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Relationships between vitamin C 
intake and COPD assessed by 
machine learning approaches 
from the NHANES (2017–2023)
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Background: This research aims to explore the possible link between Vitamin 
C Intake (VCI) and the incidence of Chronic Obstructive Pulmonary Disease 
(COPD) in Americans aged over 20.

Methods: This study analyzed data from 10,757 participants with or without 
COPD from NHANES (2017–2023). The primary exposure variable, VCI, was 
grouped by quartiles. Missing data were handled via multiple imputations. A 
Directed Acyclic Graph (DAG) was used to pre-identify VCI -and COPD-related 
covariates. Variance Inflation Factor (VIF) eliminated highly collinear variables. 
Machine learning methods (LASSO, Random Forest, and XGBoost) screened 
variables. A weighted multivariate logistic regression model explored the 
VCI-COPD relationship. Restricted Cubic Spline (RCS) and threshold analysis 
examined non-linear relationships. Subgroup analysis and interaction tests 
ensured reliability. A nomogram showed the predictive factors’ importance for 
COPD. Model performance was reported using the Area Under the Receiver 
Operating Characteristic Curve (AUC).

Results: In all models, we found that there was a negative correlation between 
VCI (≥50.1 mg/day) and the prevalence of COPD. The RCS and threshold 
analysis results show a negative correlation between COPD and VCI (≤135.6 mg/
day). Subgroup analysis shows a negative association between VCI and the 
prevalence of COPD, specifically among females and individuals with dietary 
fiber intake in the second quartile (Q2). The AUC results show that our model 
has good diagnostic performance.

Limitations: The cross-sectional design limits causal inference and lacks 
external validation.

Conclusion: An elevated VCI within 50.1–135.6 is linked to a decreased risk for 
COPD.
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Highlights

 • The relationship between vitamin C and COPD is not linear but 
exhibits a threshold effect. When vitamin C levels are 50.1–
135.6 mg, it is negatively correlated with the risk of COPD.

 • Vitamin C intake provides new guidance on preventing and 
treating COPD.

 • LASSO + Random Forest + XGBoost shows excellent 
variable selection ability and avoids the overfitting problem in 
the model.

 • Further clinical trials are needed to investigate the effectiveness 
and optimal range of vitamin C intake.

1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) remains a 
leading cause of morbidity and mortality worldwide. According 
to the GOLD 2024 Report, COPD affects approximately 384 
million people globally, with a prevalence of 10.3% among adults 
aged 40 years and older. It is the third leading cause of death 
worldwide, accounting for over 3.2 million deaths annually. The 
main features of COPD are persistent airway limitation and 
chronic inflammation in the airways and alveoli (1, 2). According 
to reports, from 2016 to 2020, the global number of COPD 
patients increased from 426 million to 467 million. It is projected 
that by 2025, the global number of COPD patients will reach 
around 530 million, with a Compound Annual Growth Rate 
(CAGR) of 2.7% for patient numbers from 2020 to 2025 (3, 4). In 
the United States, approximately 24 million people have airway 
limitations, among which about 16 million are diagnosed with 
COPD (5). The harms of COPD include respiratory failure (6), 
cardiovascular diseases (7, 8), psychological impacts (9, 10), sleep 
disorders (11), gastric ulcers (12, 13), spontaneous pneumothorax 
(14, 15), cor pulmonale (16, 17), severe impairment of lung 
function (18, 19), and so on, leading to a decline in the quality of 
life and a poor prognosis for patients. Thus, preventing COPD is 
crucial. Previous research has indicated that maintaining good 
lifestyle habits and a healthy diet can notably lower the 
occurrence rate of COPD (20). However, there is limited research 
available on the relationship between COPD and VCI per day.

VC helps with antioxidant effects, enhances the function of 
the immune system, has anti-inflammatory properties, promotes 
iron absorption, lowers blood hypertension, and improves 
vascular function and so on (21). For adults aged 19 years and 
older, the Recommended Dietary Allowance (RDA) for VC is 
90 mg/day for men and 75 mg/day for women, according to the 
“Vitamin C—Health Professional Fact Sheet” of the National 
Institutes of Health (NIH) in the United States (22). Regrettably, 
in contemporary society, many people have difficulty getting 
enough Vitamin C Intake (VCI). This is because they often 
consume processed foods, have imbalanced diets, and may not 
prioritize fresh fruits and vegetables in their daily meals. 
Consequently, the prevalent practice of VC supplementation is 
gaining popularity. VC supplementation refers to increasing VCI 
by taking VC supplements or consuming vitamin C-rich foods to 
meet the body’s VC needs, especially for those who may not get 
enough VC from their daily diet. The relationship between COPD 

and VCI in the general population is still unclear. Figuring out 
this link can help us better understand how COPD and VCI 
interact. It may also have a positive impact on developing 
treatment strategies for COPD. This study aims to explore the 
possible connection between COPD and VCI among NHANES 
participants. The findings could offer better guidance for treating 
and preventing COPD.

2 Methods

2.1 Study population

The NHANES is a wide-ranging survey in the United States. 
It is overseen by the Centers for Disease Control and Prevention 
(CDC). The NHANES amasses cross-sectional data on the 
nutritional status and health of children and adults throughout 
the United States. It started in 1999 and conducts surveys every 
two years. The survey uses a sample that represents the entire 
nation. The objective of this initiative is to assess nutritional well-
being and overall well-being among Americans aged 20 and 
above. The Institutional Review Board of the National Center for 
Health Statistics (NCHS) gave approval to this study. All 
participants provided written informed consent before taking 
part. We  ensure that the entire research process adhered to 
relevant rules and guidelines. All research has adhered to the 
Declaration of Helsinki.1 This research incorporates information 
from two parts of the NHANES, spanning from 2017 to 2020 and 
from 2021 to 2023, involving a total of 17,041 participants. The 
criteria for participant exclusion in our study include: (1) lack of 
data on vitamin C intake; (2) absence of data regarding COPD; 
(3) surveys with missing information or incomplete data. The 
screening process is depicted in Figure 1.

2.2 The diagnosis of COPD

The diagnosis of COPD mainly depends on the existence of 
incompletely reversible airflow limitation. This is determined by 
a post-bronchodilator ratio of Forced Expiratory Volume in one 
second (FEV1) to Forced Vital Capacity (FVC) that is less than 
0.7, measured using spirometry (23). FEV1 represents the volume 
of air an individual can exhale from their lungs within the first 
second following the deepest possible inhalation and is employed 
to gauge the airflow rate. Conversely, FVC refers to the maximum 
amount of air that can be exhaled following a full inhalation. It 
reflects the total ventilatory capacity of the lungs (24). A 
diminished FEV1/FVC ratio indicates the extent of airway 
obstruction in COPD patients. This ratio serves as one of the 
crucial markers for diagnosing COPD and is also highly 
significant for evaluating the severity of the disease and tracking 
its progression (25). In our article, we will solely select patients 
from the NHANES database diagnosed with COPD or those who 
deny having COPD for discussion.

1 https://www.cdc.gov/nchs/nhanes/index.htm
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2.3 Assessments of VCI

According to the serum test reports in the 2017–2023 
NHANES surveys, data on VCI, defined as the total amount of 
VC that the human body consumes daily through diet, was 
acquired. The obtained VCI values ranged from 0–1977.4 mg 
(26). Subsequently, to better analyze this data, it was classified 
into four groups using quartile grouping: Q1 (0 ≤ VC < 19.3), Q2 
(19.3 ≤ VC < 50.1), Q3 (50.1 ≤ VC < 110.6), Q4 (110.6 ≤ VC ≤ 
1977.4). In this study, we analyzed data from participants’ serum 
test information and medical diagnosis documents, which have a 
certain degree of accuracy.

2.4 Covariates

We selected covariates based on existing literature and 
clinical experience, including gender (male or female); age 
(≥20 years); education (9–11th grade; college graduate or above; 
high school graduate; less than 9th grade; some college or AA 
degree); race (Mexican American; Non-Hispanic Asian; 
Non-Hispanic Black; Non-Hispanic White; Other Hispanic); 
smoke (yes or no); marital status (married/living with partner; 
never married; widowed/divorced/separated); drink (yes or no); 
BMI (14.6–92.3 kg/m2); hypertension (yes or no); diabetes (yes 

or no); dietary fiber (0–127.3 g); vitamin A (0–39,008 mcg); beta-
carotene (0–71,772 mcg); vitamin K (0–2561.1 mcg); calcium 
(0–9,266 mg); potassium (0–14,358 mg); coronary heart disease 
(yes or no); malignancy (yes or no).

2.5 Statistical analyses

This research analyzed data with R statistical software 
(version 4.4.1) to study the link between VCI and COPD. Given 
the survey’s complexity, descriptive statistics were used on 
weighted data. The sample weights came from “WTMECPRP-Full 
sample 3 years MEC exam weight” (2017–2020) and 
“WTMEC2YR-Full sample MEC exam weight” (2021–2023). 
Continuous variables are presented as weighted means and 
standard deviations, and categorical variables are presented as 
weighted percentages. We  compared categorical variables and 
continuous variables between different groups using the 
chi-square test and t-test, respectively. Using multiple imputations 
to handle missing covariate data. We used DAG to pre-identify 
covariates with relationships to VCI and COPD, excluding 
spurious associations. The VIF is used to eliminate variables with 
high collinearity. Machine learning (including LASSO, Random 
Forest, and XGBoost) was used to conduct variable screening, 
incorporate the selected data into multivariate logistic regression 

FIGURE 1

The flow chart of the included participants in this study.
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analysis, and explore the relationship between VCI and COPD 
after adjusting for confounding factors. Three models were 
established: Model 1 with no adjustments, Model 2 adjusting for 
selected covariates (gender, age, race, education, marital, drink, 
and BMI), and Model 3 adjusting for variables selected by 
machine learning (gender, age, education, marital, BMI, 
hypertension, diabetes, dietary fiber, vitamin A, vitamin K, 
calcium, potassium, coronary heart disease, malignancy, and 
smoke). Next, we further performed stratification and interaction 
analyses by all variables and plotted the associated forests. In 
addition, draw the RCS curve and threshold analysis to explore 
the nonlinear relationship between VCI and COPD. Then, a 
nomogram was constructed using the variables selected by 
machine learning to display the relative importance of these 
factors for predicting COPD. Finally, the diagnostic performance 
of the machine learning model and the full-variable model was 
evaluated using the AUC. All statistical tests were two-sided, and 
a p-value <0.05 was statistically significant.

3 Results

3.1 Description of participants’ basic 
information

This study comprised a sample of 10,757 individuals, 
reflecting approximately 0.003% of the American population. 
Table  1 presents the characteristics of participants. COPD is 
associated with various factors, including age, race, education, 
marital, drink, BMI, hypertension, diabetes, nutrient intake 
(dietary fiber, beta-carotene, vitamin C, vitamin K, calcium, and 
potassium), coronary heart disease, malignancies, and smoking 
habits. These factors can significantly influence the development 
of COPD.

3.2 Multiple imputation

We performed imputation using the mice package and 
utilized the ggmice and ggplot2 packages for plotting. After 
filtering the exposure and outcome variables, we set the seed to 
111. Regarding the missing data in the original dataset, for BMI, 
there are 2,690 missing values, accounting for 25.04%; for drink, 
3,833 missing values make up 18.94%. Dietary fiber has 4,536 
missing values with a proportion of 16.81%, while vitamin A, 
beta-carotene, vitamin C, vitamin K, calcium, and potassium all 
have 4536 missing values, each at a proportion of 26.62%. From 
Figure 2A, it’s clear that variables such as “dietary fiber,” “vitamin 
A,” “beta-carotene,” “vitamin C,” “vitamin K,” and “calcium” have 
a significant number of missing values, as indicated by the 
prominent red portions of the bars in the chart. Figure 2B is a 
visualization of the missing data from various variables, 
categorized into continuous and discrete data. In the heatmap 
from Figure 2C, we can observe the correlation of missing data 
patterns between different variables. The legend shows the 
correspondence between the color and the correlation coefficient, 
where blue represents a negative correlation, orange indicates a 

positive correlation, and the deeper the color, the stronger the 
correlation. It can be seen that there is a strong correlation among 
dietary indicators, and a significant correlation is also observed 
between calcium and potassium.    We have included the following 
in the supplementary file for your reference: ① The sample size 
and missing values at each step of the data processing in this 
article. ② The relevant figures and tables of the covariates 
(including vitamin D and magnesium); ③ A summary table of all 
the abbreviations (Supplementary material).

3.3 Covariate selection by machine 
learning

Before establishing a machine learning model, to ensure the 
accuracy and reliability of the model, first, we  used DAG to 
pre-identify covariates with plausible causal relationships to VCI 
and COPD, excluding spurious associations (Figure  3A). Then, 
we  use the VIF to evaluate the degree of collinearity between 
variables. By identifying and excluding variables with a VIF >5 
value, we can simplify the model structure, reduce unnecessary 
variables. As shown in Figure  3B, there is no multicollinearity 
among our variables.

LASSO regression is particularly effective in handling 
multicollinearity by shrinking the coefficients of correlated 
predictors, thereby reducing overfitting and improving model 
interpretability. This is a significant advantage over traditional 
linear regression, which can produce unstable estimates in the 
presence of multicollinearity. We obtained the model coefficients 
at the best lambda value using coef(cv_lasso, s = “lambda.min”). 
The output shows a sparse matrix with some coefficients being 
zero, indicating that these variables are excluded in the optimal 
model. Through computation, we obtained the variables selected 
by Lasso, as follows: gender, age, race, education, marital, drink, 
BMI, hypertension, diabetes, dietary fiber, vitamin A, vitamin C, 
vitamin K, calcium, potassium, coronary heart disease, 
malignancy, and smoke (Figures 3C,D).

Random Forest is a classification algorithm composed of multiple 
decision trees. It constructs machine-learning models by randomly 
sampling training data and determining the optimal splitting 
approach. In Random Forest, each decision tree uses feature metrics 
that match the dataset’s characteristics to assess the significance of 
each feature. The Random Forest algorithm generated 500 trees, and 
each split of the decision tree randomly selected 18 predictive variables 
(BMI, vitamin C, beta-carotene, potassium, calcium, vitamin K, 
vitamin A, dietary fiber, age, education, smoke, race, marital, coronary 
heart disease, diabetes, hypertension, gender, and malignancy) 
(Figure 3E).

XGBoost is an advanced ensemble learning method that 
builds classification trees through iterative boosting. 
We implemented XGBoost with the following specifications: 100 
training rounds (nrounds), binary logistic objective function, 
default learning rate (η  = 0.3), maximum tree depth of 6. The 
algorithm combines multiple weak classifiers into a strong 
predictive model through additive training, creating an 
interconnected decision tree structure ideal for classification 
tasks. Our implementation demonstrated excellent generalization 
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capability and scalability (27), ultimately identifying 18 predictor 
variables (age, vitamin C, BMI, dietary fiber, calcium, potassium, 
vitamin K, beta-carotene, smoke, vitamin A, education, race, 
coronary heart disease, marital, hypertension, diabetes, 

malignancy, and gender). Figure  3F shows the importance of 
these variables.

Finally, we used a Venn diagram (Figure 3G) to show that 16 
variables (gender, age, education, marital, BMI, hypertension, 

TABLE 1 Characteristics of participants in the NHANES 2017–2023 cycles (n = 10,757).

Variable Level COPD p-value

No (n = 9,881) Yes (n = 876)

Gender
Female 5,229 (52.900) 474 (54.100) 0.522

Male 4,652 (47.100) 402 (45.900)

Age (years) mean (SD) 51.256 (17.295) 61.531 (14.145) <0.001

Race

Mexican American 1,055 (10.700) 29 (3.300) <0.001

Non-Hispanic Asian 903 (9.100) 20 (2.300)

Non-Hispanic Black 2,187 (22.100) 185 (21.100)

Non-Hispanic White 4,686 (47.400) 574 (65.500)

Other Hispanic 1,050 (10.600) 68 (7.800)

Education

9–11th grade 858 (8.700) 128 (14.600) <0.001

College graduate or above 3,184 (32.200) 111 (12.700)

High school graduate 2,189 (22.200) 268 (30.600)

Less than 9th grade 540 (5.500) 47 (5.400)

Some college or AA degree 3,110 (31.500) 322 (36.800)

Marital

Married/Living with 

partner
5,729 (58.000) 419 (47.800) <0.001

Never married 1,966 (19.900) 131 (15.000)

Widowed/Divorced/

Separated
2,186 (22.100) 326 (37.200)

Drink
No 907 (9.200) 47 (5.400) <0.001

Yes 8,974 (90.800) 829 (94.600)

BMI (kg/m2) mean (SD) 29.813 (7.169) 31.717 (9.125) <0.001

Hypertension
No 6,334 (64.100) 355 (40.500) <0.001

Yes 3,547 (35.900) 521 (59.500)

Diabetes
No 8,524 (86.300) 617 (70.400) <0.001

Yes 1,357 (13.700) 259 (29.600)

Dietary fiber (g) mean (SD) 16.637 (10.601) 13.437 (8.794) <0.001

Vitamin A (mcg) mean (SD) 593.571 (624.828) 611.650 (1405.880) 0.477

Beta-carotene (mcg) mean (SD) 2344.291 (4265.526) 2030.820 (4580.021) 0.038

VCI (mg)

Q1 2,414 (24.400) 286 (32.600) <0.001

Q2 2,446 (24.800) 241 (27.500)

Q3 2,490 (25.200) 194 (22.100)

Q4 2,531 (25.600) 155 (17.700)

Vitamin K (mcg) mean (SD) 124.583 (176.176) 103.787 (134.309) 0.001

Calcium (mg) mean (SD) 898.833 (563.670) 849.705 (583.464) 0.014

Potassium (mg) mean (SD) 2522.758 (1267.217) 2356.852 (1295.346) <0.001

Coronary heart disease
No 9,504 (96.200) 735 (83.900) <0.001

Yes 377 (3.800) 141 (16.100)

Malignancy
No 8,720 (88.300) 689 (78.700) <0.001

Yes 1,161 (11.700) 187 (21.300)

Smoke
No 6,116 (61.900) 227 (25.900) <0.001

Yes 3,765 (38.100) 649 (74.100)

VCI, vitamin C intake: Q1 (0 ≤ VCI < 19.3), Q2 (19.3 ≤ VCI < 50.1), Q3 (50.1 ≤ VCI < 110.6), Q4 (110.6 ≤ VCI ≤ 1977.4). The bold values are highlight statistically significant indicators that 
were clearly pointed out during revision in response to reviewers’ requests (e.g., p < 0.05) and represent key findings in our analysis.
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FIGURE 2 (Continued)
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diabetes, dietary fiber, vitamin A, vitamin C, vitamin K, calcium, 
potassium, coronary heart disease, malignancy, and smoke)  
that overlapped each other were found through the  
intersection of the three machine learning algorithms 
described above.

3.4 The models of VCI and COPD

After performing a weighted multivariate logistic regression 
analysis (Table  2), our results indicate that a higher VCI is 
associated with an decreased risk of developing COPD. In the 
unadjusted model, groups with higher vitamin C intake (Q3, Q4) 
all showed a trend of reduced COPD risk. After adjusting for 
more confounding factors, the associations for Q3 and Q4 
remained significant, indicating a stable relationship between 
higher VCI (≥50.1 mg) and reduced COPD risk. Compared with 

the lowest quartile, the risk of developing COPD in the highest 
quartile decreased by 51% in the Model 1 (OR = 0.490; 95% 
CI = 0.357–0.672, p = 0.000), 43% in the Model 2 (OR = 0.566; 
95% CI = 0.413–0.776, p = 0.002) and 44% in the Model 3 
(OR = 0.562; 95% CI = 0.380–0.832, p = 0.010).

3.5 Subgroup, interaction analyses and 
forest plot

To avoid missing interaction terms, we conducted subgroup 
analyses for all variables. The subgroups were based on four 
different quartiles of VCI. By the results of the subgroup analysis, 
we find that the effect of VCI on reducing the risk of COPD is 
more pronounced in specific groups of people. These groups 
include females and those with second-quartile (Q2) dietary fiber 
intake (Table 3 and Figure 4).

FIGURE 2

(A) Missing data pattern plot. (B) In the plot of the imputed data, blue denotes observed data, and red signifies imputed data. (C) A heatmap of the 
correlations among covariates.

https://doi.org/10.3389/fnut.2025.1563692
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Tao and Ye 10.3389/fnut.2025.1563692

Frontiers in Nutrition 08 frontiersin.org

FIGURE 3 (Continued)
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3.6 Non-linear relationship and threshold 
analysis results

First, we  constructed the RCS curve without covariates. 
p-overall value of <0.001 shows the overall model is statistically 
significant. This means there’s a significant link between VCI and 
the risk of COPD. p-non-linear: <0.001 indicates that this 
association has a significant non-linear characteristic, i.e., the 
relationship is not a simple straight-line association (Figure 5A). 

Then, we constructed the RCS using the comprehensive variables 
screened by machine learning, as shown in Figure 5B. There is a 
threshold effect in the association between the continuous variable 
of VCI and the discrete variable of COPD (p for likelihood test 
<0.001). No association was found between VCI and COPD when 
the number of VCI was exceed 135.605. However, when the number 
of VCI ≤135.605, a negative association was observed between VCI 
and COPD (OR = 0.996; 95% CI = 0.993–0.998, p = 0.002) 
(Table 4).

FIGURE 3

(A) Directed Acyclic Graph (DAG) for pre-identifying covariates. (B) Conduct Variance Inflation Factor (VIF) detection for all variables. (C) LASSO 
regression path plot. (D) LASSO 10-fold cross-validation plot. (E) Random Forest variable importance plot. (F) Variable importance plot for an XGBoost 
model. (G) Three algorithmic Venn diagram screening variables.

TABLE 2 Multivariate logistic regression analysis of the linkage between VCI and COPD.

Total VCI quantile Model 1 Model 2 Model 3

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Q1 ref ref ref

Q2 0.758 (0.567–1.011) 0.068 0.782 (0.583–1.049) 0.114 0.830 (0.609–1.130) 0.253

Q3 0.635 (0.497–0.812) 0.001 0.705 (0.544–0.914) 0.015 0.706 (0.526–0.949) 0.033

Q4 0.490 (0.357–0.672) 0.000 0.566 (0.413–0.776) 0.002 0.562 (0.380–0.832) 0.010

CI, confidence interval; OR, odds ratio. Model 1: Unadjusted. Model 2: Adjusted for gender, age, race, education, marital, drink, and BMI. Model 3: Adjusted for gender, age, education, 
marital, BMI, hypertension, diabetes, dietary fiber, vitamin A, vitamin K, calcium, potassium, coronary heart disease, malignancy, and smoke. (Variables screened by three machine learning 
methods). The bold values are highlight statistically significant indicators that were clearly pointed out during revision in response to reviewers’ requests (e.g., p < 0.05) and represent key 
findings in our analysis.
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TABLE 3 Hierarchical analysis and interaction effects.

Variable Group Estimate Std. error t value p-value p for interaction

Gender
Female −0.005 0.001 −4.430 0.000 0.000

Male 0.000 0.001 −0.117 0.907

Age
<50 −0.004 0.002 −1.941 0.060 0.493

≥50 −0.002 0.001 −1.657 0.106

Race

Mexican American −0.004 0.004 −1.051 0.303 0.332

Non-Hispanic Asian −0.001 0.006 −0.224 0.824

Non-Hispanic Black 0.001 0.001 1.145 0.259

Non-Hispanic White −0.003 0.002 −1.721 0.093

Other Hispanic −0.001 0.002 −0.533 0.597

Education

Less than 9th grade −0.011 0.004 −2.971 0.005 0.199

College graduate or above −0.001 0.001 −0.753 0.456

9–11th grade (includes 12th grade with no 

diploma)
−0.002 0.002 −1.299 0.201

Some college or AA degree −0.002 0.001 −1.304 0.200

High school graduate/GED or equivalent −0.001 0.001 −0.490 0.627

Marital

Married/Living with partner −0.002 0.002 −1.237 0.223 0.600

Never married −0.001 0.001 −0.906 0.370

Widowed/Divorced/Separated −0.003 0.001 −2.634 0.012

Drink
No −0.004 0.003 −1.532 0.134 0.450

Yes −0.002 0.001 −1.810 0.078

BMI

Q1 (14.6–24.8) −0.003 0.002 −1.690 0.099 0.453

Q2 (24.8–28.7) −0.002 0.002 −1.050 0.300

Q3 (28.7–33.7) 0.000 0.001 −0.002 0.999

Q4 (33.7–92.3) −0.003 0.003 −1.147 0.258

Hypertension
No −0.003 0.001 −2.760 0.009 0.271

Yes −0.001 0.001 −0.850 0.401

Diabetes
No −0.002 0.001 −3.110 0.003 0.534

Yes −0.001 0.003 −0.305 0.762

(Continued)
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TABLE 3 (Continued)

Variable Group Estimate Std. error t value p-value p for interaction

Dietary fiber

Q1 (0.0–9.2) −0.002 0.002 −1.059 0.296 0.046

Q2 (9.2–14.3) −0.004 0.001 −2.658 0.011

Q3 (14.3–21.1) 0.000 0.001 0.327 0.746

Q4 (21.1–127.3) 0.001 0.001 1.124 0.268

Calcium

Q1 (0–510) −0.003 0.002 −1.625 0.112 0.341

Q2 (510–782) −0.004 0.001 −2.551 0.015

Q3 (782–1,140) −0.003 0.002 −1.652 0.107

Q4 (1,140–9,266) 0.000 0.002 −0.271 0.788

Vitamin A

Q1 (0–250) −0.005 0.003 −1.611 0.115 0.282

Q2 (250–456) −0.003 0.002 −2.222 0.032

Q3 (456–752) −0.003 0.001 −1.913 0.063

Q4 (752–39,008) 0.000 0.002 −0.274 0.786

Vitamin K

Q1 (0.0–40.8) −0.003 0.002 −1.717 0.094 0.088

Q2 (40.8–74.9) −0.006 0.002 −2.461 0.018

Q3 (74.9–137.7) −0.001 0.001 −0.543 0.590

Q4 (137.7–2561.1) 0.000 0.001 −0.115 0.909

Potassium Q1 (0–1,645) −0.002 0.003 −0.739 0.465 0.434

Q2 (1,645–2,313) −0.002 0.002 −0.967 0.339

Q3 (2,313–3,129) −0.004 0.002 −2.319 0.026

Q4 (3,129–14,358) 0.000 0.001 −0.302 0.764

Coronary heart 

disease

No −0.003 0.001 −3.119 0.003 0.349

Yes −0.001 0.002 −0.298 0.767

Malignancy No −0.002 0.001 −1.326 0.192 0.260

Yes −0.004 0.002 −2.825 0.007

Smoke No 0.000 0.001 0.106 0.916 0.081

Yes −0.003 0.001 −2.166 0.036

Beta-carotene Q1 (0–272) −0.003 0.002 −1.860 0.070 0.410

Q2 (272–814) −0.003 0.002 −1.433 0.160

Q3 (814–2,529) −0.001 0.001 −0.624 0.537

Q4 (2,529–71,772) −0.001 0.001 −0.363 0.719

Each variable was adjusted according to every element and then analyzed. Divide all numeric variables into quartiles while keeping categorical variables unchanged. The bold values are highlight statistically significant indicators that were clearly pointed out during 
revision in response to reviewers’ requests (e.g., p < 0.05) and represent key findings in our analysis.
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3.7 Evaluation of the nomogram model

Based on the above three machine learning methods, 
we screened out 16 variables and constructed a nomogram to 
predict the diverse trajectories associated with the risk of 
developing COPD, as shown in Figure 6. Each factor was assigned 
a score on the point scale axis. By adding up these individual 
scores, we could calculate a total score. Then, by mapping this 
total score onto the bottom risk scale axis, we could estimate the 
probability of different trajectories in the development of COPD.

3.8 Machine learning and all-variables 
model predictions

As presented in Table 5 and Figure 7, the all-variables model 
had an AUC of 0.809, along with a sensitivity of 73.3% and a 
specificity of 76.5%. The machine learning model showed an 
AUC of 0.805, with a sensitivity of 72.9% and a specificity of 
76.0%. All models demonstrated good predictive value. Since 
DeLong’s p-value is 0.2957 > 0.05, we can conclude that there is 
no difference in the diagnostic capabilities between the two 

FIGURE 4

Subgroup analysis of the relationship between calcium intake and COPD risk at different levels.
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FIGURE 5 (Continued)
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models. Therefore, machine learning has helped us screen out the 
fewest and optimal diagnostic variables.

4 Discussion

Before researching the risk of COPD, understanding the 
importance of the relationships between dietary nutrients and chronic 
diseases is essential. In this study, we investigated the link between the 
VCI and COPD prevalence, utilizing data sourced from the NHANES 
database. The findings indicated a significant negative link between 
VCI and a greater risk of COPD. Firstly, in the weighted logistic 
regression analysis, regardless of whether covariates were unadjusted, 

adjusted for demographic variables, or fully adjusted, we consistently 
found that there was a significant negative association between VCI 
(≥50.1 mg/day) and the prevalence of COPD. Additionally, in the RCS 
curve and the corresponding threshold effect analysis, we observed a 
nonlinear relationship between the VCI and COPD, with an inflection 
point at 135.6 mg. When the VCI is under 135.6 mg, with the increase 
in the intake of VCI, the risk of COPD may decrease. This is consistent 
with the results demonstrated by the weighted logistic regression, 
further validating the reliability of our conclusion. It indicates that 
when VC levels are 50.1–135.6 mg, an increase in vitamin C intake is 
significantly associated with a reduction in the risk of COPD. To 
derive more accurate insights, after conducting subgroup analysis, 
we observed a negative association between VCI and the prevalence 

FIGURE 5

(A) The Restricted Cubic Splines (RCS) curve shows the association between VCI and COPD in all study participants. We did not conduct variable 
adjustments. (B) Nonlinear relationship between VCI and COPD: restricted cubic spline analysis, with node at 135.6 mg. In the RCS regression, 
adjustments were made for gender, age, education, marital, BMI, hypertension, diabetes, dietary fiber, vitamin A, vitamin K, calcium, potassium, 
coronary heart disease, malignancy, and smoke.

TABLE 4 Threshold analysis result.

Outcome Effect p-value

Model 1 Fitting model by standard linear regression 0.999 (0.998–1.000) 0.182

Model 2 Fitting model by two-piecewise linear regression

Inflection point 135.601

  <135.601 0.996 (0.993–0.998) 0.002

  ≥135.601 1.001 (0.999–1.002) 0.243

p for likelihood test <0.001

Adjusted for gender, age, education, marital, BMI, hypertension, diabetes, dietary fiber, vitamin A, vitamin K, calcium, potassium, coronary heart disease, malignancy, and smoke. The bold 
values are highlight statistically significant indicators that were clearly pointed out during revision in response to reviewers’ requests (e.g., p < 0.05) and represent key findings in our analysis.
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of COPD, specifically among females and individuals with dietary 
fiber intake in the second quartile (Q2). This indicates that keeping 
VCI at an optimal level is crucial for lung health. It may also 
be associated with the prevention of COPD.

Before screening variables, we determined the correlations of 
covariates using DAG diagrams and detected multicollinearity by 
employing the VIF. Then, we employed LASSO, Random Forest, 
and XGBoost to screen for important variables, reduce the risk of 
overfitting, and simplify the model. The advantage of this 
combination lies in integrating LASSO’s feature selection 
capacity, Random Forest’s proficiency in handling nonlinear 
relationships, and XGBoost’s robust prediction capabilities. In 
previous studies, machine learning has been used extensively in 
the clinical prediction of sepsis in ICU patients (27), acute kidney 
injury (28), and so on. Other machine learning also uses blood 
heavy metal data to predict COPD (29, 30). However, similar 

studies have rarely focused on diet and have only considered the 
effect of a single aspect on COPD.

To our knowledge, this is the first study based on NHANES 
data from 2017 to 2023 that assesses the association between VCI 
and COPD risk. Compared to previous studies that primarily 
used older NHANES datasets, these studies mainly investigated 
the relationship between common health indicators or specific 
nutrients and diseases. For instance, research has indicated that 
an excessive intake of vitamin C supplements may cause acute 
renal failure. Consequently, individuals should exercise caution 
regarding their vitamin C intake (31). VC, also called ascorbate 
or L-ascorbic acid, acts as an antioxidant. It’s important for the 
immune system, involved in allergic reactions, keeping 
connective tissue healthy, and even suppressing tumors (32–34). 
Low VC levels are linked to more wheezing, shortness of breath, 
and worse COPD symptoms (35–37). Eating foods rich in VC can 

FIGURE 6

A nomogram was used to estimate the risk of COPD related to VCI. First, sum up the points of each feature to get the total points. Then, draw a vertical 
line at the total points to determine the corresponding “risk of COPD.” (Education) College graduate or above: 1; Some college or AA degree: 2; High 
school graduate/GED or equivalent: 3; Less than 9th grade: 4; 9-11th grade (Includes 12th grade with no diploma): 5.

TABLE 5 Sensitivity analysis.

Model performance metrics

Model AUC AUC (95% CI) Sensitivity Specificity DeLong’s p

Selected variables 0.805 0.805 (0.779–0.832) 72.9% 76.0% 0.296

All variables 0.809 0.809 (0.783–0.836) 73.3% 76.5%

Comparison of the sensitivity and specificity between the machine learning model and the all-variables model. The bold values are highlight statistically significant indicators that were clearly 
pointed out during revision in response to reviewers’ requests (e.g., p < 0.05) and represent key findings in our analysis.
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reduce oxidative stress, boost collagen production, and bring 
back normal levels of vascular endothelial growth factor and the 
growth of lung alveolar cells (38). Many studies (39–40) have 
found that getting enough VCI can help prevent COPD. Our 
results support these findings. The results of this study are 
extremely important as it represents a vast majority of the 
U.S. population. Previously, Park et al. (41) revealed the impact 
of dietary antioxidants on COPD in South Korea. Our study, with 
a large amount of data, strongly supports this previous research. 
Many researchers have attempted to verify using NHANES data. 
However, numerous such studies overlooked the complex survey 
design. This oversight can lead to biased results and overstate the 
significance level. In contrast, we  adhered to the guidelines 
recommended by the institutions conducting this complex 
survey. As a result, the finding regarding the positive effect of 
VCI on COPD is considered reliable.

The interplay between VCI and COPD is governed by 
intricate factors. VC is a potent antioxidant that neutralizes 
Reactive Oxygen Species (ROS) generated by cigarette smoke and 
environmental pollutants. COPD is characterized by chronic 
oxidative stress, which damages lung tissue and perpetuates 
inflammation (42). VC modulates immune responses by 

inhibiting pro-inflammatory cytokines (e.g., IL-6, TNF-α) and 
enhancing neutrophil apoptosis, which is dysregulated in COPD 
(43). This association requires further verification through more 
in-depth longitudinal studies.

However, our research has some significant limitations. First, 
we  used a cross-sectional research method. So, we  cannot 
accurately figure out if there’s a cause- and effect link between 
VCI and the prevalence of COPD. Second, although 
we considered many potential confounding factors, there could 
still be unknown factors influencing the results. Third, in this 
study, we only divided the participants into the COPD group and 
the non-COPD group. We did not do more detailed analyses of 
pulmonary function, disease grading, and occupational exposure.

Our study used secondary data from NHANES. These data 
are useful, but they have problems. Some important variables 
might be missing or not defined clearly because the data were not 
collected specifically for our study. We could not control how the 
data were collected, which might lead to biases or measurement 
mistakes. Also, the data’s timeliness might limit how well our 
findings can be  applied more widely. Future research could 
collect primary data or use data from different sources to confirm 
our results.

FIGURE 7

The Receiver Operating Characteristic (ROC) curves of machine learning (selected variables) and all variables models.
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5 Conclusion

This large-scale national study demonstrates that dietary VCI 
is protective against COPD independent of smoking history in the 
American general population. Maintaining a reasonable daily 
intake of VC may serve as a practical preventive strategy for 
COPD. However, VC supplementation should not replace smoking 
cessation or other evidence-based therapies, but rather 
complement existing preventive and therapeutic approaches 
for COPD.
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