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Background: Obesity, particularly in high-risk groups for food addiction, 
adversely impacts the brain’s functional characteristics. However, its underlying 
neurobiological and molecular mechanisms remain elusive. The current study 
adopted a data-driven approach to investigate obesity-associated intrinsic 
functional architecture and neurotransmitter receptor patterns.

Methods: Resting-state fMRI data were acquired from 198 obese and 291 healthy 
weight individuals from the Human Connectome Project. Intrinsic connectivity 
contrast (ICC) and fractional amplitude of low-frequency fluctuations (fALFF) 
analyses were performed to identify the common altered brain regions and then 
seeds to whole brain functional connectivity (FC) analyses were conducted to 
determine obesity-related FC features. Additionally, the relationship between 
intrinsic functional characteristics and molecular imaging features was assessed 
to examine neurotransmitter-receptor distribution patterns underlying obesity.

Results: Obese individuals, compared to healthy weight individuals, showed 
aberrant ICC and fALFF in both the right dorsolateral prefrontal cortex (DLPFC) 
and left insula. For the FC results, the obese group displayed increased FC 
between the right DLPFC and precuneus, left insula and left inferior parietal 
lobule, right DLPFC as well as decreased FC between right DLPFC and left 
precentral, left postcentral gyrus, and bilateral paracentral lobule. Additionally, 
the fALFF alterations in insula/temploral pole and also the rDLPFC-PCL FC 
partially mediated the relationship between body mass index and the executive 
function. Furthermore, cross-modal correlation analyses indicated that ICC 
and fALFF alterations were related to noradrenaline transporter and dopamine 
receptor distributions, respectively.

Discussion: Together our findings suggested that obesity is associated with 
atypical neurotransmitter systems and dysfunctional architecture especially in 
the prefrontal cortex, insula, sensorimotor cortex, and default mode circuits. 
These may deepen our understanding the neurobiological basis of obesity and 
provide novel insights into neuroimaging-based treatment and intervention.
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1 Introduction

Obesity is escalating to pandemic proportions globally. 
According to the World Health Organization (WHO), 43% of 
adults were overweight and 16% were obese in 20221, highlighting 
obesity as a significant global public health issue (1). Obesity has 
negative associations with physical and mental health that include 
increased risk for hypertension, diabetes, anxiety disorders, and 
depression (2–4). Mounting evidence suggests that obesity often 
impairs cognitive functions, such as executive control and memory 
(5–7). Given such evidence, it is imperative to deepen our 
understanding of the neurobiological mechanisms 
underlying obesity.

Emerging research indicates that obesity is associated with 
deficits in inhibitory control and reward processing, which are 
reflected in functional disturbances in corresponding brain areas 
(8–10). For example, obese and overweight individuals exhibit 
hyper-responsivity in the reward areas and hypo-responsivity in 
areas associated with inhibitory control when exposed to high-
calorie food images, compared to healthy weight individuals (11). 
Furthermore, obesity is associated with dysfunction in the 
interoceptive system, implying that affected individuals have 
impaired perceptions of intersensory signals, such as hunger and 
satiety, which lead to increased food consumption (12–14). Despite 
these findings, further exploration is needed to elucidate the 
obesity-related variations in intrinsic functional connectivity when 
the brain is at rest.

In recent years, resting-state functional MRI (rs-fMRI) has 
emerged as a promising tool for assessing spontaneous neural 
activities and is widely accepted in both research and clinical 
settings (15, 16). Examples of related approaches include fractional 
amplitude of low-frequency fluctuation (fALFF) and intrinsic 
connectivity contrast (ICC) (17, 18). fALFF measures the 
magnitude of low-frequency oscillations at the regional level (18) 
and has been used to investigate neural underpinnings of obesity 
(19). For instance, recent research indicates that obese individuals 
exhibited elevated fALFF in the dorsolateral prefrontal cortex 
(DLPFC), insula, and precuneus (20), compared to healthy weight 
controls, suggesting aberrant spontaneous fluctuations in these 
regions during cognitive control and emotion processing. Other 
researchers (19, 21) have observed discordant patterns of 
spontaneous fluctuations between obese samples. Additionally, 
previous studies have identified contrasting patterns of intrinsic 
activity in the default mode network (DMN) between obese 
samples (22–24). These studies underscore considerable 
heterogeneity in the intrinsic brain functional organization in 
obese samples, which may be partially due to variations in regions 
of interest (ROIs) and relatively small sample sizes (10).

Of note, aberrations in regional spontaneous activity related to 
obesity do not provide insights about relationship of regional 
aberrations in spontaneous neural fluctuations with divergent 
connectivity. Consequently, alongside fALFF, the well-established 
exploratory analytical method of “intrinsic connectivity contrast” 

1 https://www.who.int/zh/news-room/fact-sheets/detail/

obesity-and-overweight

(ICC) analysis is recommended to address this gap. ICC quantifies 
the strength of global connectivity patterns between a voxel and 
the rest of the brain, based on network theory (17). This index 
requires no prior knowledge or assumptions (25) and has been 
extensively used to investigate functional brain changes in 
psychiatric and neurocognitive disorders (26–28). Prior research 
has demonstrated that individuals with nicotine dependence 
exhibit ICC alterations in the medial frontal cortex (mPFC), 
DLPFC, and supramarginal gyrus (29). Additionally, ICC in the 
nucleus accumbens and caudate has been found to accurately 
discriminate between cannabis-dependent individuals and controls 
(30). However, ICC has not yet been employed to investigate the 
intrinsic functional organization in obesity. Furthermore, recent 
evidence suggests that employing multilevel indices from different 
perspectives may enhance the ability to comprehensively uncover 
intrinsic brain dysfunction, thereby facilitating a more sensitive 
identification of regional abnormalities (31, 32). As such, in this 
study, we  combined ICC and fALFF to explore alterations in 
intrinsic brain functions associated with obesity, offering a more 
comprehensive analysis approach.

In addition, obesity is closely linked to disruptions in 
neurotransmitter systems, such as dopaminergic system and 
noradrenaline system. Dopamine plays a significant role in 
modulating appetitive behaviors through brain regions involved in 
reward processing (33–35). Similarly, the noradrenaline system, 
widely distributed throughout the central nervous system, plays a 
crucial role in energy balance (36, 37). A positron emission 
tomography (PET) imaging study showed that noradrenaline 
transporter (NAT) availability in the DLPFC and hypothalamus 
strongly correlates with changes in body mass index (BMI) 
following gastric bypass surgery in morbidly obese individuals 
(38). Notably, brain function, as represented by resting-state 
functional connectivity (RSFC), may be  coupled with 
neurotransmitter systems (39, 40). For instance, GABA levels in 
the primary motor cortex were negatively associated with the 
connectivity strength of the resting motor network (40). 
Nonetheless, there is a need to elucidate the nature of the 
association between neurotransmitter systems and spontaneous 
neural activity in obese individuals.

To address these gaps in the literature, we employed a data-
driven, multi-algorithm approach that combines ICC and fALFF 
to explore intrinsic functional architecture alterations associated 
with obesity, based on a large sample from the Human 
Connectome Project (HCP). Participants were categorized into the 
obesity (OB) and healthy weight (HW) groups based on 
BMI. Brain regions exhibiting concurrent ICC and fALFF 
alterations were selected as ROIs to investigate FC patterns 
associated with obesity. To examine relationships between 
spontaneous brain activity, intrinsic functional characteristics, 
and neurotransmitters, we  assessed obesity-related functional 
abnormalities linked to the dopaminergic system, serotonin 
system, and NAT using a novel cross-modal data analysis 
approach. Based on previous studies (8), we hypothesized that 
obese individuals, compared with healthy weight individuals, 
would exhibit intrinsic functional alterations in brain areas related 
to executive control, motivational reward, and self-reference. 
These regional alterations were expected to correlate with 
dopaminergic and noradrenaline system distribution.
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2 Methods

2.1 Participants

We selected 489 participants (290 women) from the publicly 
available HCP database.2 The final sample was determined by the 
following criteria: (a) exclusion of subjects lacking T1 or 3T_RS-fMRI 
scans; (b) screened according to body weight criteria, specifically 
individuals with a BMI ranging from 20 to 24 and a BMI greater than 
30; (c) exclusion of subjects with missing or corrupted REST1_LR 
data; (d) removal of subjects with excessive head movement 
(exceeding 2.5 mm or 2.5 degrees in max head motion). The final 
cohort of 489 participants was divided into two groups: an obesity 
group (BMI > 30) and a healthy weight group (BMI of 20 to 24). For 
additional details of HCP inclusion and exclusion criteria, please see 
Van Essen et al. (41). All participants provided informed consent, and 
the entire protocol received approval from the Institutional Review 
Board at Washington University School of Medicine. Group 
differences in age, BMI, and handedness were assessed for significance 
using independent-sample T-tests. Differences in the distribution of 
gender and ethnicity between groups were examined using 
chi-squared tests. All analyses were done using SPSS software with a 
threshold of p < 0.05.

2.2 Neuroimaging

2.2.1 MRI acquisition
The fMRI data were scanned at Washington University in St. Louis 

using a Siemens 3.0 T “Connectome Skyra” with a standard 32-channel 
receiver head coil. T1-weight structural images were acquired with the 
following parameters: Repetition Time (TR) = 2,400 ms, Echo Time 
(TE) = 2.14 ms, flip angle = 8°, Field-Of-View (FOV) = 224*224 mm, 
voxel size = 0.7 mm isotropic. Resting fMRI images were acquired 
using a gradient-echo-planar sequence with multiband factor 8, 
TR = 720 ms, TE = 33.1 ms, flip angle = 52°, FOV = 208*180 mm, 
Matrix = 104*90, voxel size = 2 mm isotropic.

The rs-fMRI data used in the current study was from the HCP 
database (that is “the REST1_LR run”), which lasted 15 min and 
included 1,200 frames. During the rsfMRI, participants were 
instructed to keep their eyes open and fixate on a projected bright 
crosshair on a dark background.

2.2.2 Image data preprocessing
All data were preprocessed using the minimal preprocessing 

pipeline and the details on data preprocessing can be found in (42). 
Structured artifacts within the time series were removed by 
independent component analysis (ICA) and FIX (FMRIB’s ICA-based 
X-noisifier) (43–45). Additional preprocessing was conducted using 
the CONN connectivity toolbox (v. 21a; 46). The following 
preprocessing steps were applied to the data: (a) spatial smoothing 
with a Gaussian kernel of full width at half maximum (FWHM) of 
6 mm; (b) bandpass filtering between 0.01—0.1 Hz; (c) denoising via 
the CompCor algorithm (46) by regressing out the filtered white 

2 https://www.humanconnectome.org/study/hcp-young-adult

matter, cerebrospinal fluid (CSF), effect of the rest, and head-motion 
(12 variables from “Movement_Regressors_dt.txt” and their 
quadratic); (d) detrending to remove linear trends. Given the ongoing 
debate regarding the use of GSR in resting-state fMRI preprocessing 
(47)—particularly it may abolish or reverse important rsFC results 
(48)—we did not regress out the global signal in this study.

2.2.3 RS-fMRI data processing
The analysis flow is shown in Figure 1. All calculations were 

implemented using CONN software (49), with gender and age 
regressed as covariates.

2.2.3.1 Fractional amplitude of low-frequency 
fluctuation

The calculation of fALFF aligns with the methods proposed 
by Zou et  al. (18). The power spectrum was obtained by 
transforming the time series data for each voxel into the frequency 
domain using a fast Fourier transform algorithm. Subsequently, 
the square root of the power spectrum was calculated and the 
amplitude of low-frequency fluctuation (ALFF) was determined 
by averaging the square roots across the 0.01–0.1 Hz range for 
each voxel (50). Additionally, fALFF was calculated by computing 
the ratio of the power spectrum within the low-frequency range 
(0.01–0.1 Hz) to that of the entire frequency spectrum. For 
analyses, fALFF values were z-transformed.

2.2.3.2 Intrinsic connectivity contrast
Voxel-wise global connectivity was assessed through ICC, a 

completely data-driven metric that does not require a preset 
threshold. ICC represents an estimate of the association strength 
between the time series of a specific voxel and all other voxels in 
the brain, with higher values indicating stronger connectivity. 
Specifically, we calculated the root mean square (RMS) of each 
voxel’s connections with other voxels throughout the brain based 
on blood oxygenation level-dependent (BOLD) time series (17). 
ICC values were then z-transformed for analysis.

2.2.3.3 Seed-based functional connectivity (RSFC)
To further elucidate specific networks underlying observed group 

differences in global connectivity, a subsequent seed-to-voxel FC 
analysis was conducted. Seed regions were determined as spheres with 
a radius of 6 mm, according to the overlay brain regions of significant 
group difference from ICC and fALFF (17). Correlation coefficients 
were computed between the mean BOLD signal time series of each 
seed and all other brain voxels, yielding individual voxel-wise FC maps 
via a weighted general linear model (weighted-GLM). To normalize FC 
maps, correlation coefficients (r values) were transformed into Z-scores 
using Fisher’s r-to-z transformation.

2.2.3.4 Threshold
For fALFF and ICC, obesity versus control group differences 

were assessed using an independent-sample T test with a 
conservative threshold of voxel-level p < 0.001 and cluster-level 
PFWE < 0.05, corrected using family-wise error (FWE). To better 
explore obesity—related differences in intrinsic functional 
architecture, we applied a relatively lenient false discovery rate 
(FDR) correction for FC (voxel-level p < 0.001 and cluster-level 
PFDR < 0.05).
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https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.humanconnectome.org/study/hcp-young-adult


Wang et al. 10.3389/fnut.2025.1559325

Frontiers in Nutrition 04 frontiersin.org

2.3 Cross-modality correlation analysis

To investigate the relationship between receptor systems activity 
and spontaneous brain activity alterations, we  utilized voxel-wise 
non-threshold T statistic maps of ICC and fALFF to assess Spearman 
correlations with PET-and SPECT-derived maps in JuSpace3 (51). 
Significant results were defined as p < 0.05 (adjusted for spatial 
correlation; N = 10,000 permutations; FDR corrected). In this study, 
we included 10 maps from JuSpace that represent different types of 

3 https://github.com/juryxy/JuSpace

neurotransmitters for the analysis. Detailed PET and SPECT map 
selections are available in the Supplementary materials.

2.4 Mediation analysis

To further explore the association between altered brain 
functionality and behavioral performance in obese individuals, 
we utilized performance scores from executive function tasks such as 
the Dimensional Change Card Sort Task (DCCS, “CardSort_AgeAdj”) 
and Flanker Test (“Flanker_AgeAdj”), as well as impulsivity measures 
from the Delay Discounting Task (DDT, mean of the area under curve 

FIGURE 1

The schematic description presenting a step-by-step process of statistical analysis. (A) Participant selection; (B) Image data preprocessing; (C) ICC and 
fALFF analysis; (D) Seed-based RSFC analysis; (E) Mediation analysis; (F) Cross-modality correlation analysis. ICC, intrinsic connectivity contrast; fALFF, 
fractional amplitude of low frequency fluctuation; RSFC, resting-state functional connectivity; BMI, body mass index; AUC, area under curve; DDT, 
Delay Discounting Task.
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(AUC) variables for the $200 and the $40,000 delayed reward 
conditions) (52), sourced from the HCP database. With the DDT, a 
smaller AUC is indicative of greater impulsivity.

To elucidate the potential mediating role of the brain’s 
functional alterations on the relationship between BMI and 
behavioral data, the mediation analysis was performed with the 
PROCESS macro in SPSS 26.0.4 Similar to the prior studies (53, 
54), we used the bootstrapping method (5,000 steps) to assess the 
significance of the mediation effect. Mediation effects were 
deemed statistically significant when the bootstrapped 95% 
confidence intervals (CI) did not encompass zero.

We conducted a power analysis using the online tool Monte 
Carlo Power Analysis for Indirect Effects of Mediation Models [(55), 
https://schoemanna.shinyapps.io/mc_power_med/] to ensure the 
adequacy of our sample size. The results indicated a power of 1 for a 
sample size of 198, assuming path correlations of 0.65 (a and b) and 
0.60 (c’), with standard deviations of 1 for all paths.

3 Results

3.1 Demographic characteristics

The detailed information of the final sample is shown in 
Supplementary Table S1. There were no group differences in age, 
sex, handedness or ethnicity between the obese and healthy weight 
groups. There were significant differences in scores of DCCS and 
AUC of DDT between the two groups. Mediating effects of FC and 
fALFF on associations between BMI and cognitive task performance 
based on these measures were assessed in subsequent analyses.

3.2 Group differences in the intrinsic 
connectivity contrast

Compared to the healthy weight group, the obese group 
exhibited significantly increased ICC in the left insula, and right 
DLPFC (Table  1; Figure  2A). Furthermore, brain regions with 
decreased ICC in the obese included the right inferior occipital 
gyrus (IOG) and right supramarginal gyrus compared to the 
healthy weight group (Table 1; Figure 2A).

3.3 Group differences in fractional 
amplitude of low-frequency fluctuation

The obese group showed significantly increased fALFF in the 
right DLPFC, left mPFC, right inferior parietal lobule (IPL), left 
temporal pole/insula, and brain stem compared to the healthy 
weight group (Table  1; Figure  2B). Furthermore, fALFF was 
significantly lower in the bilateral cerebellum crus (I and II), 
bilateral IOG, right middle occipital gyrus (MOG), and right 
temporal pole of the obese group versus healthy weight group 
(Table 1; Figure 2B).

4 http://processmacro.org/index.html

3.4 Seed-based RSFC

Using the right DLPFC, right IOG, and left insula as seeds, 
we tested differences in seed-based FC between the two groups. As for 
the right DLPFC seed, obese group versus healthy weight group had 
a stronger FC in the left precuneus (k = 194) and a lower FC in the left 
postcentral gyrus extending to the precentral gyrus (k = 714), as well 
as the bilateral paracentral lobule (PCL, k = 546) (Table 2; Figure 3). 
The analysis based on the left insula seed showed significantly 
enhanced FC in the left IPL extending to the angular gyrus (AG, 
k = 713), right DLPFC (k = 487), and right lingual gyrus (k = 100) for 
the obese group versus healthy weight group (Table  2; Figure  3). 
Finally, right IOG seed exhibited comparatively decreased connectivity 
with the occipital cortex (i.e., bilateral IOG and MOG, kR = 2,553, 
kL = 1943) in the obese group (Table 2).

3.5 Relationships between neuronal and 
neurotransmitter systems

ICC changes between the two groups were significantly correlated 
with NAT (exact p = 0.004, PFDR = 0.039) (Figure  4). In addition, 
changes in fALFF were spatially correlated with dopamine receptor 
(D1) (exact p < 0.001, PFDR = 0.008) (Figure 4).

3.6 Mediation analysis results

For obese individuals, rDLPFC-PCL FC partially mediated the 
relationship between BMI and the DCCS scores. Additionally, fALFF 
values for the left insula, bilateral cerebellum crus 2, and right temporal 
pole each partially mediated the relationship between BMI and the area 
under curve (AUC) results for the DDT. For healthy weight individuals, 
no significant results were found in Mediation analyses. Detailed 
mediation analysis results are presented in Supplementary materials.

4 Discussion

In the current study, we  examined the alterations of intrinsic 
functional architecture in obese group versus non-obese groups using 
a data-driven multiple-algorithm analysis combining ICC and fALFF 
with seed-based RSFC. Obese individuals, compared to healthy weight 
individuals, showed significant differences in the right DLPFC and left 
insula both in the intrinsic spontaneous activity and global 
connectivity index (i.e., fALFF and ICC). Seed-based FC analysis 
showed enhanced connectivity between the right DLPFC and the left 
precuneus, accompanied by reduced connectivity between the DLPFC 
and the sensorimotor cortex in the obese group versus healthy weight 
group. Additionally, using a seed placed in the left insula, the obese 
group exhibited significantly higher FC with the left IPL extending to 
the AG, right DLPFC, and lingual gyrus. Crucially, changes in ICC 
and fALFF correlated, respectively, with NAT and dopaminergic (D1) 
system. Mediation analyses revealed that fALFF in the left insula and 
the DLPFC-PCL FC partially mediated relations between BMI and 
impulsivity as well as cognitive flexibility. Taken together, these 
findings provide new neuroimaging evidence for possible 
neurophysiological mechanisms underlying obesity.
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4.1 Alterations of the prefrontal control 
cortex and insula

In the current study, obese individuals exhibited increased 
spontaneous fluctuations in the right DLPFC. The DLPFC, in 
conjunction with the executive control network (ECN), has been 
implicated in the top-down control of appetitive processes and self-
regulation of overeating (56, 57). Supporting this finding, recent 
studies have also demonstrated elevated spontaneous fluctuations in 
the DLPFC among overweight individuals (20, 118). Concurrently, 
structural imaging studies have observed an association between 
obesity and smaller DLPFC volumes (58) that are also negatively 
correlated with disinhibited eating (59). Dovetailing with 
spontaneous fluctuation data, obese individuals also had elevated 
global connectivity (i.e., ICC) in the right DLPFC which is posited to 
play a pivotal area in regulating obesogenic eating behaviors (60). 
Specifically, recent work has demonstrated that the suppression of 
food cravings in response to palatable foods activates the DLPFC 

(61), with the degree of activation correlating with subsequent weight 
loss success in a dietary interventions program (62–64). In addition, 
the neuromodulation and neurofeedback training targeting the 
DLPFC can reduce food craving and promote top-down regulation 
of appetite in obese individuals (65, 66).

In the subsequent FC analysis, the obese group showed 
comparatively lower FC between the right DLPFC and the 
sensorimotor network (i.e., left postcentral gyrus, left precentral gyrus, 
and bilateral PCL), which is regarded as a central hub and “engine of 
desire” connecting the body and brain in the neural vulnerability 
model of overeating (67). Importantly, we also found right DLPFC-PCL 
FC mediated a negative relationship between BMI and cognitive 
flexibility performance. Although obese participants may have 
attempted weight control, they also hold positive implicit attitudes and 
automatic reward tendencies toward palatable foods (68, 69). As such, 
these individuals may experience stronger conflicts between weight 
control goals and hedonic eating impulses than non-obese peers do 
(70). In line with these perspectives, obese people may expend more 

TABLE 1 Significant group differences in ICC and fALFF between obese individuals and healthy weight individuals.

Index Brain region Cluster size (k) Peak intensity MNI coordinate

X Y Z

ICC OB > HW

L. INS 95 5.159 −34 20 4

R. ITG 82 4.013 64 −30 −22

R. DLPFC 59 4.002 30 0 62

HW > OB

R. IOG 66 −4.586 34 −76 −2

R. SMG 73 −4.326 50 −34 24

fALFF OB > HW

Brain-Stem 76 5.228 −6 −12 −42

L. TPOsup 90 4.928 −48 12 −10

L. INS 4.32 −48 18 2

R. DLPFC 231 4.821 48 6 52

R. FO 104 4.755 56 14 4

L. mPFC 126 4.638 0 52 −10

L. mPFC 131 4.465 0 54 40

R. IPL 108 4.443 58 −40 46

HW > OB

R. CERCRU1 62 −4.958 52 −72 −36

L. CERCRU1 66 −4.406 −52 −68 −26

R. CERCRU2 108 −4.501 32 −86 −38

L. CERCRU2 245 −4.478 −38 −74 −44

L. MOG 365 −4.627 −36 −92 10

R. IOG 122 −4.597 38 −70 −8

L. IOG 61 −4.242 −18 −102 −18

R. TPOmid 55 −4.399 58 8 −32

The significance threshold was set at voxel-level p < 0.001 and cluster-level pFWE < 0.05 for both ICC and fALFF. ICC, intrinsic connectivity contrast; fALFF, fractional amplitude of low 
frequency fluctuation; MNI, Montreal Neurological Institute; FWE, Family-wise error; DLPFC, dorsolateral prefrontal cortex; INS, insula; ITG, Inferior temporal gyrus; IOG, Inferior occipital 
gyrus; MOG, middle occipital gyrus; SMG, SupraMarginal gyrus; TPOsup, Temporal pole: superior temporal gyrus; TPOmid, Temporal pole: middle temporal gyrus; FO, Frontal operculum; 
mPFC, medial prefrontal cortex; IPL, Inferior parietal gyrus; CERCRU1, Crus I of cerebellar hemisphere; CERCRU2, Crus II of cerebellar hemisphere; OB, obese individuals; HW, healthy 
weight individuals; L, left; R, right.
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cognitive effort and resources to suppress their impulses as reflected 
by the increment of spontaneous activity in DLPFC (12).

Obese participants also showed aberrant alterations in the left 
insula both in spontaneous fluctuations and global connectivity. The 
insula is involved in the integrative processing of food craving, 

gustatory perception, and hedonic consumption (71–73) and has been 
identified as a high expression region of the obesity-susceptibility 
genes (74). In addition, as an important node of the salience network 
(SN), the insula also plays a crucial part in interoceptive awareness, 
conscious urges to food-seeking and the homeostasis regulation of 

FIGURE 2

ICC and fALFF maps of statistically significant differences by two-sample t-test between obese individuals and healthy weight individuals (PFWE < 0.05 at 
the cluster-level with a cluster-defining voxel-wise statistical threshold of p < 0.001 uncorrected). (A) ICC; (B) fALFF. ICC, intrinsic connectivity contrast; 
fALFF, fractional amplitude of low frequency fluctuation. Color bar indicates the T score.

TABLE 2 Significant group differences in seed-based functional connectivity between obese individuals and healthy weight individuals.

Seed Brain region Cluster size (k) Peak intensity MNI coordinate

X Y Z

R. DLPFC seed OB > HW

L. Precuneus 184 4.842 −6 −76 44

HW > OB

L. Postcentral gyrus 714 −4.796 −52 −16 48

L. Precentral gyrus

L. Paracentral lobule 546 −4.897 0 −18 60

R. Paracentral lobule

L. INS seed OB > HW

L. Inferior parietal gyrus 713 4.860 −38 −52 56

L. Angular gyrus

R. DLPFC 487 4.385 42 30 48

R. Lingual gyrus 100 3.695 26 −92 −20

R. IOG seed HW > OB

R. Middle occipital gyrus 2,553 −6.255 38 −72 0

L. Middle occipital gyrus 1943 −5.251 −38 −82 0

The significance threshold was set at voxel-level p < 0.001 and cluster-level pFDR < 0.05 for FC. FC, functional connectivity; MNI, Montreal Neurological Institute; FDR, false discovery rate; 
DLPFC, dorsolateral prefrontal cortex; INS, insula; IOG, inferior occipital gyrus; OB, obese individuals; HW, healthy weight individuals; L, left; R, right.
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hunger and satiety (75, 76). Consistent with our results, obese and 
overweight people had increased low-frequency fluctuation in the 
insula (20, 77). These findings also converge with evidence that obese 
individuals display higher activation of the insula in the reward 
processing (119). Prior research has also linked higher BMI with an 
augmented activation in the insula and frontal operculum during 
attention reallocation to appetizing food images (73). Moreover, under 

a pleasure mindset, obese individuals have been found to select larger 
food portions than the healthy weight individuals do, as reflected by 
heightened activation of the frontal operculum (120). Consequently, 
these findings suggest obese individuals more readily shift attention 
toward appetizing food cues and show augmented hedonic enjoyment, 
characterized by heightened spontaneous fluctuation and global 
connectivity in the insula and frontal operculum.

FIGURE 3

Seed-based FC maps of statistically significant differences by two-sample t-test between obese individuals and healthy weight individuals (PFDR < 0.05 
at the cluster-level). (A) RSFC based on the right DLPFC; (B) RSFC based on the left insula. DLPFC, dorsolateral prefrontal cortex; INS, insula; PCL, 
paracentral lobule; PoCG, postcentral gyrus; PCUN, precuneus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; LING, lingual gyrus; R, right; L, 
left; RSFC, resting-state functional connectivity; OB, obeses individuals; HW, healthy weight individuals.

FIGURE 4

Bar plots of cross-modal correlations between receptor systems and ICC/fALFF components. (A) Correlations between ICC and receptor systems; 
(B) Correlations between fALFF and receptor systems. p < 0.05, false discovery rate corrected.
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4.2 Aberrational spontaneous activity of 
brain regions in DMN

We also found that obese individuals have a higher fALFF value in 
the left mPFC and right IPL, known as important hubs of the DMN, 
implicated in self-reflection, decision-making, information integration, 
and episodic memory retrieval (78–80). Atypical activation of mPFC 
implicated in food anticipation, prediction error, and intertemporal 
choice has been observed in obesity and binge-eating disorder (81–84). 
A recent meta-analysis also reported consistently lower gray matter 
volume in the mPFC in obese samples (85). In addition, IPL engagement 
in priority coding, attentional shifting, and body-image representation 
(86) has been found to play a role in the alterations of spontaneous 
fluctuation and functional interaction of obese and binge eating 
disorder samples (87, 88). Moreover, obese individuals show greater 
default mode circuit activity under food cue-reactivity and resting state 
conditions (24, 89, 90). On the other hand, previous studies have 
demonstrated that weight loss interventions are associated with a 
reduction in intrinsic activity and local function synchrony in DMN 
(91, 92) that are accompanied by greater fat mass loss (92). Our findings 
of a stronger functional connection between the DMN and SN in obese 
individuals align with those of Lee et al. (93) who found enhanced RSFC 
between the DMN and SN is associated with body image distortions in 
individuals with eating disorders. Together, aberrations of intrinsic 
functional patterns in default mode circuits observed in obese 
individuals may reflect deficits in forming a healthy and comprehensive 
self-representation and ability in making sensible decisions, which 
would contribute to the loss of control during eating and abandonment 
of longer-term goals related to weight control in daily life (94, 95).

4.3 Aberrational FC based on the DLPFC 
and insula

Notably, FC analyses showed enhanced FC between (1) right 
DLPFC and left precuneus; (2) left insula and DMN (IPL/AG) in 
obese individuals; Moreover, we found enhanced FC between SN 
(insula) and ECN (DLPFC) in the obese group. The triple network 
model proposes that disrupted organization and functioning of the 
ECN, SN and DMN might be  prominent features of various 
psychiatric and addictive disorders (96, 97). Deficits in functional 
interactions between these networks have been demonstrated in 
addiction and disordered eating based on resting-state imaging 
(97–99). Our results complement those of Boehm et al. (100) who 
found increased functional coupling between the SN and DMN 
among individuals with eating disorders. Functional interactions 
between the SN and DMN are also associated with self-control, 
which might modulate overeating and hedonic consumption of 
palatable food (101). In addition, a recent electroencephalographic 
(EEG) study observed increased delta connectivity between SN and 
ECN in problematic cannabis users that was accompanied by 
distributed patterns of excessive cannabis usage (102). According to 
the triple-network model, maladaptive patterns of dysfunctional 
connectivity in the ECN, SN, and DMN may manifest as disturbances 
in the capacity to integrate information from internally focused 
processing and externally focused processing, resulting in out of 
control eating and hedonic overconsumption among 
obese individuals.

4.4 Altered spontaneous activity of the 
cerebellum

There is increasing evidence that the cerebellum is involved in 
various higher-order cognitive processes (103), including impulse 
control (104), reward anticipation, and decision-making. The 
dysregulation of these functions is closely associated with addictive 
behaviors. Recent rsfMRI studies have demonstrated decreased 
intrinsic activity (e.g., ALFF and ReHo) in the cerebellum among obese 
individuals and smokers (105, 106), and stronger cravings (107). Zhu 
et al. (108) has proposed that activated cerebellar regions play a key role 
in integrating sensory, visceral, and affective signals related to appetite, 
taste, and olfaction during feeding or feeding control. This aligns with 
our findings that obese individuals exhibit decreased fALFF in the 
bilateral cerebellum compared to non-obese controls, suggesting a 
potential disruption in these processes in obesity. Impulsivity, as a risk 
factor for obesity, is associated with disinhibited eating (109) and 
atypical BOLD activation of the cerebellum for food odors among 
impulsive children compared to controls (110). A recent meta-analysis 
has also highlighted the cerebellum’s role in appetite control and 
behavioral regulation, with structural abnormalities observed in 
obesity (111). In line with these findings, we identified cerebellum 
crus2 fALFF as a partial mediator of the relationship between BMI and 
impulsivity. Overall, our results highlighting possible cerebellum 
involvement in impulsive control deficits and reward processing among 
obese individuals provide foundations for further related investigations.

4.5 Association between the brain and 
neurotransmitter systems

The disturbance of intrinsic functional architecture in obesity was 
also associated with noradrenaline and dopaminergic (D1) 
neurotransmitter systems activity. These pathways play key roles in the 
onset of impulsivity and overeating for obesity and metabolic syndrome 
(112). In an animal study, D1 receptors gene expression were associated 
with weight gain in overeating and proneness-to-obesity (113). In 
addition, prior research has shown that noradrenaline availability is 
related to subjective feelings of hunger in humans (38) while baseline 
noradrenaline levels predict the efficacy of subsequent weight loss (114). 
In obesity treatment, noradrenaline reuptake inhibitors have emerged as 
targets for anti-obesity interventions (115). Notably, our findings suggest 
that the distinct associations of ICC and fALFF with neurotransmitter 
systems may stem from their representation of different aspects of 
intrinsic brain function. In line with previous findings, the current study 
suggested that obesity-related dysfunctions may be  associated with 
abnormalities in the dopaminergic and noradrenaline systems (116, 117).

4.6 Strengths and limitations of the 
research

The main strengths of this study included its relatively large 
sample size compared to numerous related studies, a 
methodological approach that facilitated the assessment of not 
only regional aberrations in spontaneous neural fluctuations but 
also FC and neurotransmitter involvement in obesity, and 
evaluation of neural influences that may partially explain why 
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higher BMI levels are associated with behavioral performance 
deficits related to impulsivity as well as cognitive flexibility. 
Strengths aside, findings should be  interpreted in light of the 
following limitations: First, because this study was cross-sectional, 
future research is needed to track dynamic changes that correspond 
with BMI alteration. Second, because sample was relatively young 
(ages 22–36), extensions are needed in samples with a broader age 
range as well as those within particular developmental stages (e.g., 
adolescents, older adults). Third, associations between spontaneous 
brain activity alterations and neurotransmitter receptor activity 
should be regarded as indirect evidence. Future research should 
employ simultaneous PET and MRI probes to obtain more direct 
evidence. Finally, because we focused on resting-state fMRI. Future 
research should also consider structural bases of functional 
abnormalities in obese individuals.

5 Conclusion

In summary, through ICC, fALFF, and FC analyses, the current 
study investigated links between obesity and intrinsic functional 
alterations using resting-state fMRI. Compared to non-obese 
peers, obese individuals showed dysfunctional spontaneous 
activity in the prefrontal cortex, insula, sensorimotor cortex, and 
default mode circuits. In addition, we  observed functional 
interaction disturbances between key hubs in the three-network-
model including the SN, ECN, and DMN among obese individuals. 
Finally, aberrations of intrinsic functional architecture were related 
to dopaminergic and noradrenaline neurotransmitter systems. The 
integration of neuroimaging and molecular perspectives might 
help characterize the neurophysiological mechanisms underlying 
obesity, potentially facilitating the development of more effective 
clinical interventions that could decrease its prevalence.
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