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Background: Moderate heavy metals can lead to the occurrence of liver injury,

but the specific mechanism remains unclear.

Methods: This study, based on data from the National Health and Nutrition

Examination Survey (NHANES), analyzed associations between 10 heavy metals

and hepatic injury in 5,613 adults, with a focus on the mediating role of the

Systemic Immune-Inflammation Index (SII). Partial correlation analysis, weighted

linear regression, weighted quantile sum (WQS) regression, and mediation e�ect

models were used in the study.

Results: SII showed significant negative correlations with hepatic fibrosis

markers (FIB-4: r = −0.290; NFS: r = −0.382, both P < 0.001) but no association

with hepatic steatosis indices. Arsenic (As), cobalt (Co), and cesium (Cs) were

identified as critical metals linking fibrosis indicators and SII. As mediated its pro-

fibrotic e�ects by completely suppressing SII (OR = 0.0220–0.0581), while Co

promoted NFS risk through complete mediation by SII (Q2 vs. Q1 OR = 1.26).

Conversely, Cs exhibited anti-fibrotic protectionvia complete positive mediation

through SII.

Conclusion: The findings demonstrate that Heavy metals di�erentially regulate

immune-inflammatory pathways to influence hepatic fibrosis progression,

providing new evidence for the mechanisms of environmental exposure-

induced hepatic injury.

KEYWORDS

hepatic steatosis, hepatic fibrosis, systemic immune verification index, heavy metal,

mediating e�ect

Introduction

Heavy metal pollution is a major problem faced by every city. The heavy metal

pollution index inNigeria’s drinking water was as high as 13,672.74, which was 136.72 times

higher than the World Health Organization standard for drinking water (1). Heavy metal

pollution is also a problem in Ecuador (2), China (3), Canada (4) and the United States (2–

4), and has even been detected in the sparsely populated Antarctic (5). It may be produced

by large-scale human activities such as the use of pesticides, internal combustion engines
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and automobiles, rapid industrialization, and imperfect

environmental planning, and so on (6, 7). Heavy metal pollution

has begun to attract the attention of all countries, but the

management is still insufficient. After heavy metals enter the

human body, the hepatic is the first to be affected, resulting in

abnormal hepatic function and fibrosis (8–10). With the excessive

accumulation of heavy metals, the human brain, lungs, and nerves

are further damaged (11–15).What is more serious is that they

also show carcinogenic effects, such as arsenic, chromium, lead

etc. (16). However, the mechanism by which heavy metals cause

hepatic damage has not yet been clarified.

The systemic immune-inflammation index (SII), as a new

inflammatory biomarker, can reflect the systemic local immune

response and systemic inflammation, and has shown its role in

the pathogenesis and prognosis of a variety of diseases, such

as coronary heart disease (17, 18), gastric cancer (19, 20), lung

cancer (21–23) and so on. Some studies have pointed out that SII

may be associated with the risk and severity of various hepatic

diseases (24, 25). Alterations in inflammatory markers may result

from the toxic effects of harmful metals. For instance, arsenic

induces sustained immuno-inflammatory responses in the hepatic

and kidneys (26), meanwhile, chronic cadmium (Cd) exposure

triggers hepatic oxidative stress, endoplasmic reticulum stress,

inflammatory reactions, and proliferation in aged female mice (27).

Based on these studies, we hypothesize that SII may play a role in

the relationship between heavy metals and hepatic injury. However,

the specific role of SII in this regard has not been reported.

The development of hepatic injury has a certain process,

from the ectopic accumulation of triglycerides in the cytoplasm

of hepatic cells (i.e., hepatic steatosis), forming inflammation

and hepatocyte damage [i.e., non-alcoholic steatohepatitis], to

progressive fibrosis and development into hepatic cirrhosis, end-

stage hepatic disease or hepatic cancer (28). Previously, the

most common marker for diagnosing hepatic injury was alanine

aminotransferase (ALT), but a single factor had the drawback

of poor accuracy. Therefore, in this study, the Fatty Liver Index

(FLI) (29), NAFLD hepatic fat score (LFS) (30), and Framingham

Steatosis Index (FSI) were selected to reflect the level of hepatic

steatosis. The degree of hepatic fibrosis was represented by the

nonalcoholic fatty liver disease fibrosis score (NFS), an indicator of

hepatic fibrosis (FIB-4). Therefore, we investigated the relationship

between metal exposure and hepatic damage-related indicators

(FLI, LFS, FSI, FIB-4 and NFS) using data from the National

Health and Nutrition Survey (NHANES) of people aged 18–

80. And we further studied the mediating role of SII in the

relationship between heavy metals and Non-alcoholic Fatty Liver

Disease (NAFLD).

Methods

NHANES is a program of studies designed to assess the health

and nutritional status of adults and children in the United States,

by using a hierarchical, multi-stage and probabilistic clustering

design. Information will be used to assess the health promotion

and disease prevention. The study protocol was approved by the

National Center for Health Statistics Ethics Review Board, and all

participants provided their informed consent.

Study design and participants

A total of 76,496 participants from five NHANES cycles in

2005–2006, 2007–2008, 2009–2010, 2011–2012, 2013–2014, 2015–

2016 and 2017–2020 were included in this study. In NHANES, the

heavy metal exposure of participants aged 18–80 was evaluated

through urine metabolite analysis. We excluded hepatic injury

caused by Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV)

(n = 859), and those who drank excessively or lacked drinking

information (women drank ≥3 cups per day; Men who drink

≥4 cups of alcohol per day or 5 cups or more per month (n

= 18,220), as well as pregnant women (n = 742) and cancer

patients (n = 6,667), because these conditions can affect hepatic

function indicators.

Ten heavy metals (Arsenic [As], Barium [Ba], Cobalt [Co],

Cesium [Cs], Molybdenum [Mo], Lead [Pb], Antimony [Sb],

Thallium [Tl], Tungsten [Tu] and Uranium [Ur] in urine were

analyzed as the main indicators.

NHANES usually adopts stratified sampling or subsample

analysis strategies and only conducts specific tests on some

participants. Therefore, in this study, 12,829 samples with

missing urinary arsenic data were deleted. The number of

participants lacking the other nine heavy metals was relatively

small. In this study, the median was used to complete

the missing information. There were 2 participants with

deficient urinary creatinine content. SII can reflect the local

immune response and systemic inflammatory response of the

human body. A total of 191 were removed due to the lack

of SII.

Because the influence caused by confounding factors such

as age, gender and poverty index (PIR) needs to be adjusted

during the calculation process, participants with incomplete basic

information were also deleted. Ultimately, there were a total of

5,613 participants with complete indicators of heavymetals, SII and

urinary creatinine (Figure 1).

Evaluation of biomarkers related to hepatic
steatosis and hepatic fibrosis

Biomarkers of hepatic steatosis
The FLI and LFS demonstrate high diagnostic accuracy as

markers of hepatic injury, particularly in metabolically susceptible

populations (31, 32). Due to this, FLI and LFS have been widely

adopted in scientific research. In 2020, a research team led by

Lars Lind compared four diagnostic markers for NAFLD (FLI,

Hepatic Steatosis Index [HSI], Lipid Accumulation Product [LAP],

and LFS) and found that FLI and LFS were the most suitable

for assessing NAFLD. This is because FLI performs better in

population-based settings, whereas LFS is optimal in high-risk

cohorts (33).

The FSI is another tool for determining NAFLD risk,

incorporating age, body mass index (BMI), triglycerides (TG),

aspartate aminotransferase (AST), alanine aminotransferase (ALT),

diabetes status, and hypertension. A 2024 study reported that

when used for NAFLD diagnosis, FSI exhibited discrimination and

predictive performance with area under the curve (AUC) values
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FIGURE 1

Flowchart of the participants included in the analyses.

of 0.8421 (95% CI: 0.8314–0.8527) and 0.7093 (95% CI: 0.6863–

0.7322),

FLI =
e
0.953×ln(TG)+0.139×BMI
+0.781×ln(GGT)+0.053×WC−15.745

1+ e
0.953×ln(TG)+0.139×BMI
+0.781×ln(GGT)+0.053×WC−15.745

× 100

LFS = −2.89+ 1.18×MS(yes = 1, no = 0)

+0.45× T2DM(yes = 2, no = 0)

+0.15× insulin(mU/L)

+0.04× AST(U/L)− 0.94× AST/ALT

Among them, the diagnostic criteria for metabolic syndrome

(MS) are that any three or more of the following adjustments

are satisfied:

1. Fasting Blood Glucose (FBG)>100mg/dL (5.6 mmol/L) or drug

treatment for diabetes mellitus.

2. High-density lipoprotein cholesterol (HDL-C) <50 mg/dL in

females<40 mg/dL in males or drug treatment for reduced

HDL-C.

3. Plasma Triglyceride (TG) >150 mg/dL or drug treatment for

raised TG.

4. Waist circumference >88 cm in women or >102 cm in men.

5. Blood pressure >130/85 mmHg or drug treatment for raised

blood pressure

FLI = −7.981+ 0.011× age(years)

−0.146× gender(women = 1,men = 0)

+0.173× BMI(kg/m2)+ 0.007

×TG(mg/dL)+ 0.593× HTN(yes = 1, no = 0)

+0.789×Hyperglycemia(yes = 1, no = 0)

+1.1× [ALT/AST ≥ 1.33(yes = 1, no = 0)]

1. The diagnostic criteria for hypertension are: Systolic Blood

Pressure (SBP)≥140 and/or Diastolic Blood Pressure (DBP)≥90,

or having been diagnosed with hypertension by a doctor;

2. According to the latest prevention and treatment guidelines, the

diagnostic criteria for hyperglycemia are that it can be diagnosed

if any of the following conditions are met (34):

① FPG ≥7.0 mmol/L (126 mg/dL) (fasting means not having

eaten for at least 8 h).

② The 2-h blood glucose level in the oral glucose tolerance test

(OGTT) was ≥11.1 mmol/L (200 mg/dL).

③ Glycated hemoglobin (HbA1c) ≥6.5% (standardized

detection methods should be adopted).

④ Random blood glucose ≥11.1 mmol/L (200 mg/dL)

and accompanied by typical hyperglycemic symptoms (such as

polydipsia, polyuria, and weight loss).

⑤ It had been confirmed as diabetes before the investigation.

Biomarkers of hepatic fibrosis
The EASL-EASD-EASO clinical practice guidelines

recommend simple non-invasive scores such as the NFS and

FIB-4 as part of the diagnostic protocol to exclude advanced

fibrosis (35). A re-analysis of 13 studies showed that FIB-4 and NFS

could stratify the risk of hepatic-related morbidity and mortality in

patients, and their performance was comparable to that of hepatic

biopsy (36).

FIB− 4 =
Age(years)× AST(U/L)

Plateletcount(1000cells/µL)×
√
ALT

NFS = −1.675+ 0.037× age(years)+ 0.094

×BMI(kg/m2)+ 1.13

×impairedfastingglucose(ordiabetes)(yes = 1, no = 0)

+0.99× AST/ALTratio− 0.013× platelet(× 109/L)

−0.66× albumin(g/dL)

Heavy metal exposure
Inductively coupled plasma mass spectrometry (ICP-MS) is a

multielement analytical technique (37). The urine samples were

collected and ICP-MS was used to detect 13 elements including

As, Ba, Co, Cs, Mo, Pb, Sb, Tl, Tu, Ur, beryllium (Be), cadmium

(Cd), and platinum (Pt) in the urine samples. Because Be, Cd, and

Pt were missing more, the other 10 heavy metals were analyzed in

this study. Urinary creatinine was used to standardize the content

of heavy metals to control the bias caused by measurement error.

Except for As, the missing values of the other 9 heavy metals

Frontiers inNutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2025.1566345
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2025.1566345

were filled with the median, and logarithmic transformation was

performed on all heavy metals for subsequent analysis.

SII
SII is a good and stable new inflammatory marker that can

reflect the local immune response and systemic inflammatory

response of the human body. SII was defined as platelet count

(109/L) × neutrophil count (109/L)/lymphocyte count (109/L)

(38). This comprehensive parameter, which combines peripheral

platelet, neutrophils and lymphocytes, more comprehensively

reflects the inflammatory state of the body compared with a single

inflammatory index (39). Studies have now that SII was associated

with a variety of diseases, such as testicular cancer (40), prostate

cancer (41), coronary artery disease (42), COVID-19 (43). Since

the data distribution of SII did not conform to the properties of

a normal distribution, so ln (SII) was used for analysis in this study.

Covariates
Demographic variables, such as age (in years), gender,

race, education years, marital status, poverty to income ratio,

smoking, and drinking, were collected through interviewers

assisted interviews. Gender, race/ethnicity, gender and smoking

status were grouped by the respondents. Age was calculated in

years and was divided into three groups (18–39, 40–59 and ≥60

years old) for subsequent analysis. This study divided the years

of education into three groups: ≤12 years, 13–14 years, and ≥15

years. Socioeconomic status is a disease risk factor that is easily

overlooked. Low household income is an indicator to measure

socioeconomic status and may indicate a greater risk of diseases.

The research participants were classified into low poverty (≤1),

poverty (1–3), and high poverty (>3) based on PIR. The harm of

smoking is obvious to all, but there are still people who smoke.

In this study, the subjects were divided into smokers, quitters and

never smokers for corrective analysis.

Statistical analysis
A total of 76,496 people from the NHANES dataset were

collected. According to strict inclusion and exclusion criteria,

a total of 5,613 people participated in the final calculation.

Considering the complex, multi-stage and multi-level sampling

methods used in the NHANES database, we included weighted

variables in accordance with the instructions for use provided by

the data providers. The weight for the period from 2005 to 2016

was WTSA2YR/6, and the weight for the period from 2017 to

2020 (∼1.6 two-year periods) was WTSA2YR/1.6. Weighted non-

parametric tests, t-tests, and analysis of variance were used to

compare the differences in biomarkers of hepatic steatosis and

hepatic fibrosis at different baseline levels. Weighted regression

was used to analyze the correlation analysis of hepatic fibrosis

indicators after overall and quartile grouping of heavy metals.

Since multiple inter-group comparisons were required in the

weighted regression of quartile grouping, the P-value was corrected

by Bonferroni.

The effect of combined exposure to heavy metals on hepatic

fibrosis was analyzed by WQS (44). The WQS regression model is

usually expressed as: g(µ) = β0+β1(
∑

ωiqi)+ z′φ. Among them:

µ is the expected response; β0 is the intercept; qi is the quantile

of the i-th exposed variable; wi is the weight of the i-th exposed

variable (0 ≤ wi ≤ 1 and
∑

wi = 1); β1 is the coefficient of the

comprehensive index; z is the covariate vector; φ is the covariate

coefficient vector. In this study, the WQS model was implemented

in R using the “gWQS” package. We assumed that the effect of each

exposure in the mixture in the study is in the positive direction. The

parameters were set to gwqs(FIB4∼ wqs, mix_name = name, data

= data, q= 4, validation= 0.6, b= 100, b1_pos= TRUE, b_constr

= FALSE, seed=1,003).

Restricted Cubic Splines (RCS) fits data through piecewise

polynomials to automatically capture non-linear trends. There is no

need to pre-assume the function form (such as linear or quadratic),

and the relationship curves between variables and outcomes can be

directly plotted (45). Therefore, in this study, the “rms” package of

R software was further utilized. The effects of As, Co, and Cs on

FIB-4, NFS, and SII were analyzed by weighted RCS.

Mediation analysis is often used to study how an independent

variable (X) affects the dependent variable (Y) through a mediation

variable (M). For this reason, mediation analysis was also used in

this study, with the aim of exploring the mediating effect of SII in

the correlation process among As, Co, Cs, and FIB-4, NFS, and it

was achieved through the “mediation” package.

All data analyses were conducted using R version 4.4.3 (R

Foundation for Statistical Computing, Vienna, Austria). A two-

sided p-value was below 0.05. When Bonferroni correction was

performed, the two-sided p-value was below 0.05/4, that is, the

p-value was 0.0125.

Result

NAFLD correlation index distribution
among di�erent participant feature groups

Among 5,613 adults, based on the demographics of the study,

Weighted analysis was performed to compare Hepatic steatosis

related biomarkers (FLI, LFS, FSI) and Hepatic fibrosis related

biomarkers (FIB-4, NFS) in Table 1.

Of all the participants, the older the subjects had higher

level of NAFLD related index including Hepatic steatosis-related

biomarkers (FLI, LFS, FSI), andHepatic fibrosis-related biomarkers

(FIB-4, NFS), P < 0.001. The median level of Hepatic steatosis

related biomarkers in males was significantly higher than that

in females, while that in NFS was significantly lower than that

in females (P < 0.01). LFS of Black people was higher than

that of White people (P = 0.023), however, the conclusions of

biomarkers for hepatic fibrosis were inconsistent among different

races. Compared with White people, Black people had lower FIB-

4 and higher NFS, with P < 0.001. Comparing the five indexes in

the population with different years of education years, the result

showed that there was more significant difference in the relevant

indexes of Hepatic steatosis level, indicating that people with years

of education ≥15 years have lower hepatic steatosis score, P <

0.05. PIR only shows its role in FIB-4 score. The results showed

that compared with poor people, FIB-4 index of relatively rich

people also increased, P < 0.001, which may be related to abnormal

hepatic metabolism due to excess nutrition. In the comparison of

groups with different smoking conditions, it was found that the
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TABLE 1 Characteristics of NHANES 2005–2020 weighted sample and P-value.

Characteristic FLI (median [IQR]) LFS (median [IQR]) FSI (median [IQR]) FIB-4 (median [IQR]) NFS [mean(SD)]

All 53.6 [20.5,84.7] −1.17 [−2.11,0.39] −0.99 [−2.37,0.50] 0.86 [0.59,1.27] −0.57 (1.31)

Age

18–39 37.06 [11.30, 79.09] −1.69 [−2.35,−0.14] −2.06 [−3.09,−0.35] 0.56 [0.44, 0.71] −1.50 (1.10)

40–59 62.38 [26.09, 86.97] −0.88 [−2.05, 0.65] −0.64 [−2.00, 0.94] 0.94 [0.75, 1.17] −0.70 (1.05)

≥60 63.66 [31.75, 87.10] −0.33 [−1.81, 1.00] −0.35 [−1.46, 0.91] 1.51 [1.19, 1.88] 0.30 (1.12)

P <0.001 <0.001 <0.001 <0.001 <0.001

Gender

Male 63.09 [30.61, 86.78] −0.56 [−1.84, 1.07] −0.76 [−2.11, 0.66] 0.83 [0.58, 1.22] −0.71 (1.24)

Female 39.58 [13.01, 81.76] −2.30 [−2.58,−1.91] −1.21 [−2.66, 0.59] 0.83 [0.56, 1.18] −0.46 (1.28)

P <0.001 <0.001 0.034 0.105 0.005

Race

White 52.79 [18.08, 84.80] −1.29 [−2.26, 0.43] −0.96 [−2.48, 0.59] 0.87 [0.59, 1.27] −0.52 (1.28)

Black 52.23 [19.23, 87.24] −1.01 [−2.10, 0.24] −0.65 [−2.06, 0.78] 0.76 [0.54, 1.12] −0.39 (1.24)

Others 54.47 [21.22, 81.90] −0.91 [−1.85, 0.99] −0.83 [−2.18, 0.79] 0.72 [0.52, 1.02] −0.96 (1.17)

P 0.721 0.023 0.083 <0.001 <0.001

Education years

≤12 grade 54.21 [25.01, 85.10] −0.78 [−2.09, 0.95] −0.76 [−2.17, 0.63] 0.81 [0.56, 1.20] −0.80 (1.37)

13–14 grade 65.56 [26.96, 89.16] −0.40 [−1.84, 1.33] −0.52 [−1.68, 1.33] 0.81 [0.52, 1.18] −0.55 (1.26)

≥15 grade 48.97 [16.31, 83.35] −1.51 [−2.25, 0.29] −1.23 [−2.54, 0.42] 0.84 [0.58, 1.20] −0.59 (1.24)

P <0.001 0.002 <0.001 0.223 0.192

Marital 57.92 [22.86, 85.13] −0.88 [−2.05, 0.68] −0.71 [−2.07, 0.71] 0.87 [0.64, 1.25] −0.61 (1.19)

P <0.001 0.01 0.011 <0.001 0.836

PIR

≤1 55.10 [17.44, 86.38] −1.05 [−2.04, 1.00] −0.84 [−2.55, 0.80] 0.63 [0.47, 1.00] −0.82 (1.25)

1–3 56.50 [19.30, 86.56] −0.90 [−2.08, 0.75] −0.73 [−2.10, 0.89] 0.81 [0.56, 1.21] −0.52 (1.36)

≥3 50.89 [18.72, 83.13] −1.31 [−2.18, 0.42] −1.05 [−2.53, 0.45] 0.87 [0.62, 1.22] −0.62 (1.20)

P 0.188 0.28 0.081 <0.001 0.062

Smoking

Smokers 51.53 [16.13, 83.46] −1.50 [−2.30, 0.09] −1.15 [−2.70, 0.48] 0.73 [0.53, 1.00] −0.93 (1.13)

Former smokers 66.31 [25.86, 89.36] −0.29 [−1.99, 1.29] −0.33 [−1.87, 1.16] 0.93 [0.68, 1.37] −0.40 (1.22)

Never smokes 48.26 [17.25, 80.94] −1.38 [−2.16, 0.35] −1.21 [−2.52, 0.38] 0.81 [0.54, 1.18] −0.64 (1.31)

P <0.001 0.005 <0.001 <0.001 <0.001

Drinking

Never drinks 56.05 [20.03, 84.80] −0.85 [−2.03, 0.56] −0.57 [−1.99, 0.91] 0.87 [0.59, 1.27] −0.50 (1.28)

Light drinkers 49.63 [16.85, 83.86] −1.57 [−2.34, 0.42] −1.46 [−2.79, 0.21] 0.74 [0.54, 1.05] −0.85 (1.19)

P 0.196 0.007 <0.001 <0.001 0.001

Weighted baselines were used to compare the differences in hepatic injury-related indicators among different baseline level groups. The comparison of FLI, LFS, FSI, and FIB-4 were conducted

using non-parametric tests, and NFS was performed using fangchafenx (age, race, education years, PIR, and smoke) or t-tests (gender, marry, and drink).

group who quit smoking had the highest NAFLD-related index,

while the group who did not smoke had the lowest level of most

indicators (P < 0.05). However, the five indexes of light drinkers

were significantly lower than those of those who did not drink at

all, P < 0.05.

Partial correlation analysis of heavy metals,
SII and NAFLD correlation index

In order to accurately compare the correlation between

heavy metals, SII and NAFLD correlation index, we used partial
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FIGURE 2

Partial correlation analysis of heavy metals, SII, and NAFLD correlation index. The covariates included sex, age after grouping, race, marriage,

education years, smoking, Alcohol drinking, and PIR. The correlation coe�cients are shown in color. Blue is negatively correlated red is a positive

correlation. The darker the color, the stronger the correlation. When conducting the overall analysis of heavy metals, logarithmic transformed values

are all adopted.

correlation analysis to calculate this, and 8 covariables including

age, gender, race, education years, marry, PIR, smoke and drink

were controlled. The results were shown as a heat map in Figure 2.

Generally speaking, most of the 10 heavy metals were positively

correlated with each other. SII appeared to be more closely

associated with hepatic fibrosis, with FBI-4 (r=−0.290, P< 0.001)

and NFS (r=−0.382, P < 0.001), but not with steatosis. There was

no positive correlation between heavy metals and hepatic steatosis

index FLI, LFS, and FSI, indicating that Co, Pb, Ur were positively

correlated with FIB-4, and the correlation coefficients were r =
0.084(P = 0.036), r = 0.121(P = 0.002), r = 0.131(P = 0.001),

respectively. Among them, this might be related to heavy metal

poisoning after which the induced oxidative stress response may

preferentially trigger hepatic fibrosis, It was not associated with

steatosis (44). Comparing the correlation between heavymetals and

SII, the results showed that Co (r = 0.083, P = 0.037) and Tu (r =
0.080, P= 0.044) were significantly positively correlated with SII.

Associations of FIB-4, NFS, and SII with
heavy metals by GLM models

Since SII showed no significant correlation with hepatic

steatosis indices (FLI, LFS, FSI), further analysis was performed

only on hepatic fibrosis indices (FIB-4, NFS). The results were

illustrated in Figure 3. Analyzing each heavy metal’s overall

association with SII revealed that As (OR = 0.96, 95% CI = [0.95–

0.97], P < 0.001) and Cs (OR = 0.97, 95% CI = [0.94, 1.00], P

= 0.039) showed significant negative correlations, while Sb (OR

= 1.02, 95% CI = [1.00, 1.05], P = 0.016) exhibited a positive

correlation. When taking Q1 as the reference and comparing the

correlations between Q2, Q3, Q4 and SII, As (Q4: OR = 0.95,

95% CI = [0.94–0.97], P < 0.001) and Co (Q2: OR = 0.98,

95% CI = [0.96–0.99], P = 0.011; Q3: OR = 0.98, 95% CI =
[0.96–0.99], P = 0.009). The negative correlation with SII was

highlighted (P < 0.0125). This may be related to the fact that

arsenic-induced oxidative stress can damage immune cells and

promote the proliferation of T lymphocytes, thereby reducing

SII (46).

Subsequent focus on As, Co, Cs, and Sb in FIB-4/NFS analyses

demonstrated that at overall levels, As (OR= 1.04, 95% CI= [1.01,

1.08], P = 0.012) and Co (OR = 1.11, 95% CI = [1.05, 1.17], P

< 0.001) were positively associated with FIB-4. Quartile regression

maintained these positive associations (PAs_Q4 = 0.002, PCo_Q4 <

0.001). Conversely, in NFS analyses, As and Cs showed negative

correlations at overall levels, while quartile analysis revealed Co’s

positive association (PCo_Q2 = 0.002 < 0.0125) and Cs’s persistent

negative correlation (PCs_Q4 = 0.007 < 0.0125) with NFS.

WQS regression model to assess the
association of heavy metal co-exposure
with FIB-4, NFS, and SII

After exposure to heavy metals, it often showed the combined

effect of multiple metals rather than a single metal acting alone.
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FIGURE 3

The influence of heavy metal exposure on FIB-4,NFS, and SII. OR was the odds ratio calculated by weighted linear regression after adjusting for age,

sex, race, education years, marry, PIR, smoke, and drink. When conducting the overall analysis of heavy metals, logarithmic transformed values are all

adopted, When comparing the correlation between the overall level and hepatic fibrotic markers, P < 0.05 was taken as the criterion; Taking Q1 as

the reference, when comparing the associations of Q2, Q3, and Q4 with hepatic fibrous markers, correction was made according to Bonferroni, with

P < 0.0125(0.05/4) as the standard.

After adjusting for covariates, the combined effect of heavy metals

was significantly positively correlated with FIB-4 and SII (PFIB−4 <

0.001, PSII < 0.001), but not correlated with NFS (Table 2).

In Figure 4, the weights of eachmetal in the combined exposure

were presented. The results showed that Co has the greatest impact

on FIB-4, NFS, and SII.

Restricted Cubic Spline analysis was
conducted to explore the relationship
between As, Co, Ur, and FIB-4, NFS

Based on the results of weighted linear regression and WQS,

the associations of As, Co, and Cs with FIB-4 and NFS were

screened out. Further RCS analysis was conducted, and the results

was shown in the Figure 5. The overall analysis showed that there

was a statistically significant association between As and FIB-4, P

= 0.011, and the non-linear relationship holds (P = 0.146 > 0.05),

indicating that high-concentration exposure to As was a risk factor

for hepatic fibrosis.

A significant association was observed between cobalt (Co)

and the FIB-4 index (Poverall = 0.002), with the relationship best

described by a linear model (Pnon−linear = 0.862). Similarly, cesium

(Cs) showed a significant association with the NFS score (Poverall =

0.001), and the relationship also followed a linear trend (Pnon−linear

= 0.048).

The mediation analysis of SII on the
relationship between As, Co Cs, and FIB-4,
NFS

The result of the mediating effect is presented in Figure 6. After

adjusting for confounding factors, SII showed a mediating role in

the associations among As, Co, Cs, and FIB-4, and the β-values

of its mediating effect were 0.0220 (95% CI: 0.0119, 0.0300) and

−0.0430 (95% CI:), respectively. −0.0617, −0.0200) and −0.0349

(95% CI: −0.0612, −0.0100) (Figures 6A–C). The mediating effect

ratios were 86.73% and 34.11%, respectively, indicating that SII

successively explained 86.73% and 34.11% of the effects of As and

Cs on fibrosis. Meanwhile, SII inhibited the positive effect of Co on

FIB-4 (49.46%) and NFS (40.54%). If SII was ignored, the effect of

Co would be underestimated.

After covariate adjustment, SII mediated the associations

between As, Co, Cs and NFS, and the β values of its mediating

effect were 0.0581 (95% CI: 0.0182, 0.0200) and −0.0831 (95%

CI: −0.1480, −0.0200) respectively and 0.1134 (95% CI: −0.2158,

0.0200) (Figures 6D–F).
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TABLE 2 The association between WQS index of combined heavy metal exposure and FIB-4, NFS, and SII.

Indicator list Categorical Estimate Std. error t P

FIB-4 Model 1 0.209 0.014 14.600 <0.001

Model 2 0.067 0.018 3.800 <0.001

NFS Model 1 0.079 0.056 1.420 0.157

Model 2 −0.069 0.049 −1.420 0.156

SII Model 1 0.029 0.006 4.900 <0.001

Model 2 0.023 0.006 3.600 <0.001

Model 1 was the crude regression before adjusting for covariates; Model 2 was the regression model for adjustment age, gender, race, education years, marry, PIR, smoke, and drink.

FIGURE 4

Estimated weights assigned to each exposure based on WQS regression modeled in the positive direction with respect to the FIB-4, NFS, and SII. (A)

Estimated weights assigned for FIB-4; (B) Estimated weights assigned for FIB-4; (C) Estimated weights assigned for FIB-4; Models were adjusted for

age, gender, race, education years, marry, PIR, smoke and drink.

FIGURE 5

After adjusting for covariates, the correlations between As, Co and Cs with FIB-4 and NFS were evaluated using RCS. (A) The correlations between As

and FIB-4; (B) the correlations between Co and FIB-4; (C) the correlations between Cs and FIB-4; (D) the correlations between As and NFS; (E) the

correlations between Co and NFS; (F) the correlations between Cs and NFS; The covariates included sex, age after grouping, race, marriage,

education years, smoking, Alcohol drinking; The solid black lines correspond to the central estimates, and the gray-shaded regions indicate the 95%

confidence intervals; When conducting the overall analysis of heavy metals, logarithmic transformed values are all adopted.
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FIGURE 6

Estimate the association ratio among SII-mediated As, Co, Cs, and FIB-4, NFS. (A–C) were for analyzing the e�ects of As, Co and Cs on FIB-4

respectively; (D–F) were to analyze the influences of As, Co and Cs on NFS respectively. The model has been adjusted according to age, gender,

race, education years, marry, PIR, smoke and drink; SII, As, Cs, and Co have all undergone logarithmic transformation; The mediation e�ect is

calculated using the “Mediation” package. When conducting the overall analysis of heavy metals, logarithmic transformed values are all adopted.

Discussion

To our knowledge, this is the first study to evaluate the

mediating role of SII in heavy metal-induced non-alcoholic

hepatic injury. With global industrialization, toxic pollutants (e.g.,

heavy metals) are increasingly released into the environment,

accumulating in air, soil, drinking water, and food, ultimately

leading to human exposure and tissue damage (47, 48). Existing

epidemiological and experimental studies support the role of toxic

metal exposure in NAFLD (49), primarily through mechanisms

such as oxidative stress, endoplasmic reticulum (ER) stress,

pyroptosis, ferroptosis, and dysregulated autophagy (50).

In this study involving 5,613 participants, SII was mainly

significantly negative associated with the indicators FIB-4 and NFS

representing hepatic fibrosis, rather than hepatocellular steatosis,

and although As (arsenic) and Co reduced SII, they ultimately

promoted the formation of hepatic fibrosis. Cs was shown to inhibit

the occurrence of hepatic fibrosis by reducing SII.

Regarding the association between SII and hepatic fibrosis, the

current research results are not completely consistent. This might

be caused by the differences in the selected research population.

Ma et al. found that a higher SII had a higher positive correlation

with the risk of FIB-4 [OR (95% CI): 5.69 (2.17–14.90), p < 0.001]

(51). However, an analysis of adults with NHANES published in

2022 did not find an association between SII and hepatic fibrosis

(52). The results published in 2024 showed that SII was significantly

negatively correlated with hepatic fibrosis in the entire population

and the diabetic population (53, 54), and the conclusion of this

study is consistent with this. The inconsistent research results

may, on the one hand, stem from the included population. In this

study, the focus was on the population exposed to heavy metals.

Heavy metal exposure causes apoptosis of immune cells through

pathways such as oxidative stress (55) and DeoxyriboNucleic Acid

(DNA) methylation (56), thereby reducing the level of SII. On the

other hand, with the increase of heavy metal exposure, the disease

progresses to the stage of hepatic fibrosis, and the blood content

in the body significantly decreases, mainly lymphocytes, thereby

significantly reducing the SII level and presenting a negative

correlation phenomenon (53).

In this study, As (arsenic) was negatively correlated with SII,

that is, higher As levels were associated with lower SII values. The

weighted group regression analysis for FIB-4 indicated that low-

dose As did not induce hepatic fibrosis. However, when the body

was exposed to high-dose As, hepatic fibrosis became obvious,

and SII played a major positive mediating role in this process.

This indicates that low doses of arsenic are harmless to physical

health, while high concentrations of arsenic exposure cause hepatic

damage. Based on the conclusion that low doses was harmless,

arsenic preparations (As) could be used in disease treatment, such

as the treatment of acute myeloid leukemia (57). This phenomenon

could be attributed to the reduced expression of arsenic transporter

aquaporin-9 (AQP9), which led to a decrease in intracellular arsenic

accumulation and reduced the sensitivity of these cells to arsenic

trioxide (ATO) treatment (58). These findings were consistent

with the anti-tumor and immunomodulatory effects of ATO in

autoimmune diseases, and excessive use of ATO could lead to

hepatotoxicity, nephrotoxicity and cardiotoxicity (59).

In 2017, Gao et al. discovered that ATO reduces the

percentage of myeloid-derived suppressor cells (MDSCs) in the

spleen, weakening their immunosuppressive effect on T cells and

thereby promoting T-cell proliferation and immunoregulation

(60). Additionally, As suppresses bone marrow hematopoiesis

by reducing GATA-2 DNA-binding activity, inhibiting the

proliferation and differentiation of neutrophil precursor cells (61).

In summary, arsenic exposure promotes neutrophil apoptosis while

enhancing lymphocyte proliferation, ultimately leading to the

negative correlation between As and SII. When As accumulates

beyond a certain threshold, it decreases the activity of antioxidant
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enzymes, significantly increasing oxidative stress, inflammation,

DNA damage, and apoptosis, contributing to the development of

various diseases, including hepatic injury (62, 63).

Cobalt(Co) was also a relatively important heavy metal in this

study, due to its dual characteristics. It is not only an indispensable

trace element in the human body, but also can cause damage to

the body when excessive. Co has become increasingly prevalent

in daily life with the development of new electric vehicles, as a

cathode material for batteries (64). In this study, Co was identified

through WQS (weighted quantile sum) analysis. Correlation

analysis revealed significant positive associations between Co and

both FIB-4 and SII. Further mediation analysis demonstrated that

SII exerted a partial negative mediating effect in the relationship

between Co and FIB-4/NFS. Co can induce inflammatory responses

in vivo through oxidative stress. Additionally, it promotes a

HIF-1α-dependent metabolic shift from oxidative phosphorylation

to glycolysis in macrophages, which plays a crucial role in

activating inflammatory responses (65), thereby disrupting normal

immune function (66). High concentrations of Co may lead to

excessive inflammatory responses, endocrine disruption, adverse

developmental effects, and even mortality (67), findings that are

consistent with the results of this study (68).

Initially, cesium (Cs) attracted attention due to its radioactive

properties (69). Recent studies had demonstrated that its

isotope, cesium-131 (131Cs), could be encapsulated in seeds or

microspheres and implanted into tumors (e.g., prostate cancer),

delivering localized high-dose radiation while minimizing damage

to surrounding healthy tissues, thus enabling its application in

treating brain, prostate, and head and neck cancers (70–72).

However, research on the association between Cs and hepatic

fibrosis remains limited. In 2020, Ziasmin Khatun et al. co-

cultured NIH/3T3 mouse fibroblasts with metal chlorides (Li,

Na, K, Rb, and Cs) and found that Cs suppressed fibroblast

proliferation and migration (73). The cellular effects of Cs might

be related to intracellular metabolism. Given its similar ionic

radius to potassium (K+), Cs could permeate potassium channels—

sometimes even with higher selectivity than K+ itself (74), which

potentially disrupting normal cellular metabolism by interfering

with potassium uptake (75, 76). In our study, Cs exhibited a

negative correlation with both the systemic immune-inflammation

index (SII) and hepatic fibrosis. Notably, SII demonstrated a

positive mediating effect in their association, which aligns with

the aforementioned findings. These results suggested that Cs may

influence fibrotic processes through immunometabolic pathways,

warranting further investigation into its mechanistic role in

hepatic fibrosis.

This study possesses several notable strengths. First, the

data were derived from the National Health and Nutrition

Examination Survey (NHANES) conducted by the Centers for

Disease Control and Prevention (CDC), representing the highest

quality of experimental results. Second, to our knowledge, this is

the first study to comprehensively analyze the associations between

heavy metal exposure and multiple NAFLD-related indicators of

hepatic steatosis (including FLI, LFS, and FSI) as well as hepatic

fibrosis markers (FIB-4 and NFS). Furthermore, we employed

mediation analysis to evaluate the potential mediating role of

SII in these relationships. However, several limitations should be

acknowledged. The cross-sectional design of our study precludes

the establishment of causal relationships between the examined

variables. Future longitudinal studies are warranted to validate

these observations and elucidate the underlying mechanisms.

Conclusions

In this study, there was a significant correlation of As and

Co between heavy metals and hepatic fibrosis indicators FIB-4

and NFS, and SII played a mediating role in this association.

Cs was significantly negatively correlated with SII and hepatic

fibrosis indicators, and SII played a positive mediating role in

this association.
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