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Protective nutrition strategy in
the acute phase of critical illness:
why, what and how to protect

Youquan Wang, Yanhua Li, Nan Li, Yuting Li, Hongxiang Li and

Dong Zhang*

Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China

Nutritional support is crucial for critically ill patients. Recent clinical studies

suggest that both overfeeding during the acute phase of critical illness

and overly conservative or delayed nutritional therapy can pose significant

risks. Given substantial individual variability among critically ill patients, it is

challenging to prescribe universally applicable and objective feeding strategies;

Instead, we pointed out which nutritional interventions were harmful. We also

summarized the reasons for protective nutrition, and elaborated the advantages

of protective nutrition from three perspectives: gastrointestinal protection,

nutritional protection and metabolic protection. In particular, it is emphasized

that overfeeding will lead to metabolic disorders, such as mitochondrial

dysfunction, autophagy inhibition, ketogenic inhibition, hyperglycemia, insulin

resistance, etc. These detrimental processes can exacerbate one another,

contributing to multiple organ dysfunction syndrome and poorer clinical

outcomes. We also propose protective nutrition strategies comparable to lung

protective ventilation strategies, which may benefit patients. Vigilant monitoring

during nutritional implementation is also paramount, enhancing awareness of

adverse events for early diagnosis and intervention to mitigate their harm.

KEYWORDS

critical illness, intensive care, enteral nutrition, feeding intolerance, feeding strategy,

refeeding syndrome, acute mesenteric ischemia

1 Introduction

During the acute phase of critical illness, there is an increase in catabolism

characterized by intense inflammatory response, glycogen and protein breakdown, and

dysregulation of metabolic control (1). These multifaceted factors may contribute to

malnutrition and the development of intensive care unit (ICU)-acquired weakness, which

in turn can prolong mechanical ventilation and hospitalization, and even increase ICU

and in-hospital mortality (2, 3). The uncontrollable hypercatabolic state during the acute

phase of critical illness prompted recognition of the importance of nutrition, aiming to

counteract the catabolic metabolism and thus improve the nutritional status and clinical

outcomes of critically ill patients (4, 5). Previous studies have also showed that early

and full nutritional therapy associated with reduced infectious complications and ICU-

related complications in critically ill patients, and can even reduce 60-day mortality (6–8).

However, these studies are all observational in nature, making it difficult to avoid bias. The

better prognosis observed may not be attributable to full nutritional therapy, but rather to

the fact that these patients had milder conditions and better feeding tolerance. Therefore,

imposing a causal relationship in this context is highly misleading.
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Given the uncertainty of the relationship between nutritional

therapy and prognosis, several randomized controlled trials (RCTs)

have been conducted in recent years to explore the true relationship

between the two, and these studies have shown that early full

nutrition is not beneficial and may even be harmful (9–15).

This finding, contrary to previous thinking, has upended clinical

nutrition practice. Based on this evidence, recent guidelines have

begun to advocate progressive nutritional treatment rather than

reaching nutritional goals as early as possible. However, no large

RCT has shown that progressive nutrition is superior to long-term

low-dose feeding.

For patients with acute respiratory distress syndrome (ARDS),

lung protective ventilation strategies [low tidal volume, low plateau

pressure, and appropriate positive end-expiratory pressure (PEEP)]

both promote alveolar reexpansion to maintain oxygenation and

prevent ventilator-induced lung injury. It has been proven to

reduce mortality and ventilator days in ARDS patients (16). The

gastrointestinal (GI) tract is similar to the lungs in that it seems

disadvantageous to abandon or overuse, and protective use seems

to be an optimal state, which not only plays the function of

the organ but also avoids the damage caused by overuse. We

will combine the latest research results, summarize the idea of

protective nutrition, and discuss from the three aspects of why,

what and how to protect.

2 Why to protect

2.1 Full nutrition is deleterious

The estimation of caloric requirements in critically ill patients

typically relies on energy expenditure (EE). However, during

the acute phase of critical illness, caloric needs may be lower

than EE. This discrepancy arises because the body generates

endogenous glucose in the state of critical illness, a process that

remains unaffected by exogenous supplementation (17). Given the

endogenous production of glucose, full nutrition during the acute

phase can lead to overfeeding, potentially exerting negative impacts

on both the body and disease recovery (18, 19).

As early as 2011, the idea of early full nutrition was

challenged. The EPaNIC trial (N = 4,640) compared the outcomes

of critically ill patients receiving early (<48 h) supplemental

parenteral nutrition (SPN) vs. late (>48 h) SPN in the ICU (9).

The results indicated that patients in the late SPN group had

lower infection rates, fewer complications, shorter durations of

mechanical ventilation, and better prognosis. Subsequent post-hoc

analysis of the EPaNIC trial suggested that the better outcomes

in the late SPN group were due to higher nutritional intake

during the acute phase in the early SPN group compared to the

late SPN group, and that higher early protein intake appeared

a key factor influencing the observed outcomes (20). In this

study, the primary factor influencing the outcomes of critically

ill patients was full feeding. The adverse effects of PN were

found to be dose-dependent rather than route-dependent (20). The

CALORIES trial (N = 2,400) also did not observe any effect of

feeding route on the 30-day mortality rate of critically ill patients

(21). Furthermore, the NUTRIREA-2 trial (N = 2,410) validated

this viewpoint, finding that compared to enteral nutrition (EN),

isocaloric parenteral nutrition (PN) had no differential impact on

the prognosis of critically ill patients with mechanical ventilation

and shock, and identified a higher incidence of digestive system

complications in the EN group (13). In other clinical studies,

despite variations in interventions, timing, and patient populations,

the negative impact of early full nutrition on GI adverse events,

blood glucose levels, and mortality has been observed (10, 11, 22).

In the PROTINVENT retrospective study, it was also observed

that patients receiving full nutrition (protein intake >1.2 g/kg/day)

exhibited poorer clinical outcomes (23). In the NUTRIREA-3

trial (N = 3,044), while no increase in mortality was observed

with early standard calorie and protein supplementation (calorie:

6 kcal/kg/day, protein: 0.4 g/kg/day) compared to early low-

dose nutrition (calorie: 25 kcal/kg/day, protein: 1-1.3 g/kg/day) in

mechanically ventilated critically ill patients with shock, there was

an associated increase in ICU length of stay, gastrointestinal adverse

events, and other complications (24). Higher protein supply was

found in the EFFORT trial (N = 1,301) to be particularly harmful

for patients with acute kidney injury and higher organ failure scores

at baseline (25). A recent PRECISe trial (N = 935) found that high

enteral protein supply led to poorer health-related quality of life

in critically ill patients and did not improve functional outcomes

within 180 days of ICU admission (26). Interestingly, the EFFORT

Trial (N = 2,088) in non-critically ill found that compared with

the control group (mean calorie 1,211 kcal/day, protein 47 g/day),

A higher nutrient supply (mean calorie 1,501 kcal/day, protein

57 g/day) improved clinical outcomes in patients at nutritional

risk. Another RCT found that adult patients undergoing cardiac

surgery with cardiopulmonary bypass who received 2.0 g/kg/day

of amino acids did not experience an increased 30-day mortality

compared to the placebo group. Moreover, it reduced the incidence

of acute kidney injury (AKI) (27). These outcomes appeared

contradictory to previous theories. However, it should be noted

that the study population did not consist of critically ill patients

and is weakly comparable to previously presented studies. This also

suggests that strengthening nutritional support may be beneficial

for patients entering the recovery phase of critical illness. Further

research is warranted to elucidate nutritional therapy in critically

ill patients and to provide more comprehensive evidence for

nutritional practice.

2.2 Moderate nutrition may be beneficial

Due to the stress state, increased metabolic rate, and the

demands of tissue repair, critically ill patients have a greater

need for nutritional therapy compared to ordinary patients.

The supplementation of exogenous energy and protein is likely

important at some point. Failure to provide adequate and timely

nutrition could lead to malnutrition and other adverse clinical

outcomes (28–30). In retrospective studies, an intake below 50%

was found to correlate with poorer clinical outcomes. This level

of intake may result in significant calorie deficit, deplete energy

reserves, reduce lean body mass, and potentially increase the risk

of infectious complications (8, 31). A prospective observational

study across 21 countries involving 167 intensive care units

(N = 2,772) indicated that lower energy and protein delivery
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were associated with increased 60-day mortality and prolonged

duration of mechanical ventilation in patients with mechanical

ventilation (6). However, these non-interventional studies appear

to overlook the true underlying reasons for the higher mortality

rate in patients with low nutritional intake [greater disease severity

potentially leading to increased occurrence of feeding intolerance

(FI)]. Zusman et al.’s study found (N= 1,171) that 60-day mortality

was lowest in severely ill patients when the percent of administered

calories divided by resting energy expenditure was equal to 70%

(32). The EuroPN study (N = 1,172) demonstrated that compared

to lower intake levels (<10 kcal/kg, <0.8 g/kg), a daily moderate

intake (10–20 kcal/kg, 0.8–1.2 g/kg) was associated with a higher

likelihood of successful weaning and a reduced risk of mortality

(33). Similar to the results of a meta-analysis (34), the results of

this study also support the existence of a “U-shaped curve” of

nutritional intake (both excessive and inadequate supply being

detrimental, with moderate intake being optimal), highlighting that

moderate nutritional intake is beneficial for critically ill patients.

However, as critical illness recovery progresses, the inflection

point of the U-shaped curve may shift rightward (indicating

higher nutritional intake). The PROTINVENT study (N = 455)

suggested a time-dependent relationship between protein intake

and mortality, revealing that the lowest 6-month mortality rates

were observed when protein intake increased from <0.8 g/kg/day

on days 1–2 to 0.8–1.2 g/kg/day on days 3–5, and exceeded 1.2

g/kg/day after day 5 (23).

Unfortunately, there are currently no RCTs specifically

comparing the effects of low-dose and moderate-dose nutrition on

the prognosis of critically ill patients. However, we believe that the

most appropriate feeding dose for patients may also have a time-

dependent nature, with a transition from limited to progressive to

open feeding strategy, which may be more suitable for critically

ill patients (35). The timing of implementing this transition in

feeding strategies remains unclear, and further research is needed to

identify biomarkers indicating the critical illness phase. Compared

with calorie, protein lacks a two-stage or multi-stage nutritional

target, which may be more conducive to precision nutritional

treatment for critically ill patients.

3 What to protect

3.1 Gastrointestinal protection

Early EN (<48 h) exerts a protective effect on the GI mucosal

barrier, promotes gastrointestinal peristalsis, reduces bacterial

translocation, and stimulates increased intestinal blood flow,

thereby aiding in the maintenance of normal metabolic activity and

repair capacity of the intestinal mucosa (36, 37). Under the blow

of critical illness, protective nutrition may be a good match for

impaired GI function, which not only plays the role of GI tract, but

also avoids the deterioration of GI function. The ESPEN guidelines

recommend that the feeding volume of early EN in the acute phase

of critical illness should not exceed 70% of estimated EE (1, 19), and

a progressive feeding approach appears to bemore beneficial for the

clinical outcomes of critically ill patients (18, 35).

Animal experiments indicate that low-dose EN promotes

the recovery of intestinal barrier function in rats following

ischemia/reperfusion injury by enhancing NF-κB/HIF-1α pathway

expression (38). Furthermore, low-dose EN can also activates the

JAK1-STAT6 pathway, facilitating the expression of pIgR and

secretory immunoglobulin A (sIgA), thereby mitigating immune

damage to the murine intestinal mucosa (39). Robles et al.

summarized overfeeding in animal experiments. Overfeeding can

lead to a strong and prolonged hyperphagic response, and it

may reduce survival following infection (40). In addition, Zhang

et al. found in a mouse model of acute pancreatitis that Short-

peptide-based EN has the function of restoring ZO-1 expression,

mucous layer and goblet cells, thereby reducing intestinal bacterial

translocation in mice with severe acute pancreatitis (41).

Unfortunately, there is currently no large-scale RCT that has

found early EN to be truly superior to delayed EN (42). There is no

evidence to suggest that early EN reduces mortality in critically ill

patients. The differences observed in secondary outcomes such as

ICU length of stay and infections vary greatly across studies, and

there remains significant heterogeneity (42). In fact, early EN may

not be suitable for all critically ill patients, as initiating it too early

may lead to FI. Predicting the likelihood of FI and implementing

early pre-intervention (delayed EN) for high-risk patients is a more

conservative strategy that may reduce the incidence of FI (43).

However, delayed ENmay fails to provide the trophic effects on the

gut. It is clear that early EN does not have a universally positive

effect on all patients; thus, an individualized assessment of the

benefits and risks of early EN is warranted. Accordingly, further

research in this field is warranted.

3.2 Nutritional protection

During the acute phase of critical illness, patients often

experience not only impaired gastrointestinal motility and barrier

function but also digestive and absorptive dysfunctions (1).

A prospective cross-sectional study (N = 563) revealed that,

excluding primary exocrine pancreatic insufficiency (EPI), 52.2%

of critically ill patients exhibited EPI (fecal elastase −1 < 200

ug/g), with 18.3% of patients experiencing severe EPI (fecal

elastase −1 < 100 ug/g). Factors such as shock, sepsis, diabetes,

cardiac arrest, hyperlactatemia, invasive mechanical ventilation,

and hemodialysis may all contribute to the development of EPI,

severely impacting the digestive absorption capacity of critically ill

patients (44). The deficiency of digestive enzymes may leads to the

restriction of protein digestion in severe patients, and the protein

supplemented through the EN pathway is not easily absorbed

by the intestine. Therefore, there seems to be an irreconcilable

contradiction between protein requirements and digestion and

absorption disorders. Inappropriate nutritional support may lead

to adverse gastrointestinal events such as abdominal distension and

diarrhea (45).

In 2023, the Mayo Clinic defined a short peptide-based formula

(PBF) as an EN formula in which protein is hydrolyzed into “2-3

peptides.” 2-3 peptides can enter intestinal epithelial cells through

active transport and are the main way the body absorbs proteins.

PepT1 operates through a proton-coupledmechanism, utilizing the

proton gradient to drive the uptake of 2-3 peptides without the

need for additional energy expenditure (46). When a proton and

Frontiers inNutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2025.1555311
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2025.1555311

a peptide simultaneously bind to the external surface of PepT1, a

conformational change occurs, resulting in the translocation of the

bound peptide and proton into the cell. This mechanism allows

PepT1 to function efficiently in the low pH environment of the

intestinal lumen (46–48). Another distinction between PBF and

standard polymerized formula (SPF) is that the lipid component

of SPF consists predominantly of long-chain triglycerides (LCT),

typically ranging from 13 to 24 carbon atoms. These LCTs

necessitate pancreatic and biliary fat digestion and emulsification to

bemetabolized into glycerol and free fatty acids, ultimately entering

enterocytes and subsequently forming chylomicrons (49). In

contrast, PBF often contains significant amounts of medium-chain

triglycerides (MCT), with lengths of 6–12 carbon atoms. MCTs are

passively absorbed, bypassing the need for complex fat digestion

and emulsification (50). It has also been shown the MCTs do not

rely on the carnitine acyltransferase system to enter mitochondria

for β-oxidation (51). This enables quicker metabolism ofMCTs and

enhances their utilization, even in conditions of protein deficiency

(52). Obviously, these may be beneficial for critically ill patients.

Therefore, this formula was suggested to improve EN tolerance,

and it was found that the use of PBF in patients with FI may

lead to improved clinical outcomes, along with a corresponding

reduction in healthcare utilization and potential nursing costs (53).

Due to the ileal brake mechanism, critically ill patients receiving

jejunal feeding are unable to stimulate the secretion of pancreatic

proteases (54). Therefore, compared to other formulas, PBF may

be more suitable for patients receiving post-pyloric feeding (55).

Additionally, due to mitochondrial dysfunction and tissue hypoxia

in the acute phase of critical illness, lipid metabolism is impaired

(56). Elevated levels of exogenous fat nutrition can exacerbate

mitochondrial damage and organ dysfunction, potentially leading

to poorer clinical outcomes (57–59). Early provision of low-fat

nutrition may play a protective role in nutritional support.

In some clinical studies, PBF has been found to reduce the

incidence of gastric retention and diarrhea, achieve nutritional

adequacy more rapidly, shorten ICU length of stay, and lower

readmission rates (60–64). The ASPEN guidelines recommend the

use of PBF for critically ill patients with severe malabsorption,

such as persistent diarrhea (4). However, due to the low quality of

evidence supporting these recommendations, they are considered

as having a low level of evidence. Nevertheless, based on current

theoretical rationale, there is reason to believe that PBF can provide

this nutritional protective effect for patients with gastrointestinal

injury, although high-quality research is still needed to further

validate its efficacy.

3.3 Metabolic protection

3.3.1 Metabolism in the acute phase of critical
illness

During the acute phase of critical illness, particularly in

the early stages, the body predominantly undergoes catabolism

(1). This phase is characterized by accelerated protein and fat

breakdown, increased gluconeogenesis, insulin resistance, and

elevated basal and resting EE. Due to the body’s self-protection

mechanisms, in response to critical illness, a significant amount

of protein and fat is converted into glucose to meet the metabolic

demands (65). More than half of the body’s energy needs are

supplied through this pathway, which remains active regardless

of exogenous energy supplementation (17, 19, 66). Consequently,

there exists a risk of overfeeding during this phase, potentially

inhibiting certain beneficial metabolic processes.

3.3.2 Mitochondrial protection
During the acute phase of critical illness, varying degrees of

mitochondrial dysfunction are often present (67). Mitochondria

serve as the primary site for cellular energy production, and

impairment of their function can lead to disturbances in

cellular metabolism and organ dysfunction (68). Mitochondria are

particularly sensitive to the increased oxidative stress in critical

illness. Abnormalities in the function and structure of this organelle

further lead to excessive generation of reactive oxygen species and

decreased production of adenosine triphosphate (ATP) (69, 70).

To reduce metabolic demands, mitochondrial dysfunction may

progress in a manner similar to hibernation, which could aid in

maintaining cellular life, though it may come at the cost of organ

system failure (67). In such circumstances, the administration

of full nutrients may have deleterious effects, as damaged

mitochondria are unable to effectively utilize the additional energy

supply, potentially leading to increased oxidative stress and cellular

damage (71–73). Therefore, in clinical practice, protective nutrition

may be more appropriate for severe patients during the acute

phase to avoid exacerbating mitochondrial dysfunction and the

associated adverse outcomes. It is not only a strategy of nutritional

protection but also a strategy of organelle and organ protection.

The objective of this strategy is to balance energy provision

with the metabolic needs of patients by controlling nutrient

intake, while simultaneously reducing the risk of exacerbating

pathological processes resulting from metabolic disturbances and

oxidative stress.

3.3.3 Autophagy activation
Autophagy, as a central molecular pathway, plays a crucial

role in maintaining cellular and organismal homeostasis (74,

75). Through this process, cells are able to eliminate damaged

or dysfunctional organelles and proteins, thereby preserving the

stability of the cellular environment. In critically ill states, cells

often suffer varying degrees of functional impairment, which

can increase the risk of multiple organ failure. Therefore, the

activation of autophagy becomes particularly important (76).

Animal experiments have demonstrated the protective effects of

autophagy on kidney, lung, liver, and intestinal injuries (77–80).

However, artificial feeding can inhibit the activation of autophagy

in critical illness, particularly at high protein/amino acid doses

(18). Insufficient autophagy may further exacerbate mitochondrial

dysfunction, leading to organ failure and adverse outcomes (81,

82). During the acute phase of critical illness, protective nutrition

establishes a relatively starved or nutrient-restricted condition,

thereby promoting the beneficial metabolic process of autophagy.

This approach may potentially improve the prognosis of critically

ill patients.
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3.3.4 Ketogenic activation
Under fasting or starvation conditions, due to inadequate

glucose supply, the body undergoes a gradual transition from

glucose metabolism to lipid metabolism, accompanied by the

activation of ketogenesis (83, 84). Ketogenesis primarily functions

through the inhibition of histone deacetylases, reduction of

oxidative stress, enhancement of mitochondrial efficiency,

promotion of autophagy, and modulation of inflammation (83, 85–

87). Studies have shown that ketogenesis can increase the oxidation

of intramuscular triacylglycerol during exercise, thereby increasing

endurance (88). Animal experiments indicate that deficiency in

peroxisome proliferator-activated receptor alpha (PPARα) impairs

ketogenesis activation, which is associated with increased mortality

in mice following bacterial infection (89). Studies have shown that

ketones can provide up to 70% of the brain’s energy needs, that the

uptake of ketones by the brain increases significantly during acute

brain injury, and that ketone supplements have potential in the

treatment of traumatic brain injury (90). Therefore, for patients

at high risk of FI, opting for early fasting with late initiation

of small-dose EN appears to offer greater benefits. We should

probably not focus solely on the balance between the benefits of

early EN and the harms of FI.

3.3.5 Blood glucose control
Factors such as nutritional therapy and stress during critical

illness can lead to elevated blood glucose, but the optimal blood

glucose target is still controversial (91). Several previous studies

have shown that early administration of PN with tight glycemic

control (TGC) between 80 and 110mg per deciliter reduces

morbidity, ICU length of stay, and mortality in surgical ICU

patients (92, 93). However, in a recent RCT by Gunst et al.

(N = 9,230), TGC did not reduce mortality among critically

ill patients who did not receive early PN (94). Only minor

benefits of TGC were observed in several secondary outcomes.

The seemingly contradictory findings stemmed from the fact that

delayed initiation of PN implied lower energy intake, thereby

resulting in significantly less severe hyperglycemia in the liberal

glucose control group compared to previous two RCTs (94). We

have reason to believe that the higher mortality observed in the

control groups of the previous two RCTs may have been due to

overfeeding during the acute phase andmore severe hyperglycemia.

This could lead to glucose overload in critical organs and cells,

which is associated with poorer clinical outcomes (95). Studies have

shown that higher blood glucose may inhibit mitochondrial repair

processes, leading to further mitochondrial dysfunction (81).

During critical illness, stress and emergency responses can

increase the activity of the neuroendocrine system, promoting the

release of catecholamines and cortisol. This stimulation enhances

glycogenolysis and gluconeogenesis in the liver, concurrently

inducing peripheral insulin resistance (IR) and inhibiting glucose

entry into cells (96). Additionally, inflammatory responses during

critical illness contribute to IR (97). IR is characterized by

reduced effectiveness of insulin in facilitating glucose uptake

and utilization, along with downregulation of insulin-dependent

glucose transporter proteins in peripheral tissues, thereby leading

to stress-induced hyperglycemia (98). The triglyceride-glucose

(TyG) index, calculated from fasting triglyceride (TG) and fasting

plasma glucose (FPG) levels, has been validated for assessing the

degree of IR in patients (99–101). Moreover, the excessive use

of insulin due to hyperglycemia can also result in poorer clinical

outcomes (102). In one RCT (N= 6,104), the TGC group exhibited

higher mortality compared to the control group, attributable to the

increased administration of insulin (103). Additionally, insulinmay

adversely affect organ recovery and disease resolution by inhibiting

autophagy and ketogenesis (104, 105). Protective nutrition can not

only reduce the incidence of hyperglycemia, but also reduce the use

of insulin, which may be more suitable for severe patients.

3.3.6 The interaction of metabolic processes
Overfeeding can lead to adverse effects such as mitochondrial

dysfunction, reduced autophagy, ketogenesis suppression,

hyperglycemia, and excessive insulin utilization. As outlined

previously, these metabolic processes interact intricately. For

instance, during overfeeding, elevated blood glucose levels can

inhibit mitochondrial repair, thereby exacerbating mitochondrial

dysfunction. Moreover, it can decrease autophagic efficiency,

leading to reduced autophagy, and impair fatty acid metabolism,

thereby suppressing ketogenesis. These interrelationships among

metabolic processes may exacerbate organ damage and result in

poorer outcomes (Figure 1). Theoretically, protective nutrition

strategies are more beneficial in activating these beneficial

metabolic processes to benefit critically ill patients.

4 How to protect

How can we practice to achieve the GI protection, nutritional

protection and metabolic protection that we mentioned earlier?

Based on the above theoretical basis, and compared with the

lung protective ventilation strategy, we put forward the protective

nutrition strategy.

Low-dose feeding and low-dose protein and calories strategies

are similar, utilizing limited GI function while avoiding the harms

of overfeeding. These two strategies are similar to low tidal

volume and limited platform pressure in lung protective ventilation

strategies for ARDS patients, which take advantage of limited lung

function and avoid the harm caused by excessive ventilation. On

the other hand, appropriate formula may reduce the burden of GI

digestion and absorption, lower the risk of a secondary blow to

GI, and may decrease the occurrence of FI, although the current

evidence on the selection of nutritional formulas is very weak. This

strategy would be similar to appropriate PEEP, which promotes

collapsed alveolar distension and improves ventilate blood flow

ratio and oxygenation. It can also reduce lung damage caused by

overinflated alveoli (Figure 2).

Current guidelines still recommend early EN for patients who

are able to tolerate it, in order to achieve the benefits of EN (19).

When EN alone is insufficient to meet the patient’s nutritional

needs, SPN can be used alongside EN to fulfill the patient’s

nutritional needs, although the optimal timing for SPN application

remains unclear (4, 19).When a patient is unable to tolerate EN, the

benefits and risks of PN should be carefully weighed, and PN may

need to be provided in a timely manner, rather than abandoning
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FIGURE 1

The harm of overfeeding in the acute stage of critical illness.

nutritional therapy. The potential harm from overfeeding may be

more severe than the risks associated with the nutritional route

itself. It is important to focus on the daily nutrient intake and the

monitoring of overfeeding.

We have to admit that it is difficult to come up with a universal

strategy due to the large individual differences in critically ill

patients. Although we can only come up with a general idea

of nutritional treatment, following these recommendations may

benefit patients.

5 What needs to be monitored

5.1 Overfeeding

The monitoring of overfeeding is a hot topic in recent

years, because we recognize the harm of overfeeding and try

to avoid this phenomenon in clinical nutrition practice (106).

Indirect calorimetry serves as the gold standard for measuring

EE, derived from measurements of VO2 and VCO2 (107).

However, the measured EE does not necessarily reflect the true

energy requirements of patients in the acute phase of critical

illness, during which significant endogenous glucose production

occurs (17). Providing nutrition equivalent to measured EE often

results in overfeeding (1, 36). Currently, the clinical measurement

of endogenous glucose production is complex and not widely

implemented. Achieving the equation of endogenous glucose +

exogenous supplementation = EE is not our ultimate goal, as

optimal exogenous supplementation may also need to consider the

potential risks of inhibiting fasting responses, such as autophagy

and ketosis. While the ideal dose is individualized and still

uncertain, identifying clinical indicators of overfeeding is crucial

for guiding nutritional therapy effectively (18).

Overfeeding can manifest as hyperglycemia and increased

insulin requirements, azotemia, elevated urea-to-creatinine ratio

(UCR), and hypertriglyceridemia. However, these indicators are
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FIGURE 2

Lung protective ventilation strategies and protective nutrition strategies in acute stage of critical illness.

non-specific and can vary between individuals (106). Interestingly,

underfeeding can also manifest as hyperuremia and an elevated

blood UCR (108). UCR is also influenced by factors such

as circulating fluid volume, underlying disease and therapeutic

intervention, which limits its specificity as a reliable indicator

of overfeeding (109, 110). This presents significant challenges in

using UCR as an effective marker for overfeeding. In critically ill

patients, there is an urgent need to explore and develop correction

equations for UCR that accurately reflect nutritional status. The

correlation between UCR and nutritional intake remains an area

requiring further research. Currently, significant challenges exist in

monitoring overfeeding due to the lack of specific indicators. We

advocate for the concept of protective nutrition, as the harm from

overfeeding may surpass the detriments of underfeeding (111).

In the absence of adequate monitoring tools, the administration

of small doses of nutrition during the early acute phase is

recommended, at least not to cause more harm.

5.2 Refeeding syndrome

Refeeding syndrome (RS) refers to a spectrum of metabolic

abnormalities that occur when nutritional intake is reintroduced

after a period of prolonged starvation or malnutrition. It

is primarily characterized by metabolic changes, electrolyte

imbalances, and vitamin deficiencies following the initiation of

nutritional therapy (112). Micronutrients can distribute unevenly

during critical illness, rendering early measurements potentially

misleading (113). In the context of refeeding syndrome, which

occurs upon the rapid reinstitution of feeding after prolonged

starvation, declines inmicronutrient and electrolyte concentrations

(e.g., vitamin B1, phosphate, potassium) can be abrupt and

severe, potentially posing a fatal risk for individuals in a state

of starvation or catabolic metabolism (114, 115). Micronutrients

play crucial roles in metabolism, immunity, gene transcription,

and other physiological processes (116). However, symptoms of

micronutrient deficiencies often mimic those of critical illness,

leading to frequent oversight (117). In the context of refeeding

syndrome (RS, which can occur after the rapid reinstitution of

feeding following prolonged starvation), micronutrient deficiencies

may manifest. The current common diagnostic criterion for

refeeding syndrome includes a reduction in phosphate levels to

<0.65 mmol/L, with a decrease of at least 0.16 mmol/L (118).

An RCT (N = 339) by Doig et al. showed that adult critically

ill patients who developed refeeding hypophosphatemia within

72 h of starting nutritional support in the ICU had better 60-

day survival and longer overall survival in the restricted feeding

group than in the standard feeding group (118). A retrospective

study by Olthof et al. (N = 337) showed that low caloric

intake was associated with a reduced risk of death at 6 months

in patients with refeeding hypophosphatemia (119). Therefore,
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monitoring phosphate changes, early identification of refeeding

hypophosphatemia, and giving targeted restrictive nutrition and

correcting micronutrient and electrolyte deficiencies may improve

the prognosis of severely ill patients (112). Additionally, the timely

supplementation of micronutrients is crucial. The 2022 ESPEN

guidelines propose recommendations for the presumed optimal

intake of micronutrients (113). However, the evidence supporting

these recommendations is relatively weak. Due to the uneven

distribution of micronutrients caused by factors such as disease

and inflammation, relying on blood micronutrient concentrations

as a basis for supplementation is not accurate. Furthermore, there

is no evidence of the benefits of excessive supplementation, and

there may be harm (113, 120). The ideal dosage for micronutrient

supplementation remains an area requiring further investigation.

5.3 Acute mesenteric ischemia

Acute mesenteric ischemia (AMI) is infrequently encountered

in the ICU but carries a markedly high mortality rate (exceeding

50%) (121). Despite recent advancements in the recognition of

AMI, involving imaging and interventional radiology for diagnostic

assistance, there has been limited improvement in mortality

(121, 122). Delayed diagnosis leading to delayed treatment likely

contributes significantly to this scenario, representing a critical

prognostic factor (123, 124). Early identification of AMI, prompt

cessation of EN, implementation of intestinal revascularization or

surgical intervention can prevent further exacerbation of intestinal

ischemia, thus avoiding or delaying the occurrence of intestinal

necrosis (125, 126). AMI should be ruled out when patients present

with acute gastrointestinal symptoms that cannot be explained

by feeding alone. A meta-analysis summarizing biomarkers for

diagnosing AMI found that urinary I-FABP and D-dimer exhibit

moderate predictive values in assessing transmural mesenteric

ischemia. Unfortunately, none of the biomarkers reached the level

of accurate prediction (122). Whether combining these biomarkers

will increase diagnostic effectiveness still needs to be explored

further. When there is a high suspicion of AMI, computed

tomography imaging, particularly a biphasic protocol consisting

of angiography and venous phase scanning, is widely utilized

to confirm nonspecific clinical findings (127). Raising awareness

about AMI and its early identification and diagnosis is crucial for

improving the prognosis of critically ill patients.

5.4 Other gastrointestinal adverse events

Monitoring during nutritional implementation is crucial

because it is a personalized therapy, and all plans are not

static. We should emphasize the monitoring of the nutritional

implementation process to achieve comprehensive protective

nutrition. Monitoring of nutrition is similar to monitoring

of respiratory therapy, and only continuous monitoring and

continuous adjustment could achieve continuous protection

(Figure 2).

Monitoring of GI adverse events is essential, and factors such

as bowel sounds, intra-abdominal pressure, and bedside ultrasound

can provide valuable indications of the patient’s GI function status.

Due to limited monitoring methods, our initial assessment of the

GI function of critically ill patients may be erroneous, which is

unavoidable. Fortunately, monitoring can play a role in timely

correction, minimizing the harm caused by erroneous decisions.

6 Conclusions

Recent guidelines and RCTs have shown that overfeeding in

the acute phase is detrimental to clinical outcomes in severely

ill patients. Protective nutrition strategies are a synthesis of

guidelines and clinical studies. We also discussed the reasons

for implementing protective nutrition strategies, and discussed its

potential beneficial effects onGI function, metabolic complications,

and organ function. In addition, we highlight the importance of

post-nutritional monitoring, which, despite its relative scarcity, is

necessary to implement protective nutrition throughout. There is

significant individual variability among critically ill patients, and

a universal feeding strategy applicable to all patients is difficult to

obtain, but the concept of protective nutrition is what we advocate.
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