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Background: Hyperuricemia not only increases the risk of cardiovascular 
diseases such as dyslipidemia, hypertension, coronary artery disease, obesity, 
metabolic syndrome, and type-2 diabetes, but also severely impacts kidney 
function, potentially leading to acute kidney injury and chronic kidney disease.

Methods: This study aims to investigate the health benefits of black chokeberry 
(Aronia melanocarpa) on hyperuricemic mice induced by oxonic acid.

Result: The experimental results showed that black chokeberry had no significant 
toxic or negative effects in mice. The measurement of uric acid (UA) indicated 
that black chokeberry suppressed the UA levels. Additionally, the xanthine 
oxidase activity in the high-dose group was significantly decreased, along 
with reductions in serum urea nitrogen and creatinine levels. Black chokeberry 
effectively increased the glutathione levels in hyperuricemic mice and reduced 
malondialdehyde levels, as well as significantly inhibiting adenosine deaminase 
activity.

Conclusion: Its efficacy is comparable to that of the marketed drug allopurinol, 
underscoring the potential of black chokeberry as a functional product for uric 
acid reduction.
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1 Introduction

Hyperuricemia refers to an excessively high concentration of uric acid (UA) in the serum. 
Typically, hyperuricemia is diagnosed when serum UA levels exceed 7 mg/dL in men and 
6 mg/mL in women. The global prevalence of hyperuricemia is approximately 19.37%, with 
higher incidences observed in men and postmenopausal women (1). As the condition 
progresses, it may develop into gouty arthritis, kidney stones, and cause renal damage (2).

UA is the final product of purine metabolism, with most serum UA originating from 
endogenous purines, and about one-third coming from dietary sources. Hyperuricemia is 
caused by excessive production of UA and insufficient renal excretion. Therefore, current 
medications for lowering UA primarily work by promoting UA excretion and inhibiting 
xanthine oxidase (XO) (3). However, these drugs are often associated with side effects such as 
allergies, diarrhea, hepatotoxicity, and nephrotoxicity (4, 5). Hence, there is a need for 
alternative safe and effective treatments for hyperuricemia.
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Aronia melanocarpa, commonly known as black chokeberry, is a 
berry rich in polyphenolic compounds and flavonoids. Its main active 
components include chlorogenic acid, neochlorogenic acid, 
anthocyanins, proanthocyanidins, and quercetin derivatives. 
Numerous studies have confirmed its health benefits, including 
antioxidant, anti-inflammatory, antimicrobial, antihypertensive, lipid-
lowering, antidiabetic, hepatoprotective, and neuroprotective effects 
(6). Previous studies have shown that black chokeberry can improve 
serum UA levels, reduce xanthine oxidase activity, and inhibit 
inflammation associated with acute gout in rat models (7). 
Additionally, black chokeberry has been shown to alleviate kidney 
damage by reducing the expression of pro-inflammatory factors, 
oxidative stress, lipid peroxidation, and apoptosis, thereby improving 
renal function (8).

This study used domestically sourced black chokeberry to 
evaluate serum UA, blood urea nitrogen (BUN), and creatinine 
(CRE) levels in mice, assessing kidney function. It also measured 
xanthine oxidase, glutathione (GSH), malondialdehyde (MDA), and 
adenosine deaminase (ADA) activity to assess liver function. The 
UA-lowering effects of black chokeberry were further explored in 
hyperuricemic mice induced by oxonic acid potassium salt (OA). 
Black chokeberry demonstrated potential in inhibiting UA 
production, reducing BUN, and lowering creatinine levels, while also 
inhibiting the activity of xanthine oxidase and adenosine deaminase. 
These results suggest that black chokeberry may improve both kidney 
and liver function in mice and holds promise as a functional product 
for lowering UA.

2 Methods

2.1 Sample preparation

After juicing for black chokeberries, the juice was filtered 
through a 40-mesh sieve and then vacuum filtered to remove the 
skin and pulp. The filtrate was then freeze-dried using a vacuum 
freeze dryer, and the resulting dried powder constituted the black 
chokeberry. This powder was stored at −20°C for 
subsequent experiments.

2.2 Animals

This study was approved by the Laboratory Animal Care and Use 
Committee of National Chiayi University (Approval No. 112021). 
Male ICR mice, 5 weeks old, were purchased from LASCO 
Biotechnology Co., Ltd. to establish an oxonic acid potassium salt 
(OA)-induced hyperuricemia model by ip. After acclimatizing the 
mice for 1 week, they were randomly divided into six groups, each 
with six mice: blank, OA (250 mg/kg bw/day) induction by 
intraperitoneal injections, OA + allopurinol (10 mg/kg bw/day), 
OA + low-dosage sample (450 mg/kg bw/day), OA + medium-dosage 
sample (900 mg/kg bw/day), and OA + high-dosage sample (1800 mg/
kg bw/day). The experiment lasted for 1 week. After the experiment, 
blood was collected via cardiac puncture for biochemical analysis, and 
the liver and kidneys were dissected. The organs were rinsed with 
saline, weighed, wrapped in aluminum foil, and rapidly frozen in 
liquid nitrogen, then stored at-80°C for further analysis.

2.3 Serum preparation

Place the collected blood in a tube without anticoagulant and 
allow it to clot at room temperature for 1 h, and then centrifugation 
was carried out at 3,000 rpm for 10 min at 4°C to separate the serum 
and stored at −80°C.

2.4 Liver homogenate preparation

Liver (0.4 g) was homogenated with PBS, and the solution was 
centrifuged at 5,000 rpm for 10 min at 4°C, the supernatant was 
collected and stored at −80°C.

2.5 Measurement of blood urea nitrogen

Analyze using the Urea Enzymatic Kinetic Method commercial 
kit (RANDOX). Add 10 μL of serum and the standard solution to 
1 mL of the reaction reagent containing α-oxoglutarate, ADP, urease, 
GLDH, NADH, and Tris buffer (pH 7.6) for incubation at 37°C for 
30 s, then the absorbance at 340 nm was measured. Continue the 
reaction for another 60 s and measure the absorbance at 340 nm again.

The calculation formula: BUN = Standard concentration × 
ΔAsample, 340 nm/ΔAstandard, 340 nm.

2.6 Measurement of serum creatinine 
content

Analyze using the Creatinine commercial kit (RANDOX). Add 
100 μL of serum and the standard solution to 1 mL of the reaction 
reagent containing 35 μmol/L picric acid and 0.32 mol/L sodium 
hydroxide. Measure the absorbance at 492 nm after 30 s and again 
after 150 s.

The calculation formula: CRE = Standard concentration × 
ΔAsample, 492 nm/ΔAstandard, 492 nm.

2.7 Measurement of serum uric acid 
content

Analyze using the Uric Acid commercial kit (RANDOX). Add 
20 μL of serum and the uric acid standard solution to 1 mL of the 
reaction reagent containing HEPES buffer, 3,5-dichloro-2-
hydroxybenzenesulfonic acid, 4-aminophenazone, uricase, and 
peroxidase. Mix thoroughly and incubate in a water bath at 37°C for 
5 min. Measure the absorbance at 520 nm.

The calculation formula: UA = Standard concentration × (Asample, 

520 nm/Astandard, 520 nm).

2.8 Measurement of xanthine oxidase 
activity

The activity of xanthine oxidase in the liver is measured based on 
the conversion of xanthine to uric acid (9). Adding 100 μL of liver 
homogenate and the uric acid standard solution to 4.9 mL of the 
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reaction reagent containing 50 μM xanthine and 5 mM 
EDTA. Incubate at 37°C for 30 min, then add 500 μL of 0.58 M HCl 
to terminate the reaction. Measure the absorbance at a wavelength 
of 290 nm.

2.9 Measurement of glutathione content

Liver homogenate (100 μL) to 100 μL of 5% TCA solution and 
incubate on ice for 5 min. Centrifugating at 12,000 rpm for 15 min, 
and collect 150 μL of the supernatant. Add this to 750 μL of Tris/
EDTA solution (pH 8.2) and mix thoroughly. Then, add 37.5 μL of 
5,5′-DithioBis-(2-Nitrobenzoic Acid) (DTNB) solution, incubate for 
5 min, and measure the absorbance at 412 nm (10).

2.10 Measurement of malondialdehyde 
content

Liver tissue homogenate (40 μL) and TEP standard to 120 μL of 
deionized water and 40 μL of 8.1% SDS solution. Mix thoroughly and 
incubate at room temperature for 5 min. Then, add 300 μL of 20% 
ethanolic acid (pH 3.5) and 300 μL of 0.8% TBA reagent, and incubate 
at 95°C for 1 h. After cooling, centrifuge at 4,000 rpm for 10 min and 
measure the absorbance of the supernatant at 532 nm (11).

2.11 Measurement of adenosine deaminase 
activity

Analyze using the Elabscience commercial kit (Metabolism 
Assay). Add 10 μL of liver homogenate and the standard solution to 
180 μL of Reagent-1 and 90 μL of Reagent-2. Incubate at 37°C for 
7 min, then measure the absorbance at 550 nm. After this, continue 
the reaction at 37°C for another 10 min and measure the absorbance 
again at 550 nm.

2.12 Statistical methods

The results of this experiment are expressed as mean ± standard 
deviation (S.D.). Data analysis was conducted using SPSS 
(Statistical Product and Service Solutions 22.0). One-way ANOVA 
was used to compare differences between groups, followed by 

Duncan’s multiple range test for significance comparisons. A 
p-value of < 0.05 indicates a statistically significant difference in 
the data.

3 Results and discussion

3.1 Body weight, food intake, water intake, 
and organ weight

If toxic substances enter the experimental animals, they can affect 
their physiological condition or metabolic processes, leading to 
significant changes in body weight. To observe whether intraperitoneal 
injection or feeding of drugs and samples causes toxicity in animals, 
changes in body weight can be used as a preliminary indicator of 
potential poisoning (12).

Table  1 presents the body weight changes in hyperuricemia-
induced mice. No significant differences in body weight were observed 
among the groups, except for the positive control group, where drug 
treatment likely improved physiological status, leading to better 
dietary intake and increased weight. Daily food and water intake were 
monitored, with an average consumption of 5.3 g and 9.1 g per mouse, 
respectively. In conclusion, black chokeberry supplementation did not 
cause toxicity or significantly affect body weight, food and water 
intake in hyperuricemic mice induced by intraperitoneal OA injection.

3.2 Serum BUN and CRE

BUN is a nitrogenous molecule produced in the liver and excreted 
by the kidneys, commonly used to assess kidney function (13). This 
experiment evaluates whether different doses of black chokeberry can 
reduce BUN levels in hyperuricemic mice (Table 2). The OA-induced 
group exhibited BUN level (13.51 mmol/L) compared to the control 
group (4.54 mmol/L). In the low-, medium-, and high-dosage groups, 
the levels of BUN were reduced to 10.21, 9.56, and 4.86 mmol/L, 
reflecting reductions of 24.43, 29.24, and 64.03%, respectively, 
compared to the OA-induced group. Notably, the high-dosage group 
showed a significant reduction, with levels falling below those of the 
allopurinol-treated group (6.81 mmol/L). Moreover, the high-dosage 
group outperformed the OA-induced mice treated with allopurinol, 
showing no significant difference compared to the control group. 
These findings suggested that high-dosage sample treatment in 
hyperuricemic mice lowered BUN.

TABLE 1 Changes in body weight, dietary intake, and water intake of OA-induced hyperuricemia mice.

Groups Body weight (g) Food intake (g) Water intake (g)

Day-1 Day-7 Day-1 Day-7 Day-1 Day-7

Blank 27.78 ± 2.9a 29.98 ± 2.37a 6.8 6.27 7 12

OA 27.90 ± 1.64a 28.48 ± 2.06a 5.22 5.67 8 9

OA + allopurinol 28.53 ± 1.02b 30.62 ± 1.83a 5.66 5.96 10 11

OA + low dosage 27.78 ± 1.39a 27.7 ± 4.29a 5.61 4.74 8 12

OA + medium dosage 27.70 ± 0.95a 28.17 ± 1.33a 4.98 4.58 8 6

OA + high dosage 27.45 ± 1.24a 28.51 ± 3.10a 5.71 4.52 8 11

Each value is expressed as mean ± S.D. (n = 6). Value in row with the different superscripts are significantly different (p < 0.05).
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Table 2 presents the effects of black chokeberry on CRE levels 
in hyperuricemic mice. The negative control group exhibited CRE 
level (38.87 μmol/L), which approximately three times higher than 
that of the control group (9.01 μmol/L). In the low-, medium-, and 
high-dose groups (black chokeberry), the CRE levels were 23.66, 
15.21, and 9.58 μmol/L, respectively, showing a dose-dependent 
reduction of 39.13, 60.87, and 75.35%. The CRE level in the high-
dose group was comparable to that of the control group and not 
significantly different from the positive control group, suggesting 
that high-dose black chokeberry treatment achieved similar 
reductions in CRE as drug treatment and brought levels close to 
those of uninduced mice.

Hyperuricemia induced by OA can lead to nitric oxide-related 
endothelial dysfunction, affecting the kidney’s ability to transport 
urate and other organic ions, thereby worsening renal dysfunction and 
damage (14). Cherry has known for its immunomodulatory 
properties, can enhance the immune system through various 
mechanisms (14, 15). These findings suggest that high-dose wild 
cherry effectively reduces CRE levels in hyperuricemic mice, 
highlighting potential of black chokeberry used as a natural kidney-
protective agent.

3.3 Serum uric acid and xanthine oxidase 
activity

Uricase is an enzyme in mammals that converts uric acid to 
allantoin. In animal studies, oxonic acid, a commonly used uricase 
inhibitor, induces hyperuricemia by raising serum uric acid levels. 
It is cost-effective, fast-acting, and widely used in preliminary 
research to evaluate the uric acid-lowering effects of new 
treatments for hyperuricemia (16, 17). Clinically, hyperuricemia is 
treated with drugs that either promote uric acid excretion (such as 
probenecid, benzbromarone, and sulfinpyrazone) or inhibit uric 
acid production (such as allopurinol and febuxostat). However, 
these medications are associated with side effects, including renal 
toxicity, liver damage, and an increased risk of cardiovascular 
disease (18, 19). This has led to growing interest in natural 
products rich in phytochemicals as alternative treatments for 
hyperuricemia, offering potential uric acid-lowering effects with 
fewer side effects.

Figure 1A illustrates the effects of black chokeberry on serum uric 
acid level in hyperuricemic mice. One week after OA injection, the 
serum uric acid level in the OA-induced mice was rose to 5.40 mg/dL 
compared to the control group (3.35 mg/dL). In contrast, the 
OA-induced mice treated with allopurinol showed a reduction to 

2.66 mg/dL, below the level of the control group. In the low-, 
medium-, and high-dosage groups, serum uric acid level was 
decreased in a dose-dependent manner, reaching 4.98, 3.61, and 
2.87 mg/dL, respectively. The high-dosage group demonstrated the 
most pronounced effect, with results comparable to the 
allopurinol group.

Patients using allopurinol for hyperuricemia are at an increased 
risk of requiring dialysis (10). This study showed the effects of black 
chokeberry treating hyperuricemia in mice are comparable to those 
of the synthetic drug allopurinol. The results suggested that black 
chokeberry has notable uric acid-lowering efficacy, likely due to its 
phenolic acid components (19, 20), making it a promising candidate 
for development into health products targeting uric acid-
related conditions.

Xanthine oxidase is the primary enzyme for purine metabolism 
in the liver (21, 22). It oxidizes hypoxanthine to xanthine and then 
xanthine to uric acid, generating superoxide anions (O₂−) and 
peroxides, which increase cellular oxidative stress. Excess uric acid in 
the body can lead to hyperuricemia and gout, caused by the 
crystallization of uric acid in joints and surrounding tissues (23). 
Increased intake of high-purine foods can lead to overactivity of 
xanthine oxidase, raising the prevalence of hyperuricemia. Allopurinol 
and febuxostat are two xanthine oxidase inhibitors but can have 
significant side effects (24).

Developing natural compounds as xanthine oxidase inhibitors 
is essential. Figure 1B showed the effects of black chokeberry on 
xanthine oxidase activity in the livers of hyperuricemic mice. No 
significant differences were observed in xanthine oxidase activity 
among the low-, medium-, and high-dosage groups compared to 
the control group. However, both the high-dosage and allopurinol 
treatment showed significant reductions compared to the 
OA-induced group. These findings suggest that high-dosage 
sample effectively reduces xanthine oxidase activity, with similar 
efficacy to allopurinol, thereby lowering uric acid level.

3.4 GSH and MDA levels in hyperuricemic 
mice

Glutathione (GSH) is present in most mammals, synthesized from 
glutamate and cysteine, and plays a crucial role as a key antioxidant. 
It helps generate iron–sulfur proteins and neutralizes reactive oxygen 
species (ROS), controlling redox states (25). High concentrations of 
GSH protect the liver from oxidative stress (26). Research by Zhang 
et al. (27) shows that CCl₄-induced liver damage depletes GSH due to 
its conversion to oxidized glutathione during free radical scavenging. 

TABLE 2 Effect of black chokeberry on blood urea nitrogen and creatinine levels in hyperuricemic mice.

Groups BUN (mmol/L) CRE (μmol/L)

Blank 4.54 ± 1.14c 9.01 ± 0.98d

OA 13.51 ± 3.57a 38.87 ± 1.69a

OA + allopurinol 6.81 ± 1.63bc 11.83 ± 2.93cd

OA + low dosage 10.21 ± 2.26ab 23.66 ± 4.78b

OA + medium dosage 9.56 ± 1.79ab 15.21 ± 1.69c

OA + high dosage 4.86 ± 2.35c 9.58 ± 0.98d

Each value is expressed as mean ± S.D. (n = 6). Value in row with the different superscripts are significantly different (p < 0.05).
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Notably, anthocyanins in wild cherries may help maintain liver 
GSH levels.

Table  3 showed the effects of black chokeberry on GSH 
content in the livers of hyperuricemic mice. The GSH levels in 
the control, OA induction, allopurinoll, low-dosage, medium-
dosage, and high-dosage treated-groups were 2.82, 1.90, 3.18, 
3.29, 3.47, and 3.88 μmol/mg protein, respectively. Black 
chokeberry treatment resulted in an upward trend in GSH 
content. These results suggested that high doses of black 
chokeberry may boost GSH levels, helping to prevent or mitigate 
liver damage caused by oxidative stress, thereby reducing hepatic 
oxidative stress injury.

Malondialdehyde (MDA) is widely used as an indicator of lipid 
peroxidation and reflects oxidative stress in cells, particularly from 
reactive oxygen species (ROS) (28). MDA can disrupt lipid membrane 
structures, leading to severe cellular damage (29). A study indicated 
that flavonoids in black chokeberry can reduce CCl₄-induced lipid 
peroxidation in the liver (30). Table 3 presents the protection of black 
chokeberry on MDA levels in the livers of OA-induced hyperuricemic 
mice. The MDA concentrations for the control, OA induction, 
allopurinol, low-dosage, medium-dosage, and high-dosage groups 
being 1.09, 1.31, 1.13, 1.14, 1.09, and 1.01 μmol/mg protein, 
respectively. Notably, there was a significant difference between the 
high-dose and positive control groups. Elseweidy et al. (31) showed 

FIGURE 1

Effect of black chokeberry on serum (A) uric acid levels and (B) liver xanthine oxidase activity in hyperuricemicmice. Each value is expressed as mean ± 
S.D. (n = 6). Value in row with the different superscripts are significantly different (p < 0.05).
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that allopurinol treatment could modulate liver lipid metabolism and 
reduce MDA levels in fructose-induced non-alcoholic fatty liver 
models. These findings suggest that high-dosage black chokeberry can 
significantly lower liver MDA levels, thereby mitigating oxidative 
stress-related damage.

3.5 Adenosine deaminase activity in the 
OA-induced hyperuricemic mice

Adenosine deaminase (ADA) is a hydrolytic enzyme involved in 
purine metabolism, converting adenosine and 2′-deoxyadenosine into 
inosine and 2′-deoxyinosine, respectively (32). ADA is found in 
various organisms, including plants, bacteria, and animals (33). 
Inhibition of ADA can modulate inflammation by increasing 
adenosine levels in damaged tissues, thereby reducing inflammatory 
responses. Figure  2 illustrated the effects of wild cherry on ADA 
activity in the livers of hyperuricemic mice. The ADA activities for the 
control, OA induction, allopurinol, low-dosge, medium-dosage, and 

high-dosage groups were 6.99, 11.33, 3.58, 7.50, 5.47, and 3.89 μmol/
mg protein, respectively. Notably, the high-dosage group showed 
lower ADA activity than the control group. Due to ADA activity 
increases with rising uric acid level; therefore, administering high-
dosage of black chokeberry can lower uric acid levels and inhibit ADA 
activity, subsequently reducing inflammation.

Gout is an inflammatory disease caused by excessive uric acid levels 
in the blood, leading to the formation of insoluble monosodium urate 
(MSU) crystals. These crystals drive neutrophil activation and 
infiltration into joint tissues, resulting in severe pain in the affected 
areas. MSU crystals mediate oxidative stress through the nucleotide-
binding oligomerization domain-like receptor pyrin domain-containing 
3 (NLRP3) inflammasome, which subsequently triggers interleukin-1β 
production, exacerbating the inflammatory response (34–36).

Xanthine oxidase is a key enzyme in the purine metabolism 
pathway, and clinical and experimental studies have suggested that its 
activity may have pro-inflammatory effects (37). Currently, various 
anti-gout medications are available, including nonsteroidal anti-
inflammatory drugs (NSAIDs) such as allopurinol, which are 

FIGURE 2

Effect of black chokeberry on liver adenosine deaminase activity in hyperuricemic mice. Each value is expressed as mean ± S.D. (n = 6). Value in row 
with the different superscripts are significantly different (p < 0.05).

TABLE 3 The GSH and MDA contents in the liver of OA-induced hyperuricemic mice.

Groups GSH (umol/mg protein) MDA (umol/mg protein)

Blank 2.82 ± 0.34ab 1.12 ± 0.09bc

OA 1.9 ± 0.67c 1.29 ± 0.09a

OA + allopurinol 3.18 ± 1.16ab 1.19 ± 0.1b

OA + low dosage 3.29 ± 1.34ab 1.18 ± 0.11b

OA + medium dosage 3.47 ± 1.24b 1.13 ± 0.13bc

OA + high dosage 3.88 ± 1.32b 1.07 ± 0.11c

Each value is expressed as mean ± S.D. (n = 6). Value in row with the different superscripts are significantly different (p < 0.05).
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commonly used as first-line treatments for acute gout. However, their 
use is limited by adverse effects, including gastrointestinal toxicity, 
renal toxicity, and gastrointestinal bleeding. Therefore, the 
development of more effective anti-gout arthritis drugs remains of 
great significance (38, 39). In recent years, we have identified the 
bioactive compounds and antioxidants in black chokeberry (40). 
These findings suggest that black chokeberry has the potential for gout 
prevention and management.

4 Conclusion

Hyperuricemia is a pathological condition characterized by an 
abnormal increase in serum uric acid levels due to excessive uric acid 
production or reduced excretion. The main pathogenic mechanisms 
include xanthine oxidase overactivation and phosphoribosyl 
pyrophosphate synthetase (PRPP synthetase) hyperactivity. For 
xanthine oxidase, which promotes the conversion of xanthine to uric 
acid, leading to excessive uric acid production, but PRPP synthetase is 
able to enhance purine synthesis, subsequently increasing uric acid 
production. Uric acid is the final product of purine metabolism, derived 
from both endogenous (cellular metabolism) and exogenous (dietary) 
purine breakdown. A high-purine diet (e.g., red meat, organ meats, and 
seafood), excessive fructose intake, alcohol consumption, and obesity 
are closely associated with the development of hyperuricemia. In this 
study, our results demonstrate that black chokeberry can reduce 
xanthine oxidase activity and uric acid production. In the future, it may 
serve as a potential functional ingredient for gout prevention.
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