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Background: Inflammatory reactions can induce or facilitate the occurrence 
and development of various diseases in the human body. It is crucial to regulate 
and actively control inflammatory factors to maintain the health of an individual. 
Vitamins D and E and magnesium ions may potentially inhibit inflammatory 
responses. Abnormal lipid metabolism is known to affect people’s health and 
lead to serious diseases. Magnesium and vitamin E are also known to possess 
anti-lipidemic properties. It is worth noting that the prevalence and disease 
burden of some diseases are related to overweight and obesity. This systematic 
review and meta-analysis assesses the impact of magnesium and vitamin D or 
vitamin E co-supplementation on inflammation and lipid metabolism markers of 
obese/overweight population in randomized controlled trials (RCTs).
Methods: A comprehensive search was conducted across PubMed, Web of 
Science, Embase and Cochrane databases until January 2024 to investigate the 
impact of simultaneous supplementation of magnesium and vitamin D/E. In 
both intervention and control groups, the research analyzed the pooled mean 
difference (MD) and the associated 95% confidence interval (CI) of marker levels 
of inflammation and lipid metabolism.
Results: Meta-analysis of nine RCTs (total of 509 individuals) showed that 
magnesium and vitamin D significantly elevated the levels of 25(OH)D 
(MD:13.37, 95%CI: 0.45, 26.29, p = 0.04) and magnesium (MD: 0.21, 95% CI: 
0.16, 0.27, p < 0.00001). Co-supplementation of magnesium and vitamin D/E 
lowered levels of serum hypersensitivity C-reactive protein (hs-CRP) (MD: 
−1.19, 95%CI: −1.95, −0.42, p = 0.002). In subgroup analysis, serum levels of 
hs-CRP was notably reduced in individuals receiving magnesium and vitamin 
D supplementation (MD = −0.66, 95%CI: −1.17, −0.14, p = 0.01). However, 
no significant differences were observed between magnesium and vitamin E 
supplementation (MD: −3.54, 95%CI: −9.52, 2.43, p = 0.25). The combination of 
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magnesium and vitamin D significantly reduced tumor necrosis factor-α (TNF-α) 
levels (MD: −0.87, 95%CI: −1.62, −0.11, p = 0.02). In contrast, the serum levels 
of interleukin-6 (IL-6) showed a non-significant decrease (MD: −0.09, 95%CI: 
−0.33, 0.15, p = 0.46), and did not significantly affect lipid metabolism according 
to levels of parameters such as serum triglyceride (MD = 1.84, 95% CI: −28.92, 
32.60, p = 0.91), serum LDL-c (MD: −4.56, 95% CI: −14.19, 5.08, p = 0.35), and 
serum HDL-c (MD: 1.96, 95% CI: −3.07, 6.98, p = 0.45) in the co-supplementation 
of magnesium and Vitamin E.
Conclusion: This study demonstrates a notable decrease in hs-CRP and TNF-
α levels through vitamin D and magnesium co-supplementation in individuals. 
Particularly, middle-aged women with vitamin D deficiency, and obese or 
overweight participants, may experience specific benefits from vitamin D and 
magnesium co-supplementation in reducing inflammatory response. However, 
magnesium and vitamin E supplementation did not significantly reduce the 
indicators of lipid metabolism.
Systematic review registration: https://www.crd.york.ac.uk/prospero/#loginpage
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1 Introduction

Inflammation, a non-specific response of the body to injury, 
infection, or irritation, typically involves processes such as 
vasodilation, white blood cell migration, and tissue repair. The 
inflammatory response protects the body from harm by activating 
immune system and releasing inflammatory mediators, and it is a 
common feature of many diseases like osteoarthritis, dermatopathy, 
and lung infections, etc. (1). Lipids have important roles in energy 
metabolism; perturbations of lipid metabolism are responsible for the 
development of various pathologies, including metabolic syndrome, 
obesity, and type 2 diabetes (2). Obesity is an important risk factor 
contributing to the burden of disease worldwide. Body weight is 
influenced by the interaction of genetic, environmental and 
psychosocial factors that act through several physiological mediators 
of food intake and energy expenditure that affect fat deposition (3).

Vitamin D is a lipid-soluble vitamin, and 1,25- 
dihydroxycholecalciferolis its active form. While this vitamin can 
be obtained from food, the majority is synthesized in the skin. Vitamin 
D undergoes metabolism in the body to exert its effects through its 
active metabolites (4). It primarily plays an indispensable role in 
maintaining calcium and phosphate homeostasis, as well as bone 
density within the body (5). Vitamin D exhibits various 
pharmacological effects, including anti-inflammatory (6), and 
immune-modulatory properties (7). Recent meta-analyses have 
highlighted their significant impact on inflammatory markers and 
lipid profiles, particularly in the context of chronic inflammatory 
diseases and metabolic disorders. Specifically, studies have shown that 
higher levels of vitamin D are inversely associated with systemic 
inflammation markers, such as C-reactive protein (CRP) and 
interleukin-6 (IL-6) (8). Similarly, magnesium intake has been linked 
to improved lipid parameters, including reductions in low-density 
lipoprotein cholesterol (LDL-C) and triglycerides, which are critical 
for cardiovascular health (9). These findings underscore the 
importance of these micronutrients in managing chronic diseases and 
maintaining overall health. The relationship between vitamin D and 
inflammation has garnered considerable attention, particularly in light 

of its potential role in modulating immune responses. Vitamin D 
deficiency has been associated with heightened inflammation, which 
is a contributing factor in various chronic diseases, including 
cardiovascular disease and diabetes (10). Moreover, Vitamin E also 
modulates T cell function by directly impacting the integrity of T cell 
membrane, signal transduction, and cell division, and also indirectly 
by affecting inflammatory mediators generated from other immune 
cells (11). Studies indicate that vitamin E exerts various potentially 
beneficial effects on human health, such as anti-lipidemic (12, 13), 
anti-inflammatory (14), anti-obesity (15).

Magnesium is an essential element for maintaining normal life 
metabolism in organisms (16). It is one of the primary cations in 
human intracellular fluid, with levels second only to potassium ions. 
Magnesium and inflammatory factors exert a mutual regulatory 
relationship (17). Clinical studies have shown that insufficient intake 
of magnesium can cause peripheral vascular congestion in the body 
(18), resulting in degranulation of mast cells and the secretion of large 
amounts of histamine and inflammatory mediators (19). Mg2+ deficit 
and its lower blood concentration is frequent in patients with the main 
risk factors, hyperlipidemia, hypertension, diabetes, and obesity. 
Magnesium can help lower triglyceride (TG) levels and raise 
HDL-cholesterol levels (20). Magnesium is a critical cofactor for 
enzymes involved in vitamin D metabolism, including 25-hydroxylase 
and 1α-hydroxylase, which convert vitamin D to its active form (21). 
Magnesium deficiency may impair vitamin D activation, thereby 
reducing its anti-inflammatory efficacy. Conversely, adequate 
magnesium levels enhance vitamin D bioavailability, potentially 
amplifying its inhibitory effects on pro-inflammatory cytokines such 
as TNF-α (22). Vitamin E mitigates oxidative stress by neutralizing free 
radicals, while magnesium suppresses NF-κB signaling to reduce 
inflammation (23). Their co-supplementation may synergistically 
attenuate oxidative damage and inflammatory cascade, yet clinical 
evidence remains sparse and conflicting. There is growing interest in 
using a strategy that combines both magnesium and vitamins, as this 
may enhance metabolic profiles in various diseases characterizing 
metabolic irregularities. Research has suggested a potential association 
between vitamin D and magnesium (24). In addition, due to their 
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unique anti-inflammatory properties, combining vitamin D and 
magnesium supplements may improve anti-inflammatory effects, 
further lowering the production of inflammatory compounds and 
regulating metabolism (25). On the other hand, the studies on 
magnesium and vitamin E co-supplementation may have conflicting 
conclusions on certain research indicators, and the sample sizes are 
small, making effective conclusions difficult. Although vitamin D and 
vitamin E exhibits antioxidant properties and magnesium influences 
lipid metabolism, no systematic review has comprehensively evaluated 
their co-administration. This study addresses this critical gap by 
synthesizing evidence from randomized controlled trials (RCTs) to 
assess the combined effects of magnesium with vitamins D/E on 
inflammation and lipid metabolism in overweight/obese 
populations—a high-risk group for metabolic and inflammatory  
comorbidities.

2 Materials and methods

The current meta-analysis was conducted as per the guidelines 
outlined in the PRISMA checklist (26) for Systematic Reviews and 
Meta-analysis. The research protocol has been properly registered on 
PROSPERO (CRD42024498691).

2.1 Search strategy and eligibility criteria

We searched the Cochrane Library, Embase, PubMed, and Web of 
Science from their founding dates until January 2024, for this 
investigation. The quick search terms comprised (Vitamin D OR 
Vitamin E) AND (Magnesium) AND (Co-supplementation) AND 
(Inflammation OR metabolism OR Oxidative stress). The advanced 
retrieval formulas were displayed in Supplementary Table 1. Following 
the elimination of duplicate articles, two reviewers (Deng K and Yang 
Ly) independently examined the initially retrieved literature using the 
below-specified inclusion and exclusion criteria. The inclusion criteria 
comprised studies specifically comparing the effectiveness of 
co-supplementation of magnesium and vitamin D/E with placebo 
supplementation lacking magnesium and vitamin D/E, and the 
intended outcomes were documented. On the other hand, the 
exclusion criteria were studies that were not RCTs, those that explored 
patients receiving treatment for purposes unrelated to of magnesium 
and vitamin D/E co-supplementation, and studies for which the full 
text was inaccessible.

2.2 Data extraction

For the meta-analysis, two independent reviewers (Deng K and 
Yang Ly) were tasked with data extraction from qualifying studies. The 
extracted data included the primary author, year of publication, 
patient demographics, intervention and placebo group sizes, 
intervention specifics (Mg + vitamin D/E dosage), post-intervention 
group differences (Mg + vitamin D/E vs. placebo), and follow-up 
duration. The examined outcomes comprised serum levels of 
25-hydroxyvitamin D(25(OH)D; ng/mL), magnesium (Mg; mg/dL), 
high sensitivity C-reactive protein (hs-CRP; mg/L), interleukin-6 
(IL-6; pg./mL), tumor necrosis factor-α (TNF-α; pg./mL), triglycerides 

(TG; mg/dL), low density lipoprotein cholesterol (LDL-c; mg/dL), and 
high density lipoprotein cholesterol (HDL-c; mg/dL).

2.3 Risk of bias assessment

To assess the risk of bias, the Cochrane tool for evaluating bias risk 
(27) was utilized. Areas reviewed included generation of random 
sequences (selection bias), concealment of allocation (selection bias), 
masking of participants and staff (performance bias), masking of 
outcome evaluation (bias in detection), incomplete outcome data 
(attrition bias), selective reporting (bias in reporting), and 
miscellaneous bias factors. Ratings of ‘+’ denote low risk of bias, ‘?’ 
suggest uncertainty, and ‘−’ indicate high risk.

2.4 Statistical analysis

In each investigation, data obtained from the co-supplementation 
group and the control group post-intervention were utilized. Mean and 
standard deviation (SD) were used to represent continuous variables. 
Kheyruri’s study (28) presented 25(OH)D levels, serum magnesium 
levels, hs-CRP levels, and TNF-α levels as median (interquartile). Mean 
and SD were estimated according to Luo et al. (29) and Wan et al. (30) 
respectively. Their respective 95% confidence intervals (95%CI) were 
summarized for forest plots. Study heterogeneity was visually represented 
through forest plots, and statistical assessment was conducted using 
Cochran’s Q test and the I2 index. An I2 value >50% indicated notable 
heterogeneity, prompting the utilization of a random effects model, while 
an I2 value of 50% or less led to the application of a fixed effects model. 
When feasible, sensitivity analysis was performed to address substantial 
heterogeneity. Statistical significance was determined by a p-value 
<0.05 in the overall effect test. Data were pooled utilizing the meta-
analytic approach within Cochrane Review Manager 5.4.1 and STATA 
18. The assessment of publication bias was conducted by visually 
inspecting funnel plots and utilizing Egger’s test. Subgroup analyses were 
conducted based on the study characteristics (such as type of supplement, 
supplementary dosage) for outcome measures exhibiting considerable 
heterogeneity, to identify possible sources of this variability. Furthermore, 
sensitivity analysis was conducted to assess the stability of the 
study findings.

3 Results

3.1 Search results

Figure 1 visually represents the study selection process. Out of the 
153 studies reviewed individually, full text of 17 was screened. During 
this screening stage, eight studies lacking adequate data were eliminated, 
and ultimately, nine studies (25, 28, 31–37), encompassing a collective 
sample size of 509 patients, were chosen for the meta-analyses.

3.2 Study characteristics

General information about the included studies is presented in 
Table 1. In this article, nine studies were included, wherein a total of 
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109 participants were administered a combination of magnesium and 
vitamin D supplementation, while 119 participants were given a 
placebo as a control. There were a total of 136 participants in both the 
intervention group of magnesium and vitamin E and the placebo 
group. Among obese/overweight population, four studies (25, 28, 31, 
32) investigated the effects of Mg and vitamin D co-supplementation 
on inflammatory markers while five studies (33–37) focused on the 
effects of Mg and vitamin E co-supplementation.

3.3 Risk of bias assessment

The risk of bias evaluation results are presented in Figure 2. In all 
studies conducted, a low risk of bias was observed with regard to 
random sequence generation, allocation concealment, blinding of 
participants, personnel, and outcome assessment, as well as selective 
reporting. Considering incomplete outcome data, eight studies 
demonstrated low risk of bias, while the study by Cheung et al. (25) 
exhibited an unclear risk of bias. In some cases, discrepancies were 
noted in the reasons for exclusion and attrition among individuals in 
the two groups; however, the definitive impact of this inconsistency 

could not be determined. Upon analyzing other potential biases, four 
studies (25, 28, 32, 33) had an uncertain risk of bias, and the other five 
had a low risk of bias.

3.4 Meta-analysis results

3.4.1 Effect of co-supplementation on 25(OH)D
A total of 237 participants were included from four studies (25, 28, 

31, 32) providing data on serum 25(OH)D. Baseline mean and median 
serum 25(OH)D levels in the studies were all below 30 ng/mL. In 
comparison with the control group, serum 25(OH)D levels in 
co-supplementation group increased significantly at the end of the 
intervention (MD: 13.37, 95% CI: 0.45, 26.29, p = 0.04, I2 = 99%) 
(Figure 3A).

3.4.2 Effect of co-supplementation on 
magnesium

Nine studies (25, 28, 31–37), involving 509 participants with obesity 
or being overweight, were included into the meta-analysis focusing on 
serum magnesium. The quality assessment of the included studies was 

FIGURE 1

Flow diagram of PRISMA study selection.
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TABLE 1  Characteristic of studies included in the meta-analyses.

First 
author 
et al., 
year

Age (years, 
mean ± SD or 
range)

Sex Number of 
participants 

(intervention/
placebo)

Health 
conditions

Intervention Outcome 
(Difference 
between 
groups at the 
end of the 
intervention)

Follow-up

Farvid et al,. 

2004 (33)

50.6 ± 9.7 

(intervention)

49.6 ± 9.2 (placebo)

F/M 17/18 Type 2 diabetes 100 mg Mg

+15 mg Zn

+100 mg vitamin C

+75 mg vitamin E

No significant 

difference: Total 

cholesterol, LDL-c, 

triglycerides

Increase: Serum 

vitamin E, LS-α-TOH, 

HDL-c, apo A1

3 months

Maktabi et al., 

2018 (34)

30.1 ± 5.9 

(intervention)

31.5 ± 3.2

(placebo)

F 30/30 Gestational 

diabetes mellitus

250 mg magnesium 

oxide daily

+400 IU vitamin E 

daily

No significant 

difference: HDL-c 

levels

Decrease: FPG, serum 

insulin levels, HOMA-

IR, triglycerides, 

VLDL-c, total-c, LDL-c

Increase: QUICKI

6 weeks

Jamilian et al., 

2019 (32)

29.2 ± 7.2 

(intervention)

28.3 ± 3.8 (placebo)

F 30/30 Polycystic ovary 

syndrome

250 mg magnesium 

as magnesium oxide 

daily

+400 mg vitamin E 

daily

No significant 

difference: HDL-c, 

LDL-c

Decrease: serum 

insulin levels, HOMA-

IR, serum triglycerides, 

VLDL-cholesterol

Increase: serum 

magnesium, QUICKI

12 weeks

Shokrpour 

et al., 2019 

(36)

27.2 ± 7.1 

(intervention)

26.0 ± 3.7 (placebo)

F 30/30 Polycystic ovary 

syndrome

250 mg magnesium 

as magnesium oxide 

daily

+400 IU vitamin E 

daily

No significant 

difference: total 

testosterone, SHBG, 

plasma GSH, MDA

Decrease: hirsutism, 

hs-CRP

Increase: magnesium, 

plasma NO, TAC levels

12 weeks

Afzali et al., 

2019 (37)

57.2 ± 11.0 

(intervention)

55.5 ± 4.9 (placebo)

F/M 29/28 Grade 3 diabetic 

foot ulcer

250 mg magnesium 

oxide daily

+400 IU vitamin E 

daily

No significant 

difference:total 

cholesterol levels

Decrease: triglycerides, 

LDL-c, hs-CRP, 

MDA, FPG, insulin, 

insulin resistance, 

HbA1c

Increase: insulin 

sensitivity, HDL-c, TAC

12 weeks

Jamilian et al., 

2019 (32)

27.7 ± 4.0 

(intervention)

29.1 ± 4.1 (placebo)

F 30/30 Gestational 

diabetes mellitus

100 mg magnesium, 

4 mg zinc, 400 mg 

calcium, 200 IU 

vitamin D twice a day

Decrease: FPG, hs-CRP, 

Plasma MDA 

concentrations

Increase: Magnesium, 

Zinc, Calcium, TAC 

levels

6 weeks

(Continued)
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TABLE 1  (Continued)

First 
author 
et al., 
year

Age (years, 
mean ± SD or 
range)

Sex Number of 
participants 

(intervention/
placebo)

Health 
conditions

Intervention Outcome 
(Difference 
between 
groups at the 
end of the 
intervention)

Follow-up

Kheyruri 

et al., 2021 

(28)

41.00 ± 49.00 

(intervention)

42.00 ± 51.00 

(placebo)

F 42/41 Middle-aged, 

Vitamin D 

deficiency, 

BMI ≥ 25 kg/m2

a 250-mg magnesium 

tablet daily

+a 50,000-IU vitamin 

D soft gel weekly

No significant 

difference: Magnesium, 

IL-6, TNF-α

Decrease: hs-CRP

Increase: 25(OH)D

8 weeks

Abiri et al., 

2022 (31)

34.40 ± 9.39 

(intervention)

34.36 ± 9.36 

(placebo)

F 25/25 Obese, Mild to 

moderate 

depressive 

symptoms

a 250-mg magnesium 

tablet daily

+ a 50,000 IU vitamin 

D soft gel weekly

Decrease: Weight, BMI, 

WC, BDI-II, TNF-α, 

IL-6, hs-CRP

Increase: 25(OH)D, 

Magnesium, BDNF, 

SIRT1

8 weeks

Cheung et al., 

2022 (25)

45.3 ± 13.5 

(intervention)

41.0 ± 11.2 

(placebo)

F/M 21/23 Overweight and 

obese

360 mg magnesium 

glycinate daily

+1,000 IU vitamin D3 

daily

No significant 

difference: IL-6, CRP

Increase: 25(OH)D

12 weeks

F, female; M, male; IU, International Unit; SD, Standard Deviation; 25(OH)D, 25-hydroxyvitamin D; BMI, body mass index; WC, waist circumference; BDI-II, Beck Depression Inventory-II; 
BDNF, brain-derived neurotrophic factor; SIRT1, Sirtuin1; Mg, magnesium; hs-CRP, hypersensitive-C-reactive protein; CRP, C-reactive protein; TNF-α, tumor necrosis factor alpha; IL, 
interleukin; FPG, fasting plasma glucose level; MDA, malondialdehyde; TAC, total antioxidant capacity; LDL-c, low density lipoprotein cholesterol; LS-α-TOH, lipid standardized-α-
tocopherol; HDL-c, high density lipoprotein cholesterol; Apo A1, apolipoproteins A1; HOMA-IR, homeostatic model of assessment for insulin resistance; VLDL-c, very low density 
lipoprotein-cholesterol; QUICKI, quantitative insulin sensitivity check index; SHBG, sex hormone-binding globulin; GSH, glutathione; NO, nitric oxide; HbA1c, hemoglobin A1c; m2, square 
metre; kg, kilogram; mg, microgram; ng, nanogram; mL, millilitre.

FIGURE 2

Assessment of the risk of bias for the included studies.
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considered satisfactory. The findings demonstrated a notable rise in 
serum magnesium concentrations post-supplementation (MD: 0.16, 
95%CI:0.10, 0.22, p < 0.00001, I2 = 77%) (Figure 3B).

3.4.3 Effect of co-supplementation on 
hypersensitive-C reactive protein

The combined outcome of five separate studies (28, 31, 32, 36, 37), 
involving a total of 310 patients, demonstrated a significant impact of 
co-supplementation for a duration of 6–12 weeks on reducing serum 
hs-CRP levels (MD: −1.19, 95%CI: −1.95, −0.42, p = 0.002, I2 = 88%) 
(Figure 4A).

3.4.4 Effect of co-supplementation on 
interleukin-6

Three independent studies (25, 28, 31), which focused on 177 
patients with inadequate levels of vitamin D, were included to receive 
magnesium and vitamin D co-supplementation (MD: −0.09, 95%CI: 
−0.33, 0.15, p = 0.46) (Figure 4B). Overall, there were no significant 
differences among the groups. There was no heterogeneity among 
these findings (I2 = 0%).

3.4.5 Effect of co-supplementation on tumor 
necrosis factor-α

A meta-analysis of two studies (28, 31) investigated the impact of 
co-supplementation of magnesium and vitamin D on the levels of 
TNF-α in 133 patients. There was a significant decrease in serum 
TNF-α levels (MD: −0.87, 95%CI: −1.62, −0.11, p = 0.02) (Figure 4C). 
The analysis did not reveal any heterogeneity.

3.4.6 Effect of co-supplementation on 
triglyceride levels

A meta-analysis involving three studies (33, 35, 37) investigated 
the impact of co-supplementation of magnesium and vitamin E on TG 

levels among 152 participants. Our findings indicated no statistical 
significance in TG levels (MD = 1.84, 95%CI: −28.92, 32.60, p = 0.91, 
I2 = 59%)(Figure 5A).

3.4.7 Effect of co-supplementation on low 
density lipoprotein cholesterol

The results derived from four distinct studies (33–35, 37), 
including a total of 212 participants, indicated that 
co-supplementation of magnesium and vitamin E for 6 to 
12 weeks did not significantly impact the decline in serum LDL-c 
levels (MD: −4.56, 95%CI: −14.19, 5.08, p = 0.35, I2  = 38%) 
(Figure 5B).

3.4.8 Effect of co-supplementation on high 
density lipoprotein cholesterol

In this meta-analysis, data from four independent studies were 
incorporated (33–35, 37), which collectively examined 212 obese or 
overweight individuals with co-supplementation of magnesium and 
vitamin E (MD: 1.96, 95%CI: −3.07, 6.98, p = 0.45, I2  = 73%) 
(Figure 5C). Thus, the findings indicated no statistically significant 
differences among the groups.

3.5 Subgroup analysis results

3.5.1 Subgroup analysis of 25(OH)D
The findings from the subgroup analysis indicate that the impact 

of co-supplementation with magnesium and vitamin D on serum 
25(OH)D levels may vary according to dosage.

For participants receiving therapeutic doses of vitamin D, the 
analysis demonstrated a significant effect (MD = 23.17, 95% CI: 21.53, 
24.82, p < 0.00001, I2 = 0%) (Figure 6A). Conversely, in participants 
who received supplementary doses or lower amounts of vitamin D, 

FIGURE 3

(A) Meta-analysis forest plot of the effect of magnesium and vitamin D co-supplementation on serum 25-hydroxyvitamin D levels. (B) Meta-analysis 
forest plot of the effect of magnesium and vitamin D/E co-supplementation on serum magnesium levels.
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FIGURE 4

(A) Meta-analysis forest plot of the effect of magnesium and vitamin D/E co-supplementation on serum hypersensitive-C reactive protein levels. 
(B) Meta-analysis forest plot of the effect of magnesium and vitamin D co-supplementation on serum interleukin-6 levels. (C) Meta-analysis forest plot 
of the effect of magnesium and vitamin D co-supplementation on serum tumor necrosis factor-α levels.

FIGURE 5

(A) Meta-analysis forest plot of the effect of magnesium and vitamin E co-supplementation on serum triglyceride levels. (B) Meta-analysis forest plot of 
the effect of magnesium and vitamin E co-supplementation on serum low density lipoprotein cholesterol levels. (C) Meta-analysis forest plot of the 
effect of magnesium and vitamin E co-supplementation on serum high density lipoprotein cholesterol levels.
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two studies reported no significant effect (MD = 2.98, 95% CI: −0.85, 
6.81, p = 0.13, I2 = 66%) (Figure 6B).

In summary, the results suggest that administering a therapeutic 
dose of 25(OH)D substantially increases serum levels of 25(OH)D, 
while it appears ineffective for those taking supplementary doses or 
lower quantities. This indicates that the efficacy of co-supplementation 
regarding 25(OH)D levels may be influenced by the dosage administered.

3.5.2 Subgroup analysis of magnesium
The results of the subgroup analysis indicate that the 

heterogeneities among subgroups decrease when categorized by the 
types of vitamin supplements.

In participants who received magnesium in conjunction with 
vitamin D, four studies reported a significant effect (MD: 0.09, 95% CI: 
0.01, 0.17, p = 0.02, I2 = 66%) (Figure 7A). In contrast, among those 
taking magnesium with vitamin E, five studies revealed a substantial 
effect (MD: 0.21, 95% CI: 0.15, 0.27, p < 0.00001, I2 = 57%) (Figure 7B).

These findings suggest that the specific vitamins combined with 
magnesium do not change the initial conclusion—whether it is 
vitamin D or E; however, they may introduce a potential source 
of variability.

3.5.3 Subgroup analysis of hypersensitive-C 
reactive protein

The results from the subgroup analysis indicate that the effects of 
co-supplementation on serum hypersensitive-C reactive protein levels 
vary among different subgroups.

The outcomes of the subgroup analysis concerning magnesium 
co-supplemented with vitamins D/E on serum hs-CRP levels are 
illustrated in Figures  8A,B. In the study population, a significant 
reduction in serum hs-CRP levels was observed in participants 
receiving magnesium and vitamin D compared to those in the placebo 
group (MD = −0.66, 95% CI: −1.17, −0.14, p  = 0.01, I2  = 76%) 
(Figure 8A). Conversely, no statistically significant differences were 
found in subjects receiving magnesium with vitamin E 
supplementation (MD = −3.54, 95% CI: −9.52, 2.43, p  = 0.25, 
I2 = 96%) (Figure 8B).

In summary, the results suggest that the effect of 
co-supplementation with magnesium and vitamins D/E on serum 
hs-CRP levels may depend on the specific type of vitamin, indicating 
that different vitamins may influence serum hs-CRP to varying extents.

3.6 Sensitivity analysis

Sensitivity analyses were conducted on the study results to 
evaluate their stability. A stepwise elimination approach was 
employed for outcome measures that exhibited significant 
heterogeneity, assessing whether the combined effect size estimates 
from the remaining studies still fell within the 95% confidence 
interval of the overall effect size. The results indicated that the 
removal of any individual study did not substantially alter the overall 
conclusions, thereby affirming the validity of the research findings 
(Supplementary Tables 2A–E). Regarding the impact of 
co-supplementation on serum magnesium levels, a sensitivity analysis 
was performed by systematically excluding specific studies. This 
analysis revealed that the research conducted by Afzali (37) was the 
principal contributor to the observed heterogeneity. Its exclusion 
reduced heterogeneity to I2 = 66%, while the effect size remained 
relatively constant (MD: 0.14, 95% CI: 0.08, 0.19, p  < 0.00001). 
Similarly, when evaluating the effects of co-supplementation on 
serum levels of hypersensitive C-reactive protein, the same 
methodology indicated that Afzali’s study (37) was again the leading 
source of heterogeneity. The removal of this study resulted in a 
decrease in heterogeneity to I2 = 64%, while the effect size remained 
largely stable (MD: −0.63, 95% CI: −1.04, −0.22, p  = 0.003). In 
assessing the effect of co-supplementation on serum triglyceride 
levels, omitting Jamilian’s study (35) led to a reduction of 
heterogeneity to 42%, with the effect size remaining stable (MD: 
−16.15, 95% CI: −20.36, 52.66, p = 0.39). Furthermore, in examining 
the influence of co-supplementation on serum high-density 
lipoprotein cholesterol levels, the research by Farvid (33) was 
identified as the primary source of heterogeneity. Its exclusion 
resulted in a reduction in heterogeneity to 24%, while the effect size 

FIGURE 6

Subgroup analyses of 25-hydroxyvitamin D(25(OH)D). (A) Studies with therapeutic dosage vitamin D supplementation. (B) Studies with supplementary 
dosage or less vitamin D supplementation.
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continued to exhibit significant stability (MD: −0.01, 95% CI: −2.88, 
2.86, p  = 1.00). Nevertheless, in terms of the impact of 
co-supplementation on serum 25(OH)D levels, changing the 
inclusion of any studies did not have a notable effect on heterogeneity, 
which continued to be high (97, 98, 99, 99%).

3.7 Publication bias

The funnel plot illustrates the assessment results regarding the risk 
derived from nine studies that investigated the effects of 
co-supplementing magnesium with vitamins D/E on serum magnesium 
concentrations. The findings indicate that significant publication bias 
is not present in these nine studies (Figure  9). Furthermore, the 

application of Egger’s test revealed no evidence of publication bias 
across all measures in this analysis (Supplementary Table 3).

4 Discussion

This study marks the first comprehensive review and meta-
analysis of the inflammatory effects of co-supplementation of vitamin 
D/E and magnesium based on evidence from RCTs. Findings from the 
analysis reveal that co-supplementation of these two essential 
nutrients leads to increased levels of 25-(OH)D and serum magnesium 
in the body. Additionally, it results in a significant reduction in serum 
levels of hs-CRP and TNF-α, showcasing the potential benefits of this 
combined supplementation. Notably, the study did not demonstrate a 

FIGURE 7

Subgroup analyses of magnesium (Mg). (A) Studies with magnesium and vitamin D co-supplementation. (B) Studies with magnesium and vitamin E 
co-supplementation.

FIGURE 8

Subgroup analyses of hypersensitive-C reactive protein (hs-CRP). (A) Studies with magnesium and vitamin D co-supplementation. (B) Studies with 
magnesium and vitamin E co-supplementation.
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statistically significant effect of co-supplementation of vitamin D/E 
and magnesium on IL-6 levels. Further research is warranted to 
explore the mechanisms behind these effects and to understand the 
implications for inflammation-related health outcomes.

Traditionally, the benefits of vitamin D supplementation include 
preventing and treating sarcopenia and osteoporosis (38). Muscle 
deterioration and osteoporosis are associated with vitamin D 
deficiency, increasing the risk of fractures. Studies also indicate that a 
lack of vitamin D can lead to a decrease in skeletal muscle mass and 
strength (39). Conflicting research results are attributed to variations 
in individuals, vitamin D doses, and environmental factors (40). The 
recommended daily doses of vitamin D range from 200 to 2000 IU, 
with a daily intake of 1,000 IU suggested for those at high risk of 
deficiency (41). However, excessive vitamin D supplementation can 
result in symptoms like nausea, vomiting, weakness, and potential 
kidney damage. Current research shows a positive impact of vitamin 
D supplementation on specific musculoskeletal functions (42). 
However, the effectiveness of vitamin D supplementation is often not 
satisfactory; this can be attributed to factors such as patient compliance 
or variations in intestinal absorption problems (43). To achieve the 
desired effect, it is often necessary to supplement vitamin D along with 
other trace elements. Palacios et al. (42) carried out a research study 
on vitamin D supplementation during pregnancy to determine if 
administering vitamin D alone or with calcium or other vitamins and 
minerals to pregnant women can effectively enhance maternal and 
neonatal health. The addition of vitamin D to the diet of pregnant 
women could potentially reduce the risk of pre-eclampsia, gestational 
diabetes, and low birthweight, as well as lower the incidence of severe 
postpartum hemorrhage. Nevertheless, there may be minimal to no 
impact on the risk of premature delivery before the completion of 
37 weeks of gestation period. On the other hand, the combined 
administration of vitamin D and calcium to expectant mothers has 
shown promise in lowering the chances of developing pre-eclampsia 
(42). In the research conducted by Bouderlique et al., the effects of 
extended use of vitamin D supplements, in conjunction with or 

without a calcium-enriched meal plan, on the formation of Randall’s 
plaque in a rodent model Abcc6 mice were examined. This distinctive 
experiment shed light on the possible combined hazard linked to 
taking vitamin D supplements and consuming calcium in the 
progression of Randall’s plaque (44). In their review, Grant et  al. 
explored the impact of vitamin D on respiratory tract infections, 
specifically influenza and coronavirus disease-2019. The potential 
benefits of vitamin D supplementation in reducing the risk of 
infections were also examined. Findings from observational studies 
and clinical trials on the effectiveness of vitamin D supplementation 
in decreasing influenza risk were reported to be inconsistent (45). 
Another review and analysis of aggregate data from RCTs were 
undertaken to assess the impact of vitamin D supplementation on 
preventing acute respiratory infections and reported that compared to 
placebo, vitamin D supplementation decreased the overall risk of 
acute respiratory infections (46).

Vitamin E has a significant role as an antioxidant, which may help 
prevent cardiovascular disease (CVD) (47). Epidemiological studies 
have demonstrated that increased vitamin E intake may lead to a 
reduced risk of developing CVD. However, this beneficial effect is only 
shown among individuals who used high doses of vitamin E 
supplements for over 2 years (48) Vitamin E can also enhance T-cell-
mediated functions in the aging population, and contributes to both 
innate and adaptive immune responses. Research reports that 
supplementing 800 IU of vitamin E per day for 1 month in healthy 
older individuals resulted in notable improvements in both in vivo and 
ex vivo indices of T cell functions (≥60 years old) (49). Furthermore, 
vitamin E also suppress inflammatory factors that indirectly help in 
the regulation of T cells (11). Vitamin E supplementation in older 
adults has been associated with a reduction in levels of various 
inflammatory markers, including TNF-α and IL-6, particularly in 
response to pathogens (50, 51). Additionally, vitamin E activates the 
AMP-activated protein kinase (AMPK) pathway, leading to the 
phosphorylation of acetyl-CoA carboxylase; it helps to diminish fatty 
acid synthesis. Bai et al. (52) demonstrated that aerobic exercise and 

FIGURE 9

Funnel plot.
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vitamin E supplementation in rat subjects significantly improved 
conditions resembling non-alcoholic fatty liver disease.

Magnesium facilitates various crucial functions in the body, 
particularly in relation to muscle mass and strength, including the 
production of energy, transportation of substances across cell 
membranes, maintenance of electrolyte balance, and muscle 
contractions and relaxations (53). One randomized controlled trial 
showed improved physical performance of healthy women (average 
age 71.5 ± 5.2 years) when they combined magnesium 
supplementation (300 mg/day) with a light exercise program (54). 
However, another separate RCT found that taking 250 mg of 
magnesium daily for 8 weeks did not increase handgrip strength and 
knee extension strength relative to a placebo group (53). However, 
when middle-aged women with low vitamin D levels took a 
combination of vitamin D (50,000  IU per week) and magnesium 
(250 mg daily) supplements for 8 weeks, their muscle strength, 
function, and certain inflammatory markers were positively affected 
(28). Along with its role in facilitating muscle relaxation, magnesium 
is of utmost importance in the synthesis of proteins and 
ATP. Furthermore, it aids in the transfer of calcium and potassium 
ions through cell membranes, a vital process for neuronal activity as 
well as muscle contraction (55). The responses to magnesium 
supplementation could be due to the bioavailability of magnesium 
from daily intake of magnesium oxide (56). The response to 
supplementation might be determined by the elemental magnesium 
content as well as the bioavailability of the magnesium supplement. 
Even though magnesium oxide has a higher elemental magnesium 
content compared to other supplement forms, it possesses lower 
bioavailability (57). Additionally, the response to magnesium 
supplementation could be impacted by the baseline magnesium level 
or baseline muscle strength. People with lower baseline serum 
magnesium levels or baseline muscle strength usually exhibit a more 
favorable response to supplementation of magnesium (28). 
Concurrently, researchers discovered that patients experiencing a lack 
of vitamin D demonstrated a notable rise in serum 25(OH)D 
(13.0 ± 5.06 ng/mL) when provided with co-supplements of both 
vitamin D and magnesium. This increase was markedly greater 
compared to the group receiving only vitamin D supplementation, 
which resulted in a serum 25(OH)D level of (2.39 ± 0.46 ng/mL) (25). 
Studies (21) have suggested that magnesium plays a critical function 
in the creation and breakdown of parathyroid hormone and vitamin 
D. Specifically, magnesium influences the actions of three vital 
enzymes that directly impact the levels of 25(OH)D (58) These 
enzymes include 25-hydroxylase, 1α-hydroxylase, and 24-hydroxylase. 
Magnesium also influences the operation of vitamin D-binding 
protein (VDBP). All these aforementioned enzymes and VDBP 
necessitate magnesium for their optimal operation. According to the 
literature and the outcomes of our meta-analysis, it is recommended 
to supplement vitamin D and magnesium jointly for individuals 
experiencing vitamin D deficiency. This supplementation can increase 
the concentration of serum magnesium ions in patients and potentially 
enhance the serum 25-(OH)D levels.

The effect of co-supplementation of vitamin D and magnesium in 
reducing serum hs-CRP levels was large and significant in our meta-
analysis. Hs-CRP, as an effective means of identifying potential 
systemic inflammation, proves to be  valuable. Irrespective of 
conventional risk factors, increased hs-CRP levels in individuals 
without apparent symptoms can function as a significant indicator of 

potential heart attack, stroke, diabetes, and cardiovascular fatality. By 
potentially assisting in therapy selection and foreseeing vascular 
incidents, hs-CRP levels hold potential significance (59) Kim et al. 
investigated the correlation between serum magnesium and various 
inflammatory markers such as hs-CRP, IL-6, and fibrinogen (60) The 
study sample comprised 4,497 individuals aged 18–30 years, from the 
United States. The outcomes demonstrated an inverse relationship 
between serum magnesium concentrations and hs-CRP levels. This 
investigation delved into the possible association between serum 
magnesium and inflammatory indicators in a young American cohort. 
This suggests that higher serum magnesium concentrations may 
be associated with lower hs-CRP levels, indicating a potential anti-
inflammatory effect of magnesium (60). There is a clear correlation 
between inadequate levels of vitamin D and inflammation in 
overweight persons (61, 62). Various clinical trials have thoroughly 
assessed the impact of vitamin D on managing inflammation. An 
analysis of 40 female locals from the neighborhood discovered that a 
solitary dose of vitamin D (200,000 IU) noticeably lowered hs-CRP 
levels following a 4-week timeframe. Particularly, administering a high 
dose of vitamin D3 lowered inflammatory indicators and heightened 
the overall antioxidant capability in older females facing vitamin D 
insufficiency (63).

The interplay between vitamin D and magnesium has garnered 
significant attention due to their potential synergistic effects on 
vascular endothelial function, a critical aspect of cardiovascular 
health. Recent research highlights the importance of dietary 
magnesium intake in modulating the relationship between vitamin D 
levels and various cardiovascular parameters, including blood 
pressure. A study utilizing data from the National Health and 
Nutrition Examination Survey (NHANES) demonstrated that higher 
magnesium intake significantly modified the negative relationship 
between vitamin D and systolic blood pressure (SBP), suggesting that 
magnesium may amplify the beneficial effects of vitamin D on 
vascular health (64). Furthermore, the interaction between these two 
nutrients appears to extend to metabolic health, with evidence 
suggesting that magnesium intake can influence the association 
between vitamin D levels and insulin resistance, thereby impacting 
overall cardiovascular risk profiles (65). In addition to their direct 
effects on endothelial cells, both magnesium and vitamin D are 
implicated in the modulation of inflammatory pathways that can 
adversely affect vascular health. Magnesium deficiency is associated 
with increased oxidative stress and inflammation, both of which 
contribute to endothelial dysfunction and cardiovascular disease (66). 
Conversely, vitamin D has been recognized for its anti-inflammatory 
properties, which may help mitigate the inflammatory responses that 
compromise endothelial integrity (67).

In this meta-analysis, we  observed that the combined use of 
vitamin D and magnesium did not significantly impact IL-6 serum 
levels. Although there is substantial molecular evidence indicating the 
key role of vitamin D in changing inflammatory markers, the results 
in adult observational studies are conflicting, and clinical trials mainly 
target specific disease categories. As a result, the clinical evidence 
associating vitamin D with inflammation in older individuals is 
remarkably inconsistent (68). A clinical study conducted by Moslehi 
et  al. investigated the effects of magnesium supplementation on 
hs-CRP, plasma fibrinogen, and IL-6 levels in healthy middle-aged 
overweight women. The participants were given 250 mg of magnesium 
oxide daily for 8 weeks (69). The results of the study showed that 
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compared with baseline values, inflammatory markers such as hs-CRP 
and IL-6 did not decrease in the magnesium group (63). Although the 
exact mechanism by which magnesium exerts its anti-inflammatory 
properties remains largely unraveled, studies suggest that insufficient 
magnesium may lead to an increase in intracellular calcium, leading 
to inflammation (70). Among the three RCTs included in this meta-
analysis to enroll and analyze data on the indicator of IL-6, only one 
RCT reported a significant reduction in IL-6 levels after vitamin D and 
magnesium supplementation. The remaining RCTs did not report any 
significant differences. Further clinical studies in the future should 
examine changes in inflammatory factors, especially IL-6, following 
simultaneous intake of vitamin D and magnesium.

Although only two RCTs provided clinical data in this meta-
analysis, combined vitamin D and magnesium supplementation had 
a significant effect on reducing serum TNF-α levels. TNF-α is a 
pro-inflammatory cytokine, known for its significant involvement in 
inflammation, apoptosis, and cancer. It plays a crucial role in 
regulating vasodilatation, formation of edema, leukocyte adhesion, 
blood coagulation, and oxidative stress (71). TNF-α is closely 
associated with the development of chronic inflammation and cancer. 
Inflammaging, which is chronic, low-grade inflammation that occurs 
with advanced age, is linked to increased levels of TNF-α (72). King 
and colleagues found a noteworthy association between decreased 
magnesium levels in the bloodstream and elevated levels of TNF-α 
(73). Additionally, studies have indicated that 25-(OH)D and 1,25-
(OH)2D3 are capable of suppressing human monocytes-derived 
TNF-α production in macrophages (22). Vitamin D has also been 
demonstrated to enhance endothelial barrier integrity and counteract 
TNF-α-induced inflammatory conditions (74). Furthermore, vitamin 
D treatment has also been observed to reverse oxidative stress, 
improve antioxidant status, and alleviate the inflammatory response 
induced by TNF-α (75). We  anticipate that further clinical 
experimental studies in the future will provide evidence supporting 
the claim that vitamin D and magnesium co-supplementation can 
effectively decrease the levels of serum TNF-α and other inflammatory 
factors in patients.

In our meta-analysis subgroup analysis, magnesium and vitamin 
E co-supplementation did not result in a reduction of inflammatory 
factors in obese patients. However, there is a substantial body of 
literature supporting the existence of this phenomenon. Notably, a 
study of effects of magnesium and vitamin E co-supplementation on 
hormonal status and biomarkers of inflammation and oxidative stress 
in women with polycystic ovary syndrome demonstrated that 
co-supplementation for 12 weeks significantly decreased serum 
hs-CRP levels (36). When examining magnesium and vitamin E 
individually, one study indicated that magnesium supplementation as 
magnesium oxide at a dosage of 250 mg/day, administered over 
8 weeks, did not affect inflammatory markers in middle-aged 
overweight women. In contrast, vitamin E demonstrates a more 
pronounced anti-inflammatory effect; a meta-analysis by Saboori et al. 
found that vitamin E supplementation significantly reduced CRP 
levels (76). The anti-inflammatory effects of magnesium supplements 
may be due to the antagonistic action of magnesium against calcium 
and their ability to inhibit nuclear factor-kappa B (NF-κB) (77).

Numerous studies have investigated the joint supplementation of 
magnesium and vitamin E, and found positive results in reducing 
indicators of lipid metabolism in patients. However, our meta-analysis 
found no significant reductions of TG, LDL-c, and HDL-c levels in 

obese patients. In an animal study, vitamin E supplementation over a 
period of 20 weeks effectively reduced serum levels of TG and VLDL-
cholesterol, but did not affect the profiles of other lipids (78). 
Additionally, magnesium intake may lower circulating levels of TG 
and VLDL-cholesterol by enhancing the excretion of fecal fat and 
increasing the activity of lipoprotein lipase (79). Another clinical study 
indicated that magnesium supplementation over a duration of 
4 months led to a reduction in TG levels among pre-diabetic patients 
with hypomagnesemia (80). Additionally, Ekhlasi et al. (81) reported 
that symbiotic and vitamin E co-supplementation resulted in 
decreased levels of TG, total cholesterol, and LDL-c, while having no 
significant impact on HDL-c concentrations. Consistent with our 
findings, a meta-analysis conducted by Xu et al. (82) reported no 
significant effects of vitamin E supplementation on lipid profiles. 
Concurrently, magnesium supplementation failed to improve lipid 
levels in both diabetic and non-diabetic individuals (83).

Although magnesium or vitamin E supplementation alone have a 
positive regulatory effect on lipid metabolism, the effectiveness of 
their combined use may be influenced by multiple factors. Research 
has shown that supplementing high doses of magnesium (such as the 
medium to high dose group) or vitamin E (such as 200–400 mg/kg) 
alone can significantly reduce cholesterol (TC), low density lipoprotein 
cholesterol(LDL-c), and triglycerides. However, when combined 
supplementation, if the dosage is not optimized, it may not be possible 
to produce additive or synergistic effects. High doses of magnesium 
may interfere with the absorption of fat soluble vitamins such as 
vitamin E (84). Another possible reason could be the redundancy of 
oxidative stress regulation. Vitamin E reduces lipid synthesis and 
enhances antioxidant capacity by activating the Nrf2/CES1 pathway, 
while magnesium affects lipid metabolism by regulating enzyme 
activity. The interaction between inflammation and lipid metabolism 
should also be  considered. Vitamin E reduces inflammation by 
inhibiting the NF-κB pathway, while magnesium may affect the 
inflammatory response through other pathways, such as regulating 
cytokines. If the inflammatory state is not adequately regulated, 
combined supplementation may not further improve lipid metabolism 
(85, 86).

It is inevitable that some specific diseases such as polycystic ovary 
syndrome (PCOS) and gestational diabetes mellitus limit the inclusion 
of male participants. In sensitivity analysis, we found that gender is a 
possible source of heterogeneity. In the study of triglyceride, after 
excluding Jamilian’s study, the heterogeneity of the study decreased 
from 59 to 42%. Moreover, in the study of hs-CRP, IL-6, TG, HDL-c, 
the conclusion did not change either in F/M or F group, suggesting 
that the combined supplementation of Mg and vitamin E may not 
significantly improve lipid metabolism in terms of mechanism. On the 
other hand, magnesium and vitamin D co-supplementation may also 
improve inflammatory status for populations of different genders. 
However, we found that the combined supplementation of magnesium 
and vitamin E had a more significant effect on reducing low-density 
lipoprotein cholesterol (LDL-C) in women in the summary analysis of 
Jamilian’s (35) and Maktabi’s (34) studies. We thought that it mainly 
related to some synergistic mechanisms. The first reason can be the 
improvement of insulin resistance. In women with PCOS and 
gestational diabetes, magnesium combined with vitamin E significantly 
reduced fasting insulin level (−2.93μIU/mL) and HOMA-IR index 
(−0.78), while improving insulin sensitivity index (QUICKI+0.01) (34, 
35). The improvement of insulin resistance can reduce the secretion of 
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very low-density lipoprotein (VLDL) in the liver, thereby lowering the 
level of LDL-C precursor (34, 35, 87). The above is based on a small 
sample size, more researches are required to solve the problem of 
gender imbalance and generate more convincing conclusions.

Due to strict inclusion criteria, this meta-analysis included only 
nine RCTs with a small overall patient population. Future studies will 
include more patient data to enhance the statistical significance of the 
meta-analysis. Gender imbalance was noted in the RCTs included in 
this study, with three studies with no gender restrictions and six 
articles exclusively featuring female patients. Furthermore, subgroup 
analyses were conducted separately for participants receiving 
magnesium and vitamin D, as well as magnesium and vitamin E to 
evaluate the impact of magnesium and vitamin D/E supplementation 
on inflammatory marker hs-CRP. In addition, the variations in patient 
demographics, such as obesity, gestational diabetes, type 2 diabetes, 
polycystic ovary syndrome, and vitamin D deficiency among the 
included studies induced potential biases. Efforts need be made to 
include additional literature and mitigate these biases.

5 Conclusion

This systematic review and meta-analysis indicates that 
co-supplementation of vitamin D/E and magnesium in patients may 
potentially increase serum levels of 25(OH)D and decrease the levels 
of inflammatory markers like hs-CRP and TNF-α. While, the 
combined supplementation of vitamin E and magnesium ions did not 
improve lipid metabolism. The heterogeneity across studies remains a 
critical concern. Variability in study designs, populations, dosing 
regimens, and duration of interventions contributes to inconsistent 
outcomes, complicating our ability to draw definitive conclusions 
about the efficacy and optimal use of these supplements. Future 
research should therefore focus on specific lipid fractions, oxidative 
stress markers with longer follow-up and larger scale RCTs, exploring 
precision nutrition intervention strategies.
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