every

step of production. By leveraging these advanced technologies,

manufacturers can ensure that products meet regulatory standards

and consumer expectations, while simultaneously reducing waste

and enhancing efficiency. This proactive approach to quality

assurance is a key component in achieving sustainable food

manufacturing practices.
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4.3.1 AI-enabled real-time quality monitoring
Advancements in AI and smart sensing technologies have

transformed real-time quality monitoring in the food supply chain.

Integration of advanced sensors and biosensors in food packaging

allows continuous assessment of quality parameters such as gas

production, humidity, temperature, and microbial growth (61).

These technologies provide immediate feedback on food quality,

enabling timely interventions to prevent foodborne illnesses and

ensure consumer safety. For example, portable handheld devices

for food quality inspection are increasingly used across production

stages, reflecting the trend toward automated monitoring systems

(61). In a complementary innovation, Wang et al. (62) developed a

fluorescent metal-organic framework (MOF) system for real-time

visual monitoring of food freshness, specifically tested on raw fish

samples. The system provides immediate and accurate feedback

on quality, enhancing assurance processes in food manufacturing.

The incorporation of smartphone-based platforms for inspection

further underlines the growing accessibility and efficiency of quality

monitoring solutions (62). These advancements play a crucial

role in modern food manufacturing, ensuring food safety while

reducing waste.

4.3.2 Computer vision and sensor technology for
precision assessment

The application of computer vision and sensor technologies in

food manufacturing is gaining traction for its ability to enhance

precision in quality assessment. Computer vision techniques, as

highlighted by Jackman et al. (63), have significantly improved the

accuracy of quality evaluations in fresh meats. By leveraging image

processing, manufacturers can automate inspections, reducing

reliance on subjective evaluations and improving defect detection

efficiency. Deep learning (DL) algorithms are instrumental in

advancing precision assessment techniques. For instance, Imani

et al. (64) explored the use of layerwise imaging profiles in quality

control, demonstrating how ML and advanced imaging techniques

can yield more reliable assessments. These technologies enable

real-time monitoring, allowing manufacturers to address potential

quality issues early in the production cycle. Such innovations

enhance the integrity and safety of food products while maintaining

high standards of quality (64).

4.3.3 Automation of inspection across
production stages

Automation of inspection processes is essential for maintaining

consistent quality standards in food manufacturing. Intelligent

food packaging systems, as discussed by Dodero et al. (65),

are a promising innovation for real-time quality monitoring

during production and storage. These systems utilize responsive

materials to provide continuous data on key quality parameters

such as temperature, humidity, and gas composition, ensuring

product freshness and safety while reducing waste. Additionally,

ML-based systems offer transformative potential in automating

inspections. Hemamalini et al. (66) proposed an approach using

efficient image segmentation and ML techniques to enhance

quality grading and assurance processes. These automated systems

provide precise and rapid quality assessments, minimizing

reliance on manual inspections and ensuring only high-quality

products reach consumers. By integrating these technologies,

food manufacturers can achieve consistent quality control,

compliance with safety standards, and improved operational

efficiency (66).

5 Challenges and limitations in AI
adoption

The integration of artificial AI in the food industry holds

significant promise; however, it is accompanied by several

challenges and limitations that hinder its widespread adoption.

Table 3 summarizes the key barriers, including technical and

infrastructural constraints, ethical considerations, and financial

viability issues, which are further detailed in the subsections below.

5.1 Technical and infrastructural barriers

The adoption of AI in food manufacturing is hindered

by significant technical and infrastructural challenges, which

limit its full integration and impact on the industry. One

critical barrier lies in the need for advanced data processing

capabilities and reliable infrastructure, such as high-speed internet

and cloud computing, to support the seamless operation of

AI systems (91). Many food manufacturers, particularly small

and medium-sized enterprises (SMEs), lack access to these

resources, which are essential for deploying AI-driven solutions

in real-time production environments (88). Additionally, the high

computational requirements for AI algorithms, such as neural

networks and predictive models, pose further constraints on

existing hardware and software systems (92).

Another key challenge is the integration of AI technologies with

legacy systems in food manufacturing facilities. Most traditional

production lines are not equipped to accommodate advanced

technologies like IoT sensors or digital twins, which are crucial

for real-time monitoring and optimization (89). Retrofitting these

systems requires significant investment and technical expertise,

making it economically unfeasible for many manufacturers (90).

Furthermore, the lack of standardized frameworks for data

collection and sharing exacerbates these issues, preventing seamless

interoperability between AI-driven tools and existing operational

systems (87).

Addressing these barriers requires a collaborative effort among

stakeholders, including policymakers, technology providers, and

industry leaders. Investment in affordable and scalable solutions,

such as edge computing and distributed ledger technologies, can

enable broader adoption of AI in food manufacturing (88, 104).

Moreover, initiatives to build robust digital infrastructures and

provide training in AI technologies can empower manufacturers

to transition toward smarter and more sustainable production

processes. The integration of digital twin models and IoT-enabled

monitoring systems has further potential to optimize resource

use and enhance efficiency in production (89, 90). Additionally,

advanced sensing technologies like near-infrared spectroscopy

(NIRS) offer green analytical solutions that can facilitate real-

time decision-making and promote sustainability (87). These
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TABLE 3 Challenges and limitations in AI adoption in the food industry.

Challenge Description References

Technical and infrastructural barriers High computational requirements, lack of advanced data processing capabilities, and limited access to

reliable infrastructure (e.g., high-speed internet, cloud computing). Integration with legacy systems

and absence of standardized frameworks further complicate adoption

(87–92)

Ethical dimensions of data privacy and security Concerns over data governance, transparency, and trust. The absence of robust security protocols

increases vulnerability to breaches, impacting supply chain efficiency and consumer wellbeing.

Ethical principles emphasize inclusiveness, equity, and explainability in AI systems

(93–100)

Financial viability and resource constraints High initial costs for infrastructure and training, coupled with ongoing maintenance expenses,

restrict adoption, especially for SMEs. Data accessibility and affordability remain critical challenges in

resource-constrained regions.

(101–103)

efforts are essential to overcoming infrastructural limitations and

unlocking the transformative potential of AI in the food industry

(92, 105).

5.2 Ethical dimensions of data privacy and
security in AI systems

The integration of AI in food manufacturing introduces

complex ethical challenges, particularly concerning data privacy

and security. AI-driven systems increasingly collect and analyze

large volumes of sensitive data, including proprietary business

information and consumer-related data, to optimize supply chains,

enhance food safety, and predict market trends. However, this

reliance on data raises critical questions about its secure storage,

accessibility, and ethical use. According to Jacobs et al. (98),

transparency and trust in digital collaborations are essential

for maintaining ethical practices in data management. The

absence of clear governance frameworks for data privacy can

undermine stakeholder confidence and lead to significant ethical

and operational risks.

The WHO’s guidance on the Ethics and Governance of

Artificial Intelligence for Health (99) offers a robust framework

for addressing ethical considerations in AI. It outlines six core

ethical principles—autonomy, human wellbeing, transparency and

explainability, responsibility and accountability, inclusiveness and

equity, & responsive and sustainable systems. These principles

emphasize the need for inclusive and equitable AI systems that

protect user privacy while fostering innovation. In the context of

food manufacturing, such principles provide a foundation for self-

governance and equitable data practices, ensuring that AI solutions

serve the interests of all stakeholders, including marginalized

communities (95, 96).

A major concern in this domain is the lack of standardized

data governance practices, which can expose the food sector to

significant risks. Karanth et al. (97) emphasize that breaches in

data privacy can compromise predictions related to food safety

and supply chain efficiency, ultimately impacting both consumer

wellbeing and business sustainability. AI platforms that predict

contamination risks or assess vulnerabilities in the supply chain,

as highlighted by Chavan et al. (94), rely on comprehensive

data analytics. However, without robust security protocols, these

systems may inadvertently expose sensitive data to unauthorized

access or misuse, creating vulnerabilities across the industry.

To address these challenges, a proactive approach to ethical AI

application is essential. Collaboration among technology providers,

regulators, and industry leaders can help establish guidelines

that prioritize data privacy and foster trust. Friedlander and

Zoellner (100) suggest that designing transparent and accountable

AI systems is critical for mitigating ethical risks. Furthermore,

incorporating explainability into AI algorithms, as advocated by

Goktas (93), enhances stakeholder confidence by ensuring that

AI decisions align with ethical standards and societal values.

By adopting robust data governance policies and investing in

secure, transparent AI solutions, the foodmanufacturing sector can

balance innovation with the protection of privacy, ensuring ethical

progress in the digital era.

5.3 Financial viability and resource
constraints in AI adoption

The financial viability and resource constraints of adopting

AI technologies significantly influence their implementation in

the food industry. The high initial investment required for

infrastructure, training, and operational adaptation presents a

substantial challenge, particularly for SMEs. As noted by Jäggi et al.

(101), globalization has intensified the complexity of food markets,

necessitating advanced technological solutions to enhance supply

chain management, productivity, and sustainability. However,

these advancements often demand resources that are beyond the

reach of smaller stakeholders, creating economic barriers that

limit equitable adoption. Beyond initial investments, the ongoing

costs of maintaining and upgrading AI systems further complicate

their feasibility. For instance, Tsakiridis et al. (102) illustrate that

while IoT-enabled AI tools such as precision irrigation systems

deliver significant efficiency gains and waste reduction, their

high installation and maintenance costs remain a deterrent for

widespread adoption. Addressing these barriers requires innovative

solutions, including the development of low-cost sensors and

explainable AI models, which can increase both affordability and

trustworthiness, thereby enabling broader access to AI-driven

systems in agriculture and food production.

Another critical challenge lies in the data infrastructure

required for AI applications. As Qureshi (103) observes, data-

driven AI solutions necessitate extensive and high-quality datasets,

which are often inaccessible in under-resourced regions. This data

divide risks marginalizing vulnerable populations and regions,
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exacerbating existing inequalities (95). Bridging this divide

demands targeted policies that foster equitable access to digital

resources and investments in inclusive data collection systems.

Public-private partnerships can play a pivotal role in sharing the

financial burden, promoting collaboration, and scaling AI solutions

in a manner that benefits diverse stakeholders in the food industry.

6 Future perspectives and innovations

The food manufacturing sector is undergoing a paradigm shift,

driven by the convergence of technological advancements and the

imperative for sustainable practices. Emerging technologies such

as green AI and blockchain are poised to transform production

processes by enhancing efficiency, reducing waste, and ensuring

superior food safety and quality. Additionally, the adoption

of circular economy principles and renewable energy solutions

is reshaping the industry’s operational landscape, aligning it

with global sustainability objectives. As detailed in Table 4, the

integration of cutting-edge technologies such as sustainable AI,

IoT, robotics, and blockchain in food manufacturing addresses

critical challenges while unlocking significant environmental and

economic benefits. The following sub-sections delve deeper into

the key areas highlighted in the table, offering a detailed overview

of their applications, benefits, and implications for the future of

food manufacturing:

6.1 Emerging AI technologies shaping food
manufacturing

The integration of advanced technologies, such as sustainable

AI, IoT, and Robotics and Autonomous Systems (RAS), is

redefining the future of food manufacturing. These innovations

are pivotal in addressing critical challenges like sustainability,

food safety, and adaptability to evolving market demands while

simultaneously driving operational efficiency and resilience. As

highlighted by Moses and Anandharamakrishnan (114), these

technologies are vital in transforming traditional practices into

highly automated and optimized systems aligned with Industry

5.0 principles.

6.1.1 AI and IoT: transforming decision-making in
food manufacturing

The convergence of AI and IoT enables real-time monitoring

and data-driven decision-making across the food manufacturing

supply chain. According to Misra et al. (28) and Ding et al.

(106), AI-powered precision farming utilizes sensor-driven data to

optimize resource utilization, improve crop yields, and enhance

production efficiency. IoT devices, coupled with AI algorithms,

offer predictive maintenance capabilities, minimizing equipment

downtime and reducing waste in food processing operations. In

logistics and supply chain management, AI optimizes resource

allocation and reduces carbon footprints through intelligent

routing and scheduling, contributing to the overall sustainability

of food manufacturing (110). Emerging research further highlights

the role of blockchain integrated with AI and IoT in ensuring end-

to-end traceability in the supply chain, enhancing transparency,

and reducing fraud (111). This synergy is expected to address

scalability and interoperability challenges, paving the way for a

seamless and efficient supply chain network.

6.1.2 RAS: driving productivity and precision
The advent of RAS further amplifies the impact of AI in food

manufacturing. As noted by Kumar and Konar (112), robotic

systems not only automate these tasks but also improve consistency

and reduce labor costs. Integration with AI allows for precise

control over production processes, ensuring standardized quality

and efficiency. For instance, robotic sorting systems equipped

with machine vision can detect and remove defective products

with remarkable accuracy, maintaining high food safety standards.

Autonomous vehicles in manufacturing facilities further streamline

material handling, optimizing workflow efficiency and reducing

operational costs (110). Additionally, collaborative robots, or

“cobots," are increasingly being utilized to enhance human-robot

interactions in production environments, fostering a safer and

more efficient workplace.

6.1.3 Digital twins: virtual optimization of
processes

The application of DT technology represents a significant

leap in the optimization of food manufacturing processes. By

creating virtual replicas of physical processes, DT facilitates real-

time simulation, monitoring, and optimization of production

workflows. According to Grewal et al. (113), DT enhances

resource management, minimizes waste, and optimizes energy

utilization, aligning with sustainability objectives. The adaptability

and scalability of DT make it a valuable tool for addressing the

dynamic demands of the food industry. Future advancements in

DT are expected to integrate ML models for predictive analytics,

enabling manufacturers to anticipate potential bottlenecks and

implement proactive measures. This approach contributes to

greater resilience and sustainability in the food manufacturing

ecosystem (114).

6.1.4 Industry 5.0 in food manufacturing
Industry 5.0 represents the next phase in industrial

evolution, building upon the digital transformation of Industry

4.0 by integrating human-centric, sustainable, and resilient

manufacturing principles. Unlike Industry 4.0, which emphasized

automation, cyber-physical systems, and AI-driven decision-

making, Industry 5.0 focuses on collaborative intelligence, where

humans and advanced technologies work together to optimize

production processes, enhance sustainability, and improve overall

resilience (110, 118).

Key principles of Industry 5.0 in food manufacturing

should sinclude:

• Human-AI collaboration: unlike fully automated systems

in Industry 4.0, Industry 5.0 emphasizes human-machine

interaction, where AI assists human workers in making
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TABLE 4 Key innovations and future perspectives in food manufacturing.

Technology Key innovations Future opportunities and advancements

Sustainable AI - Real-time monitoring and predictive analytics (28)

- Precision farming for optimized resource utilization (106)

- Enhanced waste management (107)

- Democratizing AI adoption across all scales (108)

- Seamless integration with Industry 5.0 principles (109)

IoT - Sensor-driven decision-making (106)

- Predictive maintenance for reduced downtime (110)

- Improved scalability and interoperability (111)

- Integration with blockchain for traceability (111)

Robotics and autonomous systems (RAS) - Automated sorting and defect detection (112)

- Collaborative robots for safer workplaces (110)

- Enhanced human-robot interaction (110)

- Greater efficiency in material handling (110)

Digital twins (DT) - Virtual replicas for real-time process simulation (113)

- Resource management optimization (114)

- Integration with machine learning for predictive analytics

(114)

- Addressing dynamic demands in production (113)

AI-driven innovations - Personalized nutrition through ML (115)

- AI-based quality assurance systems (116)

- Improved regulatory compliance (116)

- Tailored food production for individual needs (115)

Circular economy and renewable energy - Utilization of surplus ingredients and by-products (117)

- Adoption of renewable energy solutions (107)

- Increased alignment with sustainability goals (108)

- Enhanced energy efficiency across supply chains (109)

informed decisions while ensuring flexibility and adaptability

in manufacturing (119).

• Sustainability-driven production: the shift toward circular

economy practices is accelerated under Industry 5.0,

where AI, IoT, and robotics are leveraged to minimize

waste, repurpose by-products, and reduce energy

consumption (120).

• Resilient and adaptive systems: industry 5.0 fosters resilience

by enabling smart manufacturing systems that can quickly

adapt to supply chain disruptions, ensuring a stable and

sustainable food production process (121).

The integration of Industry 5.0 principles into food

manufacturing offers significant advantages, such as

enhancing AI-driven predictive maintenance, promoting

sustainable production models, and supporting customized

food manufacturing through robotics and personalized

nutrition technologies. By leveraging these innovations,

the food industry can transition toward a more efficient,

environmentally responsible, and consumer-focused production

ecosystem (110).

6.1.5 Advancing AI innovations: personalized
nutrition and enhanced quality assurance

Emerging AI technologies are driving innovations

in personalized nutrition and quality assurance in food

manufacturing. ML models enable the customization of food

products to cater to individual nutritional needs and preferences,

as emphasized by Viejo et al. (115). Additive manufacturing,

powered by AI, facilitates the creation of tailored food items

with enhanced nutritional profiles, bridging the gap between

health and convenience (56). AI-based quality control systems

are also advancing food safety protocols by leveraging computer

vision and DL to detect contaminants, assess freshness, and

monitor shelf life. These technologies significantly enhance

the accuracy and efficiency of quality assurance processes,

ensuring compliance with stringent regulatory standards

(115, 116).

6.1.6 Overcoming barriers and shaping the future
path

Despite the transformative potential of AI technologies,

several challenges hinder their widespread adoption in food

manufacturing. High implementation costs, data dependency, and

ethical concerns related to privacy and bias remain significant

barriers (122). Addressing these challenges requires collaborative

efforts among governments, academia, and industry stakeholders

to develop cost-effective solutions and establish robust regulatory

frameworks (87). Future research should focus on enhancing

the interpretability and transparency of AI models to build

trust among stakeholders. Moreover, initiatives to upskill the

workforce and promote interdisciplinary collaboration are essential

for maximizing the potential of these technologies. The road ahead

involves leveraging AI to achieve a balance between innovation,

sustainability, and ethical considerations in food manufacturing

(110, 114).

6.2 Toward a greener future: AI in
sustainable food production

The integration of AI with big data and IoT is driving

significant advancements in sustainability within food

manufacturing. These technologies improve operational

efficiency, optimize resource utilization, and reduce waste.

Misra et al. (28) emphasize how real-time monitoring and

predictive capabilities enable manufacturers to enhance workflows,

minimize losses, and address environmental challenges, aligning

with global sustainability targets. Koebe (108) underline the

broader applicability of digital technologies, including AI,

in advancing the United Nations’ SDGs. Leveraging scalable

AI-driven models and digital platforms supports sustainable

practices and fosters global adaptability, even in emerging

markets. One impactful innovation in food manufacturing

is AI-driven 3D food printing, which reduces material waste

while enabling precision production of customized food items

tailored to individual preferences. By incorporating surplus

ingredients and by-products into formulations, manufacturers
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FIGURE 2

A framework illustrating the three pillars of sustainable food
manufacturing: optimizing processes, integrating digital

technologies, and the adoption of AI and IoT technologies for
innovative and e�cient production.

actively promote circular economy principles, significantly

reducing food waste (117). The broader framework for

sustainable food manufacturing, as depicted in Figure 2,

highlights the three essential pillars: optimizing processes,

integrating digital technologies, and adopting AI and IoT solutions.

This framework underlines the importance of combining

technological innovation with process efficiency to achieve

long-term sustainability goals.

AI-powered energy management systems further advance

sustainability by optimizing energy consumption across the

food supply chain, reducing carbon footprints, and lowering

operational costs (28). Furthermore, the integration of AI into

waste management systems fosters sustainable urban growth, as

highlighted by Singagerda et al. (107), who emphasize AI’s ability

to influence public behavior, enhance resource efficiency, and

align with SDGs 11, 12, and 13. Despite these advancements,

challenges such as high implementation costs and the need for

skilled personnel persist. However, the adoption of low-code AI

platforms and Industrial IoT (IIoT) solutions, as demonstrated

by Redchuk et al. (109), showcases a pathway for achieving

energy efficiency and resource optimization while maintaining

centrality of human expertise within the Industry 5.0 framework.

Ultimately, AI’s potential to foster resilience, reduce waste,

and enhance customization paves the way for a sustainable,

adaptive, and efficient food manufacturing ecosystem (28, 108,

117).

7 Conclusion

The integration of AI technologies into food manufacturing

redefines the industry, enabling sustainable and efficient

production systems. By addressing critical challenges such

as resource optimization, waste reduction, and quality

assurance, AI, together with IoT and robotics, transforms

traditional processes into intelligent, interconnected

systems capable of real-time monitoring and adaptive

decision-making. This study contributes to the field

by providing a structured analysis of AI applications

in food manufacturing, offering practical insights for

industry adoption, and identifying research gaps that need

further exploration.

Findings from this review highlight that AI has the potential to:

• Enhance operational efficiency by automating workflows and

optimizing resource use.

• Reduce food waste and environmental impact through AI-

driven predictive analytics.

• Improve product quality control by integrating AI-based

defect detection and real-time monitoring systems.

• Facilitate the transition to circular economy practices by

repurposing food by-products.

Advanced sustainable AI applications are expected to

seamlessly integrate into existing infrastructures, improving

predictive maintenance, quality control, and operational

efficiency. The adoption of AI-driven solutions accelerates

the shift toward circular economy practices, optimizing

the utilization of by-products and enabling precise resource

allocation. However, realizing these benefits requires addressing

existing challenges such as high implementation costs, ethical

concerns, and the need for standardized AI governance

frameworks. Thus, this study emphasizes the importance of

multi-stakeholder collaboration among policymakers, technology

developers, and food industry professionals to unlock AI’s

full potential in food manufacturing. By overcoming adoption

barriers and leveraging AI-driven innovations, the industry

can achieve a balance between technological advancement,

environmental sustainability, and economic viability. The insights

provided in this review contribute to ongoing discussions

on the role of AI in shaping the future of sustainable food

production, laying the groundwork for further research and

policy development.
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96. Atasoy ZBK, Avcı E, Beydoğan R, Ozdemir E, Goktas P. In: Göç C,
editor. Artificial Intelligence and Nutrition. Istanbul: Efeakademi Yayınlar (2023).
doi: 10.59617/efepub202367

97. Karanth S, Benefo EO, Patra D, Pradhan AK. Importance of artificial intelligence
in evaluating climate change and food safety risk. J Agric Food Res. (2023) 11:100485.
doi: 10.1016/j.jafr.2022.100485

98. Jacobs N, Brewer S, Craigon PJ, Frey J, Gutierrez A, Kanza S, et al. Considering
the ethical implications of digital collaboration in the food sector. Patterns. (2021)
2:100335. doi: 10.1016/j.patter.2021.100335

99. WHO. Ethics and Governance of Artificial Intelligence for Health. (2021).
Available online at: www.who.int/publications/i/item/9789240029200 (accessed March
1, 2025).

100. Friedlander A, Zoellner C. Artificial intelligence opportunities to improve food
safety at retail. Food Protect Trends. (2020) 40:272–8.

101. Jäggi CJ. Nutrition, Food Markets and Agriculture: Economic Issues Against
the Background of Globalization. Meggen: Springer Fachmedien Wiesbaden (2021).
doi: 10.1007/978-3-658-34672-0

102. Tsakiridis NL, Diamantopoulos T, Symeonidis AL, Theocharis JB, Iossifides
A, Chatzimisios P, et al. Versatile internet of things for agriculture: an eXplainable
AI approach. In: IFIP Advances in Information and Communication Technology,
Vol. 584. Cham: Springer (2020), p. 180–191. Available online at: www.scopus.com/
inward/record.uri?eid=2-s2.0-85086181553&doi=10.1007%2f978-3-030-49186-4_
16&partnerID=40&md5=62df3a310d4be25bb7caddf927de2ab3 (accessed March 1,
2025).

103. Qureshi S. Why data matters for development? Exploring data justice, micro-
entrepreneurship, mobile money and financial inclusion. Inf Technol Dev. (2020)
26:201–13. doi: 10.1080/02681102.2020.1736820

104. Villalobos JR, Soto-Silva WE, González-Araya MC, González-Ramirez RG.
Research directions in technology development to support real-time decisions of
fresh produce logistics: a review and research agenda. Comput Electron Agric. (2019)
167:105092. doi: 10.1016/j.compag.2019.105092

105. Mondejar ME, Avtar R, Diaz HLB, Dubey RK, Esteban J, Gmez-Morales A,
et al. Digitalization to achieve sustainable development goals: steps towards a smart
green planet. Sci Total Environ. (2021) 794:148539. doi: 10.1016/j.scitotenv.2021.14
8539

106. Ding H, Tian J, Yu W, Wilson DI, Young BR, Cui X, et al. The application
of artificial intelligence and big data in the food industry. Foods. (2023) 12:4511.
doi: 10.3390/foods12244511

107. Singagerda FS, Dewi DA, Trisnawati S, Septarina L, Dhika MR.
Towards a circular economy: integration of AI in waste management
for sustainable urban growth. J Lifestyle SDG’s Rev. (2025) 5:e02642.
doi: 10.47172/2965-730X.SDGsReview.v5.n01.pe02642

108. Koebe P. How digital technologies and AI contribute to achieving
the health-related SDGs. Int J Inform Manag Data Insights. (2025) 5:100298.
doi: 10.1016/j.jjimei.2024.100298

109. Redchuk A, Walas Mateo F, Pascal G, Tornillo JE. Adoption case
of IIoT and machine learning to improve energy consumption at a process
manufacturing firm, under industry 50 model Big Data Cogn Comput. (2023) 7:42.
doi: 10.3390/bdcc7010042

110. Hassoun A, Aït-Kaddour A, Dankar I, Safarov J, Ozogul F, Sultanova S. The
significance of industry 4.0 technologies in enhancing various unit operations applied
in the food sector: focus on food drying. Food Bioprocess Technol. (2023) 18:109–28.
doi: 10.1007/s11947-024-03465-2

111. Ellahi RM, Wood LC, Bekhit AEDA. Blockchain-based frameworks for food
traceability: a systematic review. Foods. (2023) 12:3026. doi: 10.3390/foods12163026

112. Kumar A, Konar A. Dyeing of Textiles with Natural Dyes. Houston, TX: InTech
(2011). p. 29–56. doi: 10.5772/21341

113. Grewal D, Hulland J, Kopalle PK, Karahanna E. The future of technology
and marketing: a multidisciplinary perspective. J Acad Mark Sci. (2019) 48:1–8.
doi: 10.1007/s11747-019-00711-4

114. Moses JA, Anandharamakrishnan C. Emerging Technologies for the Food
Industry, Volume 3: ICT Applications and Future Trends in Food Processing. Toronto,
ON: Apple Academic Press. (2024). doi: 10.1201/9781003413660

115. Viejo CG, Torrico DD, Dunshea FR, Fuentes S. Emerging technologies based
on artificial intelligence to assess the quality and consumer preference of beverages.
Beverages. (2019) 5:62. doi: 10.3390/beverages5040062

116. Zuo M, Ji H, Su L, Zhang Y, Yan W, Zhang Q, et al. Advancements and
modern applications of artificial intelligence in ensuring food safety. J Chin Inst Food
Sci Technol. (2024) 24:1–13.

117. Duckett T, Pearson S, Blackmore S, Grieve B. Agricultural Robotics:
The Future of Robotic Agriculture. London: EPSRC UK-RAS Network (2018).
doi: 10.31256/WP2018.2

118. Nahavandi S. Industry 5.0—a human-centric solution. Sustainability, (2019)
11:4371. doi: 10.3390/su11164371

119. Tóth A, Nagy L, Kennedy R, Bohuš B, Abonyi J,
Ruppert T. (2023). The human-centric industry 5.0 collaboration
architecture. MethodsX. (2023) 11:102260. doi: 10.1016/j.mex.2023.
102260

120. Rame R, Purwanto P, Sudarno S. Industry 5.0 and sustainability: an overview of
emerging trends and challenges for a green future. Innov Green Dev. (2024) 3:100173.
doi: 10.1016/j.igd.2024.100173

121. van Erp T, Carvalho NGP, Gerolamo MC, Gonçalves R, Rytter NGM,
Gladysz B. (2024). Industry 5.0: a new strategy framework for sustainability
management and beyond. J Clean Prod. (2024) 461:142271. doi: 10.1016/j.jclepro.2024.
142271

122. Agrawal K, Kumar N. Artificial Intelligence Innovations: Inception of new
horizons in food processing sector. In: 2023 IEEE Silchar Subsection Conference
(SILCON). (2023), p. 1–8. doi: 10.1109/SILCON59133.2023.10404183

Frontiers inNutrition 15 frontiersin.org

https://doi.org/10.3389/fnut.2025.1553942
https://doi.org/10.1016/j.energy.2019.06.002
https://doi.org/10.1111/jiec.12373
https://doi.org/10.1111/jiec.13528
https://doi.org/10.3390/sci6040060
https://doi.org/10.3389/fsufs.2024.1344370
https://doi.org/10.1016/j.saa.2024.125028
www.scopus.com/inward/record.uri?eid=2-s2.0-85211932387&doi=10.1109%2fICSD60021.2024.10751375&partnerID=40&md5=25d73eed009985fc75904316f1a97c62
www.scopus.com/inward/record.uri?eid=2-s2.0-85211932387&doi=10.1109%2fICSD60021.2024.10751375&partnerID=40&md5=25d73eed009985fc75904316f1a97c62
www.scopus.com/inward/record.uri?eid=2-s2.0-85211932387&doi=10.1109%2fICSD60021.2024.10751375&partnerID=40&md5=25d73eed009985fc75904316f1a97c62
https://doi.org/10.1016/j.copbio.2024.103115
www.scopus.com/inward/record.uri?eid=2-s2.0-85184978597&doi=10.1109%2fBigData59044.2023.10386314&partnerID=40&md5=3567894e655deaedc43c6731ad7968fb
www.scopus.com/inward/record.uri?eid=2-s2.0-85184978597&doi=10.1109%2fBigData59044.2023.10386314&partnerID=40&md5=3567894e655deaedc43c6731ad7968fb
www.scopus.com/inward/record.uri?eid=2-s2.0-85184978597&doi=10.1109%2fBigData59044.2023.10386314&partnerID=40&md5=3567894e655deaedc43c6731ad7968fb
https://doi.org/10.1016/j.aiia.2023.04.002
www.scopus.com/inward/record.uri?eid=2-s2.0-84951845090&doi=10.1007%2f978-3-319-24399-3_7&partnerID=40&md5=1a2dc55f4c4015aec48e759ae22b8f78
www.scopus.com/inward/record.uri?eid=2-s2.0-84951845090&doi=10.1007%2f978-3-319-24399-3_7&partnerID=40&md5=1a2dc55f4c4015aec48e759ae22b8f78
www.scopus.com/inward/record.uri?eid=2-s2.0-84951845090&doi=10.1007%2f978-3-319-24399-3_7&partnerID=40&md5=1a2dc55f4c4015aec48e759ae22b8f78
https://doi.org/10.1080/12460125.2024.2410042
www.scopus.com/inward/record.uri?eid=2-s2.0-85191480669&doi=10.1007%2f978-3-031-51647-4_26&partnerID=40&md5=e307b7c8aeaa261290d4feb67209dc36
www.scopus.com/inward/record.uri?eid=2-s2.0-85191480669&doi=10.1007%2f978-3-031-51647-4_26&partnerID=40&md5=e307b7c8aeaa261290d4feb67209dc36
https://doi.org/10.1159/000538139
https://doi.org/10.59617/efepub202367
https://doi.org/10.1016/j.jafr.2022.100485
https://doi.org/10.1016/j.patter.2021.100335
www.who.int/publications/i/item/9789240029200
https://doi.org/10.1007/978-3-658-34672-0
www.scopus.com/inward/record.uri?eid=2-s2.0-85086181553&doi=10.1007%2f978-3-030-49186-4_16&partnerID=40&md5=62df3a310d4be25bb7caddf927de2ab3
www.scopus.com/inward/record.uri?eid=2-s2.0-85086181553&doi=10.1007%2f978-3-030-49186-4_16&partnerID=40&md5=62df3a310d4be25bb7caddf927de2ab3
www.scopus.com/inward/record.uri?eid=2-s2.0-85086181553&doi=10.1007%2f978-3-030-49186-4_16&partnerID=40&md5=62df3a310d4be25bb7caddf927de2ab3
https://doi.org/10.1080/02681102.2020.1736820
https://doi.org/10.1016/j.compag.2019.105092
https://doi.org/10.1016/j.scitotenv.2021.148539
https://doi.org/10.3390/foods12244511
https://doi.org/10.47172/2965-730X.SDGsReview.v5.n01.pe02642
https://doi.org/10.1016/j.jjimei.2024.100298
https://doi.org/10.3390/bdcc7010042
https://doi.org/10.1007/s11947-024-03465-2
https://doi.org/10.3390/foods12163026
https://doi.org/10.5772/21341
https://doi.org/10.1007/s11747-019-00711-4
https://doi.org/10.1201/9781003413660
https://doi.org/10.3390/beverages5040062
https://doi.org/10.31256/WP2018.2
https://doi.org/10.3390/su11164371
https://doi.org/10.1016/j.mex.2023.102260
https://doi.org/10.1016/j.igd.2024.100173
https://doi.org/10.1016/j.jclepro.2024.142271
https://doi.org/10.1109/SILCON59133.2023.10404183
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

	AI-driven transformation in food manufacturing: a pathway to sustainable efficiency and quality assurance
	1 Introduction
	2 Methods
	2.1 Search strategy and eligibility criteria
	2.2 Data screening, extraction, and synthesis
	2.3 Data items and variables of interest

	3 Key challenges in traditional food manufacturing
	3.1 Persistent inefficiencies and resource-intensive processes
	3.2 Environmental footprint and unsustainable waste generation
	3.3 Limitations in maintaining consistent product quality

	4 AI-driven applications in sustainable food manufacturing
	4.1 Product optimization
	4.1.1 Streamlining workflows and resource allocation
	4.1.2 Predictive maintenance for reduced downtime
	4.1.3 Ingredient and process optimization for cost-efficiency

	4.2 Waste reduction and circular economy
	4.2.1 AI-driven analytics to prevent overproduction
	4.2.2 Energy-efficient process optimization
	4.2.3 Utilizing food by-products for secondary purposes

	4.3 Quality control and assurance
	4.3.1 AI-enabled real-time quality monitoring
	4.3.2 Computer vision and sensor technology for precision assessment
	4.3.3 Automation of inspection across production stages


	5 Challenges and limitations in AI adoption
	5.1 Technical and infrastructural barriers
	5.2 Ethical dimensions of data privacy and security in AI systems
	5.3 Financial viability and resource constraints in AI adoption

	6 Future perspectives and innovations
	6.1 Emerging AI technologies shaping food manufacturing
	6.1.1 AI and IoT: transforming decision-making in food manufacturing
	6.1.2 RAS: driving productivity and precision
	6.1.3 Digital twins: virtual optimization of processes
	6.1.4 Industry 5.0 in food manufacturing
	6.1.5 Advancing AI innovations: personalized nutrition and enhanced quality assurance
	6.1.6 Overcoming barriers and shaping the future path

	6.2 Toward a greener future: AI in sustainable food production

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


