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Background: Recent studies have indicated a link between cardiovascular

wellbeing, obesity, and Cardiorenal syndrome (CRS). The impact of excessive

body mass on the dynamics between heart health and CRS remains unclear.

Life’s Crucial 9 (LC9) serves as an innovative parameter for cardiac evaluation,

whereas the Weight-Adjusted Waist Index (WWI) o�ers a nuanced metric for

gauging obesity. This investigation explores the association between LC9 and

CRS, and examines WWI’s potential moderating influence.

Methods: Data from the National Health and Nutrition Examination Survey

(NHANES) was employed. Subgroup analyses were conducted, restricted cubic

spline (RCS) modeling was utilized, and multivariate logistic regression was

performed to assess the relationship between LC9 and CRS. Furthermore,

we conducted a mediation analysis to investigate the influence of WWI on

this relationship.

Results: The cohort consisted of 25,379 participants, with 1,172 diagnosed with

CRS. In the adjusted logistic regression model, an increase of ten points in LC9

correlated with a 25% reduction in CRS risk (OR = 0.75, 95% CI: 0.68, 0.82).

Each incremental unit in WWI corresponded to a 63% increase in the risk of CRS

(OR = 1.63, 95% CI: 1.46, 1.83). Tertile analysis of LC9 and WWI demonstrated

consistent patterns, with significant p-values for trends <0.001. RCS modeling

confirmed a significant inverse linear correlation between LC9 and CRS (overall

p < 0.001; non-linear p = 0.307) and a direct linear relationship between WWI

and CRS (overall p < 0.001; non-linear p = 0.814). Mediation analysis revealed

that WWI mediated 24.47% of the e�ect of LC9 on CRS (p < 0.001).

Conclusion: The findings indicate a strong inverse relationship between LC9

and CRS, with WWI serving as a partial mediator in this interaction. The findings

emphasize the intricate interactions between LC9 and CRS, illustrating the

essential function of WWI as a mediator in future research endeavors.
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Introduction

Cardiorenal syndrome (CRS) encompasses a variety of
conditions that affect the heart and kidneys, with impairment in
one organ potentially leading to impairment in the other. This
interaction is evident through various physiological mechanisms
(1). Ongoing cardiac dysfunction can lead to renal impairment,
while long-standing kidney disease may adversely affect cardiac
function and increase the likelihood of cardiovascular issues.
Roughly 15% of adults in the United States experience chronic
kidney disease (CKD), while 2% are impacted by heart failure
(HF), and 9% are affected by cardiovascular disease (CVD).
As the population ages, the incidence of these diseases and
associated comorbidities, like type 2 diabetes, is expected to
rise (2). CRS is a significant component of the Cardiovascular-
Kidney-Metabolic (CKM) syndrome, significantly impacting
healthcare costs, disability, and mortality (3). Poor CKM health
is associated with premature death and increased morbidity
(4, 5). The pathophysiology of CRS is not yet completely
understood, but several potential factors have been identified (6).
However, a comprehensive understanding of these mechanisms
remains elusive.

Current observations indicate a rising prevalence of excess
body weight, with ∼30% of the global population now categorized
as overweight (7). In North America, approximately one-third of
adults are classified as obese, with an accumulation of abdominal
fat serving as a significant marker for metabolic disorders and CVD
(8). While Body Mass Index (BMI) commonly assesses obesity,
reflecting overall body fat rather than specifically abdominal fat, it is
crucial to recognize that individuals with a normal BMI but elevated
abdominal fat remain susceptible to negative health outcomes (9).
To address this limitation, weight-adjusted waist index (WWI) was
developed in 2018 (10) as a predictive measure for cardiometabolic
diseases, CVD incidents, and all-cause mortality, offering superior
accuracy (11, 12). Studies have demonstrated that WWI correlates
with total, subcutaneous, and visceral fat, the latter of which
has significant inflammatory properties, strengthening the link
between total adiposity and CVD (13–15). Empirical evidence
suggests that higher visceral fat levels increase the risk of CRS,
while strategies to reduce abdominal fat may reduce the severity
of CRS (16, 17).

Abbreviations: CRS, Cardiorenal syndrome; LC9, Life’s Crucial 9;

WWI, weight-adjusted waist index; NHANES, National Health and

Nutrition Examination Survey; RCS, restricted cubic spline curves; CKM,

cardiovascular-kidney-metabolic; CVD, cardiovascular disease; BMI, body

mass index; TFA, total fat area; MetS, Metabolic syndrome; WHO, World

Health Organization; AHA, American Heart Association; LS7, Life’s Simple

7; LE8, Life’s Essential 8; NCHS, National Center for Health Statistics; CDC,

Centers for Disease Control and Prevention; eGFR, estimated glomerular

filtration rate; CKD, chronic kidney disease; WC, waist circumference;

WHtR, Waist-to-Height Ratio; HEI-2015, 2015 Healthy Eating Index;

PIR, poverty-to-income ratio; CVH, cardiovascular health; MMPs, matrix

metalloproteinases; RAAS, renin–angiotensin–aldosterone system; HF,

heart failure; TMAO, trimethylamine oxide; CHF, chronic heart failure; SASP,

senescence-associated secretory phenotype; CRSSS, Cardiorenal Syndrome

Symptom Scale.

Metabolic Syndrome (MetS), as defined by the World Health
Organization (WHO), represents a complex pathological state
characterized by the presence of abdominal obesity, insulin
resistance, hypertension, and dyslipidemia (18, 19). A multitude of
research efforts have consistently established a strong association
between MetS and CVD, recognizing each component of MetS
as a distinct predictor of cardiovascular risk (20). Moreover,
studies have revealed a significant connection between CRS and
MetS (21, 22). In 2010, the AHA established the Life’s Simple
7 (LS7) framework to assess cardiovascular health (CVH) by
examining particular behaviors and outcomes (23). The framework
underwent an extension in 2022 to integrate mental health,
resulting in Life’s Essential 8 (LE8). In 2023, it was further
refined into LC9, which encompasses sleep, smoking cessation,
physical activity, diet, BMI, non-HDL cholesterol, blood glucose,
blood pressure (BP), and mental health (24, 25). Previous studies
suggest that a reduction in abdominal obesity may mitigate MetS
(20, 26, 27). Given that both WWI and several factors of LC9
are amendable via lifestyle modifications (28), these components
could pave new pathways for managing CRS. Recognizing that
an increase in abdominal obesity accumulation may exacerbate
the symptoms of chronic respiratory syndrome, and that weight
management interventions alongside lifestyle changes encompass
both metabolic and cardiovascular aspects, opens a pathway to
enhance our comprehension of the dynamics involved in chronic
respiratory syndrome.

This study suggests that WWI plays a mediating role
in the relationship between LC9 and CRS, based on the
findings presented. LC9, serving as a comprehensive marker of
cardiovascular wellbeing, may provide protection against CRS by
promoting health-oriented practices (such as a balanced diet and
consistent physical activity) and enhancing clinical parameters.
Nonetheless, obesity remains a crucial modifiable factor that
may compromise the protective effect of LC9. Reflecting on
fat distribution and its metabolic repercussions, WWI not only
exhibits an independent association with CRS risk but may
also act as a conduit linking LC9 to CRS. Through mediation
analysis, this investigation endeavors to assess this hypothesis
and unveil the mechanisms interlinking LC9, WWI, and CRS.
These insights could be instrumental in devising preventive
and therapeutic interventions for CRS. This study analyzes
data collected from 2005 to 2018 through the NHANES to
investigate the relationship between LC9 and CRS, while also
exploring the mediating effect of WWI, which may contribute
to improved strategies for the diagnosis and management
of CRS.

Methods

Study participants

The NHANES, which is managed by the National Center
for Health Statistics (NCHS), was used as a data source for
this cross-sectional investigation. The National Center for Health
Statistics’ Research Ethics Review Board gave their stamp of
approval to the NHANES protocols, and all participants gave
their written consent. No further permission from the institutional
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review board was required for our secondary analysis because
it followed the STROBE requirements for cross-sectional studies
(29). Comprehensive details on NHANES methodologies and
ethical guidelines are accessible via the Centers for Disease
Control and Prevention (CDC) and NCHS websites. It is
important to note that our study is based on the NHANES
database, which is characterized by a large sample size and
strong representativeness, making it a national-level survey. As
a result, studies based on NHANES typically possess strong
statistical power, enabling them to more effectively detect true
associations between study variables. Therefore, in such studies,
many literatures do not explicitly perform prospective sample size
and statistical power calculations, which is common in NHANES-
related research.

We analyzed nationally representative data from NHANES
spanning 2005 to 2018. From the initial cohort of 70,190
participants spanning seven biennial cycles, we identified 39,038
individuals aged 20 years and older, excluding those who
were pregnant. We further removed 13,639 respondents due to
incomplete LC9 andWWI data and an additional 20 for insufficient
CRS information, culminating in a study population of 25,379
participants (Supplementary Figure S1).

First, participants under the age of 20 were excluded because
adolescents are in a stage of rapid physical development, which
may result in significant differences in body composition and
related health indicators. Including this group could increase
heterogeneity in the analysis results. Second, for similar reasons,
pregnant participants were also excluded. During pregnancy,
women experience notable changes in physiological status and
body composition, which could introduce confounding effects on
the relationship between WWI, LC9, and CRS.

CRS ascertainment

CRS encompasses a spectrum of cardiorenal disorders wherein
acute or chronic dysfunction in one organ induces reciprocal
dysfunction in the other (1). Criteria from a previous NHANES
study defined CRS as the presence of both CVD and CKD at the
same time (30). The presence of CVD was determined by self-
reported diagnoses, which included conditions such as angina and
CAD (31). The CKD-Epidemiology Collaboration (EPI) calculation
was used to confirm CKD when the estimated glomerular filtration
rate (eGFR) was <60 mL/min per 1.73 m2 (32).

Definition of WWI

The WWI, derived from NHANES data, measures central
adiposity by combining waist circumference (WC) with weight
using the formula WWI = WC (cm)/(weight (kg))² (33). WWI
served as the mediating variable in our analysis. Unlike BMI, which
measures general adiposity, and the Waist-to-Height Ratio, which
considers stature but not total weight, WWI integrates both WC
and weight, offering a refined assessment of abdominal fat and its
impact on CRS.

Definition of LC9

Effective weight management, cholesterol moderation, glucose
control, BP regulation, and mental health maintenance are the
five physiological components that make up the LC9 index,
which also includes four behavioral components: healthy eating,
regular physical activity, non-smoking, and appropriate sleep. We
used NHANES data to calculate each facet and gave it a score
between 0 and 100. The total LC9 score is the mean of all
nine metrics. As shown in Supplementary Table S2, the dietary
quality was evaluated using the Healthy Eating Index-2015 (HEI-
2015) (34). While trained NHANES personnel measured BMI, BP,
glucose levels (GLuc), and cholesterol (LDL) in accordance with
established protocols, data on sleep habits, cigarette usage, physical
activity, and mental health were gathered from standardized
questionnaire responses1.

Co-variables

Age, gender, ethnicity, marital status, educational attainment,
poverty-to-income ratio (PIR), and the occurrence of
diabetes, hypertension, and hyperlipidemia were among the
demographic and health factors that were used in our analysis.
Supplementary Table S3 provides comprehensive descriptions of
these variables.

Statistical analysis

Statistical analyses utilized R software (version 4.3.1), applying
sampling weights for national representativeness. The specific
weighting variable used was “WTMEC2YR,” recalibrated for the
2005–2018 period as (1/7 × WTMEC2YR) (28). Data were
expressed as mean ± standard deviation (SD) and analyzed with
t-tests to compute p-values. The impact of LC9 and WWI on CRS
was explored through three logistic regression models: (1) a crude
model without covariate adjustment, (2) a model adjusted for age,
sex, education level, marital status, PIR, and race, and (3) a model
further adjusted for hypertension, diabetes, and hyperlipidemia.
We employed a smoothing spline approach to investigate both
linear and non-linear associations between LC9 and CRS. Subgroup
analyses focused on the LC9-CRS relationship across various risk
groups. We conducted a variance inflation factor (VIF) analysis
using the vif() function from the “car” package in R for all covariates
to assess the presence of multicollinearity. Generally, a VIF value
below 10 indicates no severe multicollinearity. In our analysis, the
VIF values for all covariates included in the regression model were
significantly below this threshold. In this study, all VIF values were
below 2, indicating that multicollinearity is not a concern in our
research. Mediation analysis was conducted to determine the direct
and indirect effects of WWI on the LC9-CRS linkage, calculating
the mediated proportion by the formula: [indirect effect/(indirect
effect + direct effect)] × 100%. To validate the robustness of our
findings and assess the potential impact of missing data on our

1 https://www.cdc.gov/nchs/nhanes/index.htm
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results, we conducted a sensitivity analysis. Specifically, we used
the Multiple Imputation by Chained Equations (MICE) method
to perform multiple imputations, generating five imputed datasets.
We then repeated the primary analysis on the imputed datasets.
The results were consistent with the original analysis, indicating
that the handling of missing data did not substantially affect
our conclusions (Supplementary Table S4). Mediation effects were
estimated using the “mediation” package in R software (28, 35).
Statistical significance was established at p < 0.05.

Results

Baseline characteristics

The analysis encompassed 25,379 participants aged 20 years
or older, which is representative of ∼279.7 million adults in
the U.S. Among these, 3% were diagnosed with CRS, equivalent
to an estimated 8.77 million individuals. Statistically significant
disparities were noted in age, race, marital status, education
level, income, and the prevalence of hypertension, diabetes, and
hyperlipidemia between the CRS and non-CRS groups (p < 0.05).
Those in the CRS cohort exhibited lower scores on the LC9 scale
and higher WWI scores compared to their non-CRS counterparts
(Table 1).

Association between LC9, WWI, and CRS

The results from three analytical models show that there is a
continuous negative correlation between LC9 and the occurrence
of CRS (p < 0.001), as shown in Table 2. The model 3 shows
that the occurrence of CRS decreases by 25% for every 10-point
increase in LC9 (Odds Ratio [OR]:0.75, 95% Confidence Interval
[CI]:0.68, 0.82). A 47% decrease in CRS prevalence was observed in
the highest LC9 tertile (T3), according to tertile analysis (OR: 0.53,
95% CI: 0.37, 0.76).

Conversely, an increase in WWI was associated with a rise in
CRS prevalence across all models (p < 0.001). Specifically, a unit
increment in WWI resulted in a 63% increase in CRS prevalence
(OR = 1.63, CI: 1.46, 1.83). Higher WWI values consistently
correlated with increased CRS prevalence (all p < 0.05). Restricted
cubic spline (RCS) analyses (Figure 1A) reveal that LC9maintains a
linear negative association with CRS (overall p < 0.001; non-linear
p= 0.307). In contrast, WWI exhibits a linear positive relationship
with CRS (Figure 1B; overall p < 0.001; non-linear p= 0.814).

Subgroup analyses

Figure 2 shows that there is a consistent inverse link between
LC9 scores and CRS prevalence across subgroups characterized
by age, gender, race, marital status, educational attainment, PIR,
hypertension, diabetes, and hyperlipidemia. There was also a
significant interaction (p< 0.05) between LC9 and age. The positive
link between WWI and CRS prevalence was consistent across all
subgroups that were studied.

Mediation e�ect

Figure 3 depicts the mediation framework, identifying LC9
as the independent variable, CRS as the dependent variable,
and WWI as the mediating factor. As illustrated in Table 3, a
significant association between LC9 and WWI was confirmed
following adjustments for covariates (β = −0.20, CI: −0.21,
−0.19). After comprehensive adjustments, WWI clearly mediates
the relationship between LC9 and CRS (indirect effect = −5.77
× 10−3, p < 0.001; direct effect = −1.83 × 10−2, p < 0.001),
accounting for 24.47% of the effect (p < 0.001). Thus, WWI
functions as a significant mediator in the LC9-CRS interaction.

Discussion

Through the examination of data collected from 25,379
participants in the NHANES survey spanning from 2005 to 2018,
our investigation revealed a negative correlation between LC9
scores and the occurrence of CRS, alongside a positive correlation
between the WWI and CRS. Furthermore, mediation analyses
revealed that WWI contributes to a portion of the association
between LC9 and CRS. An interaction effect between LC9 scores
and age was noted as well.

This study appears to be the first to investigate the relationship
between LC9 and CRS, with WWI serving as a mediating factor.
Prior studies have observed an inverse relationship between
CVH, quantified by LE8, and the incidence of CRS (36, 37).
WWI, recognized for its correlation with body fat levels and its
implications for cardiometabolic health, indicates that tackling
obesity could reduce the likelihood of metabolic conditions, such
as chronic renal syndrome (11, 12, 38). Our findings align with
these observations while further elaborating on them by integrating
the influence of mental health within the interconnectedness of
cardiovascular and renal health. The interplay between mental
health factors, including anxiety, depression, and chronic stress, has
been associated with an increased susceptibility to CVDs.

The LC9 elements may influence CRS through various
biological pathways. Managing caloric intake, choosing high-
fiber diets, and ensuring balanced nutrients and adequate
hydration can reduce inflammation and improve metabolic
regulation, thereby impacting CRS (39–41). Dietary modifications
alter inflammatory markers and adiponectin expression through
bioactive compounds that act as activators of nuclear hormone
receptors and modulators of adiponectin secretion (42, 43).
Increasing the intake of fiber and antioxidants may lessen
systemic inflammation, potentially reducing CRS severity (44,
45). Diets featuring fruits, vegetables, and whole grains are
thought to lower subclinical inflammation, which might alleviate
CRS (46, 47). Enhanced fitness through physical activity may
decrease cardiovascular events (48, 49) and moderate exercise
can help modulate immune responses to reduce CRS risk (50).
Physical activity also aids in weight management by limiting
visceral adiposity, thereby counteracting CRS. Smoking promotes
vascular stiffness, endothelial damage, fibrosis, and atherogenesis,
each linked to CRS onset and worsening (51). Moreover, sleep
quality impacts CRS because disorders in sleep or autonomic
function can disrupt metabolism and homeostasis (52). The LC9
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TABLE 1 Baseline characteristics of all participants were stratified by CRS, weighted.

Characteristic Overall, N =

279,654,111 (100%)
Non-CRS, N =

270,880,412 (97%)
CRS, N =

8,773,699 (3%)
p-value

No. of participants in the sample 25,379 24,207 1,172 –

Age (%) <0.001

20–40 101,234,596 (36%) 101,140,361 (37%) 94,235 (1.1%)

41–60 108,714,719 (39%) 107,322,455 (40%) 1,392,264 (16%)

>60 69,704,796 (25%) 62,417,596 (23%) 7,287,200 (83%)

Sex (%) 0.059

Female 143,304,101 (51%) 139,113,097 (51%) 4,191,004 (48%)

Male 136,350,010 (49%) 131,767,314 (49%) 4,582,695 (52%)

Race (%) <0.001

Non-Hispanic White 197,151,539 (70%) 190,231,200 (70%) 6,920,339 (79%)

Non-Hispanic Black 28,019,340 (10%) 27,041,045 (10.0%) 978,295 (11%)

Other 32,839,900 (12%) 32,272,054 (12%) 567,846 (6.5%)

Mexican American 21,643,331 (7.7%) 21,336,112 (7.9%) 307,220 (3.5%)

Married/live with partner (%) <0.001

No 97,403,916 (35%) 93,517,277 (35%) 3,886,638 (44%)

Yes 182,170,285 (65%) 177,283,224 (65%) 4,887,061 (56%)

Education level (%) <0.001

Below high school 39,244,762 (14%) 37,026,106 (14%) 2,218,656 (25%)

High School or above 240,289,721 (86%) 233,736,662 (86%) 6,553,059 (75%)

PIR (%) <0.001

Poor 49,904,825 (19%) 47,909,929 (19%) 1,994,897 (24%)

Not Poor 212,745,576 (81%) 206,503,579 (81%) 6,241,997 (76%)

Hypertension (%) <0.001

No 174,171,352 (62%) 172,975,956 (64%) 1,195,396 (14%)

Yes 105,482,759 (38%) 97,904,456 (36%) 7,578,303 (86%)

Diabetes (%) <0.001

No 245,161,151 (88%) 240,490,944 (89%) 4,670,207 (53%)

Yes 34,492,960 (12%) 30,389,467 (11%) 4,103,493 (47%)

Hyperlipidemia (%) <0.001

No 80,992,857 (29%) 80,319,188 (30%) 673,668 (7.7%)

Yes 198,661,254 (71%) 190,561,223 (70%) 8,100,031 (92%)

LC9 [mean (SD)] 70.72 (13.54) 71.08 (13.38) 59.42 (13.53) <0.001

LC9, Tertile (%) <0.001

T1 96,873,654 (35%) 90,997,224 (34%) 5,876,430 (67%)

T2 86,356,615 (31%) 84,306,086 (31%) 2,050,529 (23%)

T3 96,423,841 (34%) 95,577,101 (35%) 846,740 (9.7%)

WWI [mean (SD)] 10.96 (0.82) 10.93 (0.81) 11.73 (0.73) <0.001

WWI, Tertile (%) <0.001

T1 93,209,100 (33%) 92,644,615 (34%) 564,485 (6.4%)

T2 93,245,978 (33%) 91,312,926 (34%) 1,933,052 (22%)

T3 93,199,033 (33%) 86,922,871 (32%) 6,276,162 (72%)

Mean (SD) for continuous variables: the p-value was calculated by the weighted Students t-test.
Percentages (weighted N, %) for categorical variables: the p-value was calculated by the weighted chi-square test.
LC9, Life’s Crucial 9; WWI, Weight-adjusted waist index; PIR, poverty income ratio; CRS, Cardiorenal syndrome.
Bold values indicate p < 0.05.
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TABLE 2 Association between LC9, WWI, and CRS, NHANES 2005–2018.

Characteristics Model 1 [OR (95%
CI)]

p-value Model 2 [OR (95%
CI)]

p-
value

Model 3 [OR (95%
CI)]

p-
value

LC9–CRS

Continuous (per 10
scores)

0.56(0.53,0.59) <0.001 0.61(0.56, 0.67) <0.001 0.75(0.68, 0.82) <0.001

Tertile

T1 1 (ref.) 1 (ref.) 1 (ref.)

T2 0.38(0.32,0.45) <0.001 0.46(0.38, 0.55) <0.001 0.62(0.52, 0.75) <0.001

T3 0.14(0.10,0.19) <0.001 0.25(0.18, 0.37) <0.001 0.53(0.37, 0.76) <0.001

P for trend <0.001 <0.001 <0.001

WWI–CRS

Continuous 3.26(3.01,3.53) <0.001 2.10(1.89, 2.33) <0.001 1.63(1.46, 1.83) <0.001

Tertile

T1 1 (ref.) 1 (ref.) 1 (ref.)

T2 3.47(2.51, 4.81) <0.001 1.67(1.18, 2.35) 0.004 1.19(0.84, 1.69) 0.320

T3 11.85(8.86,15.84) <0.001 3.28(2.37, 4.54) <0.001 1.86(1.32, 2.61) <0.001

P for trend <0.001 <0.001 <0.001

Model 1: no covariates were adjusted.
Model 2: age, sex, education level, marital, and race were adjusted.
Model 3: age, sex, education level, marital, PIR, race, hypertension, diabetes, and hyperlipidemia were adjusted.
LC9, Life’s Crucial 9; WWI, Weight-adjusted waist index; PIR, poverty income ratio; CRS, Cardiorenal syndrome; OR, odds ratio; CI, confidence interval.

FIGURE 1

Dose-response relationships between LC9, WWI, and CRS. (A) LC9–CRS; (B) WWI–CRS. OR (solid lines) and 95% confidence levels (shaded areas)

were adjusted for age, sex, education level, marital, PIR, race, hypertension, diabetes, and hyperlipidemia.

scoring approach underscores healthy sleep duration, potentially
countering sympathetic overactivity and limiting CRS progression
(53, 54). Compared to LE8, LC9 placed greater emphasis on the
uniqueness and critical importance of mental health. Adequate
rest can also alleviate mental health burdens, such as anxiety or
depression, further improving symptoms (55). Mental health was
associated with dysregulated energy-protein metabolism, which

directly contributed to cardiorenal syndrome progression in
longitudinal analyses (56).

Interaction analysis suggests a modifying role of age in
the LC9–CRS relationship. Age-related comorbidities such as
hypertension, diabetes, and dyslipidemia predispose individuals
to cardiovascular and renal abnormalities, while aging itself is
an independent risk factor (57, 58). Advancing age promotes

Frontiers inNutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2025.1560224
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Fu et al. 10.3389/fnut.2025.1560224

FIGURE 2

Subgroup analysis between LC9, WWI, and CRS. (A) LC9–CRS; (B) WWI–CRS. ORs were calculated per 10-unit increase in LC9, and each standard

deviation increased in WWI. Analyses were adjusted for age, sex, education level, marital, PIR, race, hypertension, diabetes, and hyperlipidemia.

FIGURE 3

Schematic diagram of the mediation e�ect analysis. Path C indicates the total e�ect; path C′ indicates the direct e�ect. The indirect e�ect is

estimated as the multiplication of paths A and B (path A*B). The mediated proportion is calculated as indirect e�ect / (indirect e�ect + direct e�ect) ×

100%. LC9, Life’s Crucial 9; WWI, Weight-adjusted waist index; CRS, Cardiorenal syndrome. Analyses were adjusted for age, sex, education level,

marital, PIR, race, hypertension, diabetes, and hyperlipidemia.

endothelial dysfunction, oxidative stress, and inflammation,
contributing to fibrotic changes, a recognized hallmark of
cardiorenal disorders (59, 60). Potential pathophysiologic
processes include extracellular matrix alterations, dysregulation of
matrix metalloproteinases (e.g., MMP-9), and proinflammatory
pathways that exacerbate organ aging (58). Additionally, the aging
process may disturb the mTOR pathway, Klotho expression, and

mitochondrial function, reinforcing CRS development (60, 61).
Over time, arterial stiffening, vascular dysfunction, cognitive
decline, and muscle loss can collectively raise morbidity and
mortality among individuals with CRS (62).

The pathophysiology of CRS involves complex disease
interactions (1). Chronic cardiac dysfunction results in diminished
cardiac output, lowered blood flow, and increased venous pressure,
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TABLE 3 Multivariate linear regression of LC9 and WWI.

Characteristics β 95%CI p-value

LC9–WWI −0.20 (−0.21,−0.19) <0.001

Adjusted for age, sex, education level, marital, PIR, race, hypertension, diabetes,
and hyperlipidemia.

subsequently affecting renal function. Compensatory mechanisms,
including the activation of the renin–angiotensin–aldosterone
system (RAAS) and the sympathetic nervous system, strive to
sustain blood perfusion. Nevertheless, prolonged activation of
the RAAS results in elevated aldosterone levels, which may
contribute to harmful fibrosis and worsen the advancement of
CVD and CKD (63). In instances of HF characterized by preserved
ejection fraction, elements such as systemic inflammation and
deficiencies in endothelial function, diastolic relaxation, and right
ventricular performance contribute to the persistent nature of
CRSs (64). Optimal interaction between cardiac and renal systems
hinges on balanced neurohumoral feedback, water balance, and
mitochondrial integrity (65, 66). Additionally, trimethylamine
oxide (TMAO) has been linked to both cardiac and kidney
abnormalities, which can affect outcomes in chronic HF and CKD,
as well as overall population health (67).

WWI is a novel obesity indicator derived by adjusting waist
circumference for body weight, aiming to better reflect the
distribution of abdominal fat, particularly visceral fat. Numerous
studies have demonstrated that WWI outperforms traditional
obesity indicators in predicting the risk of chronic diseases. For
instance, compared to BMI, WWI shows stronger associations
with metabolic syndrome (68), asthma (69), cardiovascular
diseases, and all-cause mortality (70). Therefore, we believe
that WWI exhibits higher sensitivity in revealing obesity-related
metabolic abnormalities. Given that the pathogenesis of cardio-
renal syndrome is closely linked to visceral fat accumulation,
systemic inflammation, and metabolic dysfunction, we selected
WWI as a mediator variable to more precisely capture the
mediating role of obesity between LC9 and CRS. WWI appears
to mediate the LC9–CRS association partly because higher WWI
suggests increased visceral fat and possibly lower muscle and bone
mass. This pattern coincides with insulin resistance, dyslipidemia,
and hyperglycemia (13, 71), each arising from RAAS activation,
sympathetic overdrive, and inflammatory or oxidative pathways
(9, 21). With aging, macrophages, adipocytes, and other cells
accumulate in visceral adipose deposits, potentially responding
to heightened metabolic demand, mitochondrial dysfunction, or
DNA stress. These cells release pro-inflammatory molecules,
chemokines, and proteases described as part of the senescence-
associated secretory phenotype (SASP). This secretory profile
aggravates adipose tissue inflammation, bringing in and activating
immune cells (72). Meanwhile, better nutritional habits and more
frequent physical activity—mainstays of LC9—can reduce visceral
fat, improve BP, and stabilize lipid profiles (73, 74). Ultimately,
this could indirectly reduce WWI and improve metabolic health,
thereby lowering the risk of CRS.

Our study has numerous advantages: (1) It is the first
to address the link between LC9 and CRS in an American
population, suggesting that LC9 could become a powerful

clinical indicator for CRS. (2) WWI is introduced as a
novel measure of visceral adiposity, outperforming conventional
anthropometrics in pinpointing at-risk patients at minimal cost.
(3) We leveraged extensive data from NHANES (2005–2018),
capturing a nationally representative sample. (4)Multiple modeling
techniques and subgroup analyses were used to adjust for
confounders, highlighting a persistent negative association between
LC9 and CRS and a positive association between WWI and CRS.
(5) Subgroup analysis suggests that age modifies the LC9–CRS
interplay (p < 0.05), indicating further work is needed to confirm
these observations.

Nonetheless, the ramifications of our results are limited by
various constraints: (1) The cross-sectional design of the study
restricts our capacity to draw causal inferences regarding the
relationship between LC9 and the prevalence of CRS; a more
extensive, prospective cohort study would more effectively clarify
temporal associations. This study is cross-sectional in nature,
making it unable to establish the temporal sequence among
LC9, WWI, and CRS. Additionally, unmeasured or inadequately
controlled confounding factors, such as genetic predisposition,
long-term dietary patterns, or other metabolic abnormalities, may
still interfere with the observed associations. Furthermore, it cannot
be ruled out that the presence of CRS might conversely affect
individuals’ cardiovascular health behaviors or fat distribution,
potentially leading to issues of reverse causation. (2) The NHANES
utilizes a stratified sampling technique to accurately reflect the
non-institutionalized population of the United States, yet it does
not include individuals who are hospitalized or residing in long-
term care facilities, thereby limiting the broader applicability of our
findings. The absence of participation in surveys or the occurrence
of incomplete assessments may lead to the introduction of selection
bias. (3) CRS case ascertainment here depended on self-reported
diagnoses within NHANES, which may be prone to recall error. (4)
In using NHANES data, we accessed a substantial dataset but could
not entirely rule out confounding or fully untangle relationships
among the different LC9 components. Discrepancies in data quality
necessitate rigorous statistical strategies to ensure reliability. Future
work might investigate interactions among these variables or apply
advanced analytic methods to mitigate confounding. Additionally,
combining the CRS Symptom Scale (CRSSS) with other clinical
instruments or measures might offer a more exhaustive view of
CRS symptomatology and life quality.We also recommend refining
diagnostic criteria to account for symptom frequency, severity,
duration, and effect on wellbeing. (5) Prospective, longitudinal data
and precise diagnostic benchmarks will be needed to strengthen
the identification of CRS. (6) NHANES data exclude hospitalized
patients and long-term care populations, which may lead to limited
extrapolation of results. (7) We are fully aware of the limitations of
WWI itself. First, its calculation is based on waist circumference
and body weight, making it susceptible to measurement errors.
Second, as a relatively novel indicator, WWI has not yet established
uniform clinical reference values across all populations, and its
applicability across different races and age groups requires further
validation. Taken together, although some caveats remain, our
study contributes crucial evidence regarding the interplay of LC9,
WWI, and CRS. Addressing the noted limitations will improve
the reliability, translation, and utility of subsequent research in
this area.
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Conclusion

Our analyses reveal a robust inverse correlation between LC9
and CRS, with WWI acting as a partial mediator. This observation
highlights a possible connection between CVH and CRS, stressing
the importance of managing obesity in this context. Our findings
offer novel perspectives on both preventing and managing CRS,
suggesting that a multifaceted strategy to enhance CVH and reduce
obesity might help diminish CRS prevalence. Looking ahead,
prospective investigations will be vital for elucidating the detailed
mechanisms behind these links. Moreover, future work could delve
deeper into other risk factors, including mental health challenges,
that may also shape this association.
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