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Background: Infertility has become a global health concern, especially as 
the aging population continues to grow. Previous studies suggest that gut 
microbiota plays a crucial role in female reproductive health. This study aimed 
to investigate the association between the Dietary Index for Gut Microbiota (DI-
GM) and female infertility.

Methods: We analyzed data from 8,910 participants aged 20–45 years in the 
NHANES 2013–2018 cycles. DI-GM scores were calculated based on dietary 
recall interviews, including 14 foods and nutrients associated with gut health. 
Female infertility was identified through reproductive health questionnaires. 
Weighted logistic regression models were used to assess the relationship 
between DI-GM and infertility, with adjustments for demographic, lifestyle, and 
health-related covariates. Restricted cubic spline (RCS) analyses explored non-
linear associations, and subgroup analyses ensured the robustness of the results.

Results: A significant negative association was observed between DI-GM and 
female infertility (adjusted OR = 0.89, 95% CI: 0.83–0.95, p < 0.001). Participants 
with DI-GM scores ≥6 had a 40% lower risk of infertility compared to those with 
scores 0–3 (OR = 0.60, 95% CI: 0.44–0.82, p = 0.001). RCS analyses revealed 
an L-shaped non-linear relationship, with a threshold at DI-GM = 5. Subgroup 
analyses indicated stronger associations in women with lower education levels 
and those with coronary heart disease (P for interaction <0.05).

Conclusion: Our findings demonstrate that a higher DI-GM score is associated 
with a reduced risk of female infertility, suggesting that dietary interventions 
targeting gut microbiota may offer a cost-effective strategy for improving 
reproductive health. Further longitudinal and interventional studies are 
warranted to confirm causality and elucidate underlying mechanisms.
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1 Background

Population aging has become a global trend. According to a United Nations report, by 
2050, the number of people aged 60 years and older will reach 2 billion, accounting for 22% of 
the global population (1). As the aging population increases, fertility-related issues have 
become more pronounced, drawing significant attention from scholars worldwide. Female 
infertility can result from various factors, including tubal disorders, uterine abnormalities, 
endocrine dysfunction, and immune system imbalances (2, 3). Additionally, women’s fertility 
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declines significantly after the age of 35. Although assisted reproductive 
technologies (ART), such as in vitro fertilization (IVF) and intrauterine 
insemination (IUI), can address ovulatory dysfunction and tubal 
obstruction, these treatments impose considerable financial and 
healthcare burdens (3, 4). Luke et al. (4) reported that the cost of ART 
in the United States ranges from $12,000 to $15,000 per cycle, with 
older patients typically requiring 2–3 cycles to achieve pregnancy. As 
women age, ovarian reserves diminish, and embryo quality declines. 
Evers (5) also noted that the success rate of IVF in women aged 35–37 
is approximately 35%, whereas it drops to around 20% for women over 
40. Consequently, older women face psychological stress from repeated 
pregnancy failures. Beyond psychological challenges, infertility 
increases the risk of several diseases, including cardiovascular diseases, 
diabetes, and metabolic syndrome (6). Addressing female infertility 
effectively can enhance fertility rates and significantly reduce the 
overall disease and economic burden associated with these conditions.

Recent studies have highlighted the pivotal role of gut microbiota in 
female reproductive health. Dysbiosis of the gut microbiota has been 
linked to several infertility-related conditions, including polycystic ovary 
syndrome (PCOS), endometriosis, and obesity (7, 8). Dietary modulation 
of the gut microbiota can indirectly improve fertility by optimizing 
estrogen metabolism, reducing inflammation, and enhancing metabolic 
health (9). Studies have shown that adherence to the Mediterranean diet 
increases the likelihood of successful pregnancies in infertile women by 
28% (10). Zhang et al. (11) found that foods rich in vitamin D and 
omega-3 fatty acids reduce the incidence of PCOS and improve ovulation 
rates (12). Research by Kase et al. (13) demonstrated that Bifidobacterium 
and Lactobacillus optimize estrogen metabolism by reducing toxic gut 
metabolites, lowering β-glucuronidase activity, and strengthening 
intestinal epithelial tight junctions. Additionally, Akkermansia 
muciniphila, Bifidobacterium bifidum, and Lactiplantibacillus plantarum 
improve gut-liver axis function, promote short-chain fatty acid (SCFA) 
production, and modulate inflammatory responses, thereby influencing 
estrogen metabolism (14). Thus, a balanced gut microbiota not only 
profoundly impacts female reproductive health but also offers a novel 
direction for infertility treatment.

Optimizing dietary patterns is now recognized as a key strategy 
for improving gut microbiota composition. Numerous studies have 
confirmed that the consumption of specific foods—such as fermented 
dairy products, chickpeas, soy, whole grains, cranberries, and green 
tea—enhances gut microbial diversity, increases SCFA synthesis, and 
improves the Firmicutes-to-Bacteroidetes ratio (15–17). However, 
there remains a lack of quantitative tools to assess gut microbiota 
diversity based on individual dietary patterns. To address this gap, 
Kase et al. (13) developed and validated the Dietary Index for Gut 
Microbiota (DI-GM). This index incorporates 14 foods and nutrients, 
with beneficial components including fermented dairy products, 
chickpeas, soy, whole grains, dietary fiber, cranberries, avocados, 
broccoli, coffee, and green tea. Conversely, unfavorable components 
include refined grains, red meat, processed meat, and high-fat diets 
(≥40% energy from fat). Dietary interventions offer a cost-effective 
and feasible strategy for health improvement, making the study of 
DI-GM and its association with female infertility particularly relevant.

The DI-GM score has been shown to reflect the relationship 
between dietary patterns and gut microbiota diversity. However, its 
application in infertility research remains limited. This study aims to 
explore the potential association between DI-GM and female 
infertility using data from the NHANES 2013–2018 cycles.

2 Materials and methods

2.1 Data sources and study population

This study utilized publicly available data from the National Health 
and Nutrition Examination Survey (NHANES), conducted by the 
National Center for Health Statistics (NCHS) under the Centers for 
Disease Control and Prevention (CDC). We analyzed data from the 
2013–2018 NHANES cycles, initially including 30,008 participants. The 
exclusion criteria were as follows: (1) male participants (n = 14,452); (2) 
participants under 20 years or over 45 years of age (n = 11,093); (3) those 
with missing data on female infertility (n = 604); (4) missing DI-GM data 
(n = 147); (5) missing educational level data (n = 1); (6) missing smoking 
status (n = 2); (7) missing hypertension data (n = 64); (8) missing stroke 
data (n = 2); (9) missing cardiovascular disease data (n = 5); (10) missing 
body mass index (BMI) data (n = 15, 11) missing infertility medication 
data (n = 2); and (12) missing female hormone data (n = 5). Ultimately, 
3,008 participants were included in the final analysis (Figure 1).

2.2 Definition of DI-GM

In NHANES, two dietary recall interviews were conducted. The 
first evaluation was a 24-h dietary recall interview at the MEC, and the 
second evaluation was a telephone interview, which recorded the 
comprehensive and detailed information on participants’ dietary 
intake in the past 24 h, including all foods and drinks. According to 
research by Kase et al. (13), 14 kinds of foods and nutrients were 
finally included in the DI-GM score, comprising 10 foods that 
promote gut health and 4 that are detrimental to gut health (18). For 
beneficial foods, participants with an intake exceeding the sex-specific 
median are assigned a value of 1, while those below the median receive 
a value of 0. In contrast, for unfavorable foods, an intake above the 
sex-specific median is assigned a value of 0 and a value of 1 is given to 
those below the median. The DI-GM score is determined by adding 
the scores from each section, with a range between 0 and 14. A higher 
DI-GM score indicates a healthier gut microbiota (19).

2.3 Definition of infertility

Infertility was defined based on the reproductive health 
questionnaire from the NHANES database (files RHQ074 and 
RHQ076). Participants were asked, “Have you  ever tried to get 
pregnant for at least a year without success?” or “Have you ever seen 
a doctor or other health care provider because you were unable to get 
pregnant?” Those who answered “yes” to either question were 
classified as having female infertility. Previous studies have validated 
the robustness of this definition (20, 21).

2.4 Covariates

In this study, covariates included age and race/ethnicity (Mexican 
American, other Hispanic, non-Hispanic White, non-Hispanic Black, 
and other races). Educational attainment was categorized as less than 
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high school, high school, and more than high school. Marital status 
was classified into never married, married/living with a partner, and 
widowed/divorced/separated. The poverty income ratio (PIR) was 
divided into three groups: <1.3 (low income), 1.3–3.5 (middle 
income), and > 3.5 (high income). Body mass index (BMI) was 
categorized into <25 kg/m2, 25–30 kg/m2, and ≥ 30 kg/m2. Smoking 
status was defined as current smokers (≥100 cigarettes in a lifetime 
and currently smoking), former smokers (≥100 cigarettes in a 
lifetime but no longer smoking), and never smokers (<100 cigarettes 
in a lifetime or never smoked). Alcohol consumption was defined as 
drinking more than 12 times in any year of life. Diabetes was defined 
as a physician diagnosis or fasting blood glucose level ≥ 126 mg/
dL. Hypertension was determined by a previous diagnosis, current 
antihypertensive medication use, or an average of three blood 
pressure readings ≥ 140/90 mmHg. Stroke was categorized as yes or 
no. Cardiovascular disease (CVD) is defined as a history of congestive 
heart failure, coronary artery disease, angina, or myocardial 
infarction. Additional covariates included whether participants had 
regular menstrual periods in the past 12 months, received treatment 
for pelvic inflammatory disease (PID), underwent hysterectomy, had 
bilateral oophorectomy, took birth control pills, or used 
female hormones.

2.5 Statistical analyses

The statistical analysis followed the NHANES data analysis 
guidelines, incorporating appropriate NHANES complex multistage 
sampling weights. For continuous variables, survey-weighted means 
with 95% confidence intervals (CIs) were reported, while survey-
weighted percentages with 95% CIs were provided for categorical 
variables. Differences between the infertility and non-infertility 
groups were assessed using weighted linear regression or weighted 
chi-square tests.

Three weighted logistic regression models were employed to 
examine the association between the Dietary Index for Gut Microbiota 
(DI-GM) and female infertility. Model 1 was unadjusted. Model 2 
adjusted for age, race/ethnicity, education level, and marital status. 
Model 3 further adjusted for additional covariates, including BMI, 
PIR, smoking status, alcohol consumption, diabetes, hypertension, 
CVD, stroke, regular menstrual cycles, pelvic inflammatory disease, 
hysterectomy, bilateral oophorectomy, use of birth control pills, and 
use of female hormones.

Restricted cubic spline (RCS) analysis was conducted to 
investigate potential nonlinear associations between DI-GM and 
female infertility after adjusting for covariates. Additionally, subgroup 

FIGURE 1

Flow chart of the sample selection from NHANES 2013–2018.
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analyses and interaction tests were performed to explore variations in 
the association across different subgroups based on potential 
confounders listed in the baseline table. Statistical analyses were 
conducted using R software (version 4.3.3), with statistical significance 
set at p < 0.05.

3 Results

3.1 Baseline characteristics of the study 
population

A total of 3,008 participants were included in this study. The 
weighted prevalence of female infertility was 14.10% (95% CI: 12.56–
15.78%), with a weighted mean age of 35.37 years (95% CI: 34.44–
36.31). Compared to women without infertility, those with infertility 
had significantly lower DI-GM scores (4.72, 95% CI: 4.48–4.96 vs. 
5.04, 95% CI: 4.94–5.15, p < 0.01).

In addition, women in the infertility group were more likely to 
be  Non-Hispanic White, widowed/divorced/separated, have a 
BMI ≥ 30 kg/m2, smoke, and have a history of hypertension, diabetes, 
coronary heart disease, pelvic infections, use of birth control pills, and 
hormone therapy. Significant differences between the infertility and 
non-infertility groups were observed across these variables (p < 0.01) 
(Table 1).

3.2 Association between DI-GM and female 
infertility

Multivariate logistic regression analysis revealed a negative 
association between DI-GM and female infertility. After adjusting for 
all covariates, DI-GM was significantly inversely correlated with 
infertility (OR = 0.89, 95% CI: 0.83–0.95). Furthermore, when DI-GM 
was categorized into quartiles, participants with a DI-GM score > 6 
had a significantly lower likelihood of infertility compared to those in 
the lowest quartile (OR = 0.60, 95% CI: 0.44–0.82) (Table 2).

Interestingly, the restricted cubic spline (RCS) analysis 
demonstrated an L-shaped nonlinear negative association between 
DI-GM and infertility, with a threshold point at DI-GM = 5 (Figure 2).

3.3 Subgroup analyses

The results indicated that DI-GM maintained an inverse 
association with female infertility across all subgroups. Interestingly, 
significant differences were observed in the association between 
DI-GM and infertility prevalence within the education level and 
coronary heart disease (CHD) subgroups (P for interaction < 0.05). 
The association was notably stronger among individuals with less than 
a high school education (OR = 0.66, 95% CI: 0.52–0.85) and those 
with CHD (OR = 0.37, 95% CI: 0.21–0.68) (Figure 3).

4 Discussion

This study demonstrates that optimizing dietary patterns to 
improve the Dietary Index for Gut Microbiota (DI-GM) may serve as 

a significant strategy for reducing the risk of female infertility. Logistic 
regression analysis revealed a significant inverse association between 
DI-GM and female infertility. In Model 1, which did not adjust for 
covariates, each unit increase in DI-GM was associated with a 
significant reduction in infertility risk (OR = 0.90, 95% CI: 0.85–0.96, 
p = 0.002). This inverse association remained robust even after 
comprehensive adjustment for confounders, including BMI, smoking 
status, alcohol consumption, chronic conditions, and use of female 
hormones, in Model 3 (OR = 0.89, 95% CI: 0.83–0.95, p < 0.001). 
Subgroup analysis further revealed that women with higher DI-GM 
scores (≥6) exhibited a 40% lower risk of infertility compared to those 
in the lowest quartile (0–3 points) (OR = 0.60, 95% CI: 0.44–0.82, 
p = 0.001). Additionally, restricted cubic spline analysis identified an 
L-shaped nonlinear relationship between DI-GM and infertility, with 
a turning point at DI-GM = 5. Beyond this threshold, the declining 
trend in infertility risk plateaued. Subgroup and interaction analyses 
further validated the robustness of these findings.

With global population aging and the trend of delayed 
childbearing, fertility challenges have become increasingly prominent 
(22). Female infertility, characterized by its high prevalence and 
profound impact on both individuals and society, has garnered 
significant attention (23). According to WHO estimates, approximately 
10–15% of women of reproductive age experience infertility (24). A 
prospective cohort study indicated that delaying the age of first 
childbirth significantly increases the risk of obesity-related 
reproductive cancers (25). Similarly, the incidence of cardiovascular 
events in women with polycystic ovary syndrome (PCOS) is three 
times higher than in the general population (11). Mental health issues 
also deserve attention, as studies have reported that the prevalence of 
depression and anxiety among infertile women reaches 30 and 25%, 
respectively (26).

In recent years, dietary interventions for infertility have garnered 
increased attention because they are cost-effective and easy to 
implement (27). An increasing body of evidence suggests that the gut 
microbiota not only regulates systemic inflammation and metabolic 
homeostasis but also plays a crucial role in sex hormone metabolism. 
Results from our study indicate that a higher DI-GM score 
(representing a microbiota-friendly dietary pattern) is negatively 
associated with female infertility, aligning with emerging studies on 
the gut-hormone axis and its impact on reproductive outcomes (28, 
29). In a study involving individuals with polycystic ovary syndrome 
(PCOS), Wang et al. (45) found that combined probiotic and dietary 
fiber supplementation significantly enhanced insulin sensitivity and 
promoted ovulation recovery, thus providing direct evidence of the 
efficacy of probiotic interventions (30, 31). Similarly, a preclinical 
study reported elevated abundances of specific bacterial taxa, such as 
UBA1819 lineage (family Lachnospiraceae), Eisenbergiella, Hungatella, 
and Erysipelatoclostridium, in fecal samples from individuals with 
endometriosis (32). Notably, supplementation with short-chain fatty 
acids (e.g., butyrate), produced by microbial fermentation of dietary 
fiber, substantially improved the endometrial microenvironment and 
increased embryo implantation rates (33, 34). Another study 
highlighted that synbiotic administration not only restored gut 
microbial balance but also significantly reduced depression and 
anxiety scores in patients with infertility, thereby conferring 
psychological benefits as well. A key mechanism linking diet, gut 
microbiota, and fertility is progesterone metabolism, which is essential 
for endometrial receptivity and embryo implantation. Chen et al. (35) 
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TABLE 1 Weighted baseline characteristics of the study population, 2013–2018.

Characteristics Total (n = 3008)
Non-infertility (n = 

2619)
Infertility (n = 389) p-value

Age (years) 32.28 (31.87, 32.69) 31.77 (31.36, 32.18) 35.37 (34.44, 36.31) <0.0001

Race (%) 0.0041

  Mexican American 11.66 (9.02, 14.95) 11.98 (9.28, 15.33) 9.77 (6.26, 14.94)

  Other Hispanic 7.79 (6.29, 9.61) 8.26 (6.74, 10.07) 4.94 (2.98, 8.08)

  Non-Hispanic White 56.89 (51.96, 61.68) 55.54 (50.52, 60.45) 65.07 (57.98, 71.54)

  Non-Hispanic Black 13.37 (10.91, 16.30) 13.64 (11.04, 16.73) 11.75 (8.92, 15.33)

  Other race 10.29 (8.72, 12.10) 10.58 (8.92, 12.52) 8.48 (6.29, 11.33)

Education level (%) 0.6448

  Less than high school 11.28 (9.65, 13.15) 11.54 (9.84, 13.48) 9.71 (6.95, 13.39)

  High school 19.11 (16.80, 21.65) 19.07 (16.86, 21.51) 19.33 (14.04, 26.00)

  More than high school 69.61 (66.12, 72.89) 69.39 (65.83, 72.74) 70.97 (64.40, 76.76)

Marital status (%) <0.0001

  Never married 29.67 (27.13, 32.34) 32.53 (29.81, 35.38) 12.22 (9.35, 15.83)

  Married/Living with partner 60.24 (57.46, 62.95) 57.57 (54.75, 60.35) 76.48 (71.19, 81.06)

  Widowed/divorced/Separated 10.09 (8.73, 11.64) 9.90 (8.33, 11.72) 11.29 (7.65, 16.36)

PIR (%) 0.1059

  <1.3 29.50 (26.67, 32.49) 30.29 (27.36, 33.38) 24.69 (19.80, 30.33)

  1.3–3.5 36.37 (33.79, 39.03) 36.24 (33.66, 38.90) 37.16 (31.39, 43.32)

  ≥3.5 34.13 (30.69, 37.76) 33.47 (29.98, 37.17) 38.16 (31.53, 45.26)

BMI (%) 0.0011

  <25 35.40 (32.83, 38.06) 36.48 (33.69, 39.37) 28.83 (23.13, 35.28)

  25–30 24.13 (22.46, 25.88) 24.95 (23.10, 26.90) 19.11 (14.51, 24.75)

  ≥30 40.47 (37.98, 43.02) 38.57 (35.94, 41.27) 52.06 (44.15, 59.87)

Smoking status (%) 0.0428

  Never 67.84 (65.31, 70.28) 68.95 (66.38, 71.39) 61.13 (55.69, 66.30)

  Now 19.44 (17.49, 21.55) 18.71 (16.89, 20.67) 23.91 (18.13, 30.84)

  Former 12.72 (11.16, 14.46) 12.35 (10.79, 14.09) 14.96 (10.77, 20.42)

Alcohol intake (%) 0.9656

  No 16.26 (14.22, 18.53) 16.28 (14.18, 18.61) 16.17 (11.85, 21.68)

  Yes 83.74 (81.47, 85.78) 83.72 (81.39, 85.82) 83.83 (78.32, 88.15)

Hypertension (%) <0.0001

  No 84.55 (82.76, 86.18) 85.95 (84.20, 87.53) 76.04 (70.37, 80.91)

  Yes 15.45 (13.82, 17.24) 14.05 (12.47, 15.80) 23.96 (19.09, 29.63)

Diabetes (%) 0.0074

  No 94.87 (93.93, 95.67) 95.36 (94.28, 96.24) 91.87 (88.78, 94.17)

  Yes 5.13 (4.33, 6.07) 4.64 (3.76, 5.72) 8.13 (5.83, 11.22)

Stroke (%) 0.4679

  No 99.47 (99.07, 99.70) 99.44 (98.97, 99.69) 99.68 (98.62, 99.93)

  Yes 0.53 (0.30, 0.93) 0.56 (0.31, 1.03) 0.32 (0.07, 1.38)

CVD (%) 0.2599

  No 98.67 (98.05, 99.09) 98.79 (98.17, 99.20) 97.93 (95.05, 99.15)

  Yes 1.33 (0.91, 1.95) 1.21 (0.80, 1.83) 2.07 (0.85, 4.95)

Had regular periods in past 12 months (%) 0.0520

  No 11.49 (10.25, 12.85) 10.89 (9.57, 12.36) 15.13 (11.15, 20.21)

(Continued)
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provided experimental evidence that gut bacteria grown in nutrient-
rich media (reflecting a high-fat, high-protein diet) exhibited 
markedly increased progesterone metabolism relative to those 
cultured in minimally defined media (mimicking a plant-based, 
low-fat diet). These findings suggest that dietary components can 
directly modulate microbial activity, thereby influencing circulating 
progesterone levels. Further in vivo research supports this mechanism: 
transplantation of nonpathogenic Clostridium into mouse models 
enhanced progesterone metabolism and subsequently reduced serum 
progesterone concentrations (36, 37). Appropriate dietary 
interventions may thus rapidly remodel gut microbial ecology while 
holistically improving both reproductive capacity and overall health 
status in women with infertility.

DI-GM, as a scientifically validated tool, assesses how dietary 
patterns influence overall health through gut microbiota. It includes 
14 foods that play critical roles in modulating the ratio of Firmicutes 
to Bacteroidetes, inflammation levels, and gut barrier function (19). 
These foods commonly enhance gut microbiota diversity and promote 
the production of short-chain fatty acids (SCFAs) (38). Our study 
provides preliminary evidence that higher DI-GM scores are inversely 
associated with female infertility. Specifically, fermented dairy 
products are rich in Lactobacillus, chickpeas, and soy are high in 
Bifidobacterium, whole grains contain Prevotella, while cranberries 
and broccoli are abundant in Bacteroides (38, 39). While green tea 
itself does not contain Lactobacillus or Bifidobacterium, its bioactive 

polyphenols, particularly catechins, have been shown to exhibit 
prebiotic properties, selectively promoting the growth of these 
beneficial bacteria in the gut. The potential mechanisms underlying 

TABLE 1 (Continued)

Characteristics Total (n = 3008)
Non-infertility (n = 

2619)
Infertility (n = 389) p-value

  Yes 88.51 (87.15, 89.75) 89.11 (87.64, 90.43) 84.87 (79.79, 88.85)

Ever treated for a pelvic infection/PID (%) <0.0001

  No 95.29 (94.17, 96.20) 96.14 (95.14, 96.94) 90.13 (85.68, 93.30)

  Yes 4.71 (3.80, 5.83) 3.86 (3.06, 4.86) 9.87 (6.70, 14.32)

Had a hysterectomy (%) 0.2907

  No 95.20 (94.22, 96.03) 95.46 (94.37, 96.34) 93.63 (88.92, 96.42)

  Yes 4.80 (3.97, 5.78) 4.54 (3.66, 5.63) 6.37 (3.58, 11.08)

Had both ovaries removed (%) 0.1394

  No 98.15 (97.33, 98.72) 98.38 (97.45, 98.97) 96.76 (93.08, 98.51)

  Yes 1.85 (1.28, 2.67) 1.62 (1.03, 2.55) 3.24 (1.49, 6.92)

Ever taken birth control pills (%) 0.0073

  No 25.82 (23.48, 28.30) 26.90 (24.51, 29.43) 19.22 (14.50, 25.02)

  Yes 74.18 (71.70, 76.52) 73.10 (70.57, 75.49) 80.78 (74.98, 85.50)

Ever use female hormones (%) 0.0020

  No 95.12 (93.50, 96.35) 96.02 (94.57, 97.10) 89.60 (82.08, 94.19)

  Yes 4.88 (3.65, 6.50) 3.98 (2.90, 5.43) 10.40 (5.81, 17.92)

DI-GM 5.00 (4.90, 5.10) 5.04 (4.94, 5.15) 4.72 (4.48, 4.96) 0.0075

DI-GM group (%) 0.0311

  0–3 18.85 (16.82, 21.06) 17.95 (16.02, 20.06) 24.35 (18.59, 31.20)

  4 20.39 (18.94, 21.91) 19.91 (18.39, 21.52) 23.31 (18.79, 28.53)

  5 24.86 (22.97, 26.85) 25.51 (23.51, 27.62) 20.91 (15.42, 27.71)

  ≥6 35.90 (33.28, 38.61) 36.63 (34.01, 39.34) 31.43 (25.49, 38.06)

PIR, poverty income ratio; BMI, body mass index; CVD, cardiovascular disease; DI-GM, dietary index for gut microbiota; PID, pelvic inflammatory disease.

TABLE 1 (Continued)

FIGURE 2

The dose-effect relationship between DI-GM and female infertility. 
Age, race, education level, marital status, PIR, BMI, smoking status, 
alcohol consumption, diabetes, hypertension, CVD, stroke, pelvic 
infection/PID, regular menstrual periods, history of hysterectomy, 
history of bilateral oophorectomy, female hormones taken, and birth 
control pills taken were adjusted.
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these associations include: Lactobacillus reducing pH levels in the gut 
and reproductive tract, lowering chronic inflammation, and 
minimizing intestinal permeability (40); Bifidobacterium optimizing 
the gut-liver axis and regulating menstrual cycles (41); Prevotella 
enhancing gut barrier function and lipid metabolism to reduce 

visceral fat accumulation and inflammation (42); and Bacteroides 
mitigating oxidative stress associated with endometriosis, thereby 
improving the embryo implantation environment (43).

Our subgroup analysis revealed that the association between 
DI-GM and female infertility was notably stronger among women with 

FIGURE 3

Subgroup analysis of the association between DI-GM and female infertility. The above model was adjusted for age, race, education level, marital status, 
PIR, BMI, smoking status, alcohol consumption, diabetes, hypertension, CVD, stroke, pelvic infection/PID, regular menstrual periods, history of 
hysterectomy, history of bilateral oophorectomy, female hormones taken, and birth control pills taken. In each case, the model was not adjusted for 
the stratification variable.
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lower education levels and those with coronary heart disease (CHD). 
This finding aligns with prior studies suggesting that socioeconomic 
factors, particularly education level, play a crucial role in shaping health 
behaviors and disease risk. Individuals with lower educational 
attainment may have limited health literacy, making it more challenging 
to access, interpret, and apply health-related information to their daily 
lives. As a result, they are less likely to engage in preventive health 
behaviors, including adherence to healthy dietary patterns, regular 
physical activity, and routine medical check-ups, all of which are crucial 
for maintaining cardiovascular and reproductive health. Chronic 
systemic inflammation and metabolic dysfunction—both prevalent in 
CHD—have been implicated in endothelial dysfunction, insulin 
resistance, and hormonal imbalances, which may further contribute to 
infertility. Emerging evidence also suggests that gut microbiota 
composition is significantly altered in individuals with both CHD and 
metabolic syndrome, characterized by a reduction in beneficial bacterial 
taxa and an increase in pro-inflammatory microbial metabolites, 
potentially exacerbating cardiovascular and reproductive health decline.

In conclusion, our study systematically evaluated the impact of 
DI-GM on female infertility and found a significant inverse 
relationship between higher DI-GM scores and infertility risk. 
Additionally, restricted cubic spline analysis confirmed an L-shaped 
nonlinear relationship between DI-GM and infertility risk. Subgroup 
and interaction analyses revealed stronger associations among women 
with lower education levels and those with CHD, likely due to higher 
levels of chronic inflammation and metabolic dysregulation in these 
groups. These findings suggest that dietary interventions may improve 
gut microbiota diversity more effectively in certain populations, 
thereby modulating inflammatory responses and estrogen metabolism 
more efficiently. However, no significant interactions were observed 
across different racial and income groups, indicating that metabolic or 
inflammatory status may play a crucial role in driving these differences.

5 Strengths and limitations

A notable strength of this study lies in the utilization of a novel 
dietary assessment tool, the Dietary Index for Gut Microbiota 
(DI-GM), which was developed based on intervention studies and 
encompasses 14 foods and nutrients closely linked to gut health. 
Unlike single biomarkers (e.g., β-glucuronidase activity or short-chain 
fatty acid levels), this comprehensive approach provides a more 
holistic reflection of dietary impacts on the gut microbiota.

However, this study has several limitations. First, dietary intake 
data were collected through 24-h dietary recall interviews or telephone 
interviews, which may be subject to recall bias. Second, respondents 
might have been influenced by social desirability bias, potentially 
underreporting the consumption of unhealthy foods such as high-
sugar and high-fat products. Additionally, as this is a cross-sectional 
study, causal relationships between diet and gut microbiota cannot 
be established. Thus, the findings may be confounded by unmeasured 
factors, including lifestyle choices, genetic background, or 
psychological status. Future research should include prospective 
cohort studies to track dietary patterns and gut microbiota changes 
over time, as well as randomized controlled trials to assess the direct 
impact of dietary interventions on gut microbiota composition and 
related health outcomes.

6 Conclusion

This study systematically evaluated the association between the 
Dietary Index for Gut Microbiota (DI-GM) and female infertility 
using data from NHANES 2013–2018. The results revealed a negative 
association between DI-GM and the risk of female infertility, 
suggesting that optimizing dietary patterns to improve DI-GM scores 
could be an effective strategy for reducing the risk of female infertility.
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TABLE 2 Multivariate logistic regression between DI-GM and female infertility.

Characteristic
Model 1 Model 2 Model 3

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

DI-GM (continuous) 0.90 (0.85, 0.96) 0.002 0.88 (0.82, 0.94) <0.001 0.89 (0.83, 0.95) <0.001

DI-GM (group)

0–3 Reference Reference Reference

4 0.83 (0.61, 1.13) 0.240 0.79 (0.58, 1.08) 0.145 0.83 (0.60, 1.15) 0.264

5 0.61 (0.44, 0.83) 0.002 0.55 (0.40, 0.76) <0.001 0.55 (0.40, 0.77) <0.001

≥6 0.64 (0.48, 0.86) 0.003 0.57 (0.42, 0.77) <0.001 0.60 (0.44, 0.82) 0.001

P for trend <0.001 <0.001 <0.001

Model 1: No covariates were adjusted. Model 2: Adjusted for age, and race, education level, marital status. Model 3: Adjusted for age, race, education level, marital status, PIR, BMI, smoking 
status, alcohol consumption, diabetes, hypertension, CVD, stroke, pelvic infection/PID, regular menstrual periods, history of hysterectomy, history of bilateral oophorectomy, female hormones 
taken, and birth control pills taken.
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