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Introduction: Zinc plays an important role in the functioning of the immune 
system. Zinc deficiency leads to increased susceptibility to inflammatory and 
infectious diseases. There are few studies investigating the role of zinc in the 
development and progression of COVID-19 in children, and their findings 
remain inconsistent. This study aimed to determine the zinc levels in children 
with COVID-19 and assess their association with symptoms, inflammation 
markers, and disease progression.

Methods: A prospective cohort study included hospitalized patients under 
18 years who had a confirmed diagnosis of SARS-CoV-2 infection. Serum 
zinc concentrations were measured using a colorimetric method. Based on 
zinc levels, the children were divided into two groups: the first group had 
concentrations below 10.7 μmol/L, indicating zinc deficiency, while the second 
group had levels above 10.7 μmol/L, which was considered within the optimal 
range.

Results: In total, 140 hospitalized patients with COVID-19 were examined. 
Zinc deficiency was identified in 40 children (28.6%), while optimal levels 
were found in 100 children (71.4%). Zinc status did not depend on the age of 
the children. Among the symptoms of acute SARS-CoV-2 infection, children 
with zinc deficiency showed a trend toward more frequent fever occurrences 
(p = 0.0654). No significant impact of zinc status was observed on the severity of 
COVID-19 or the duration of hospitalization. Children with zinc deficiency had 
higher median values of the neutrophil-to-lymphocyte ratio (NLR) (1.84 vs. 1.09, 
p = 0.0010), C-reactive protein (CRP) levels (9.65 vs. 3.96 mg/L, p = 0.0053), 
and fibrinogen levels (2.88 vs. 2.07 g/L, p = 0.0057) compared to those with 
adequate zinc levels. Additionally, the percentage of patients with a NLR greater 
than 4, elevated CRP, and fibrinogen levels was higher in the zinc-deficient 
group (p = 0.0017, p = 0.0107, p = 0.0338, respectively).

Conclusion: Zinc deficiency was observed in 28.6% of children with COVID-19 
and was not dependent on age. Children with hypozincemia had higher levels of 
inflammation markers, including the neutrophil-to-lymphocyte ratio and CRP.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by 
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
is the most significant global health crisis of the past century (1, 2). 
Since 2020, it has led to over 776 million reported cases and more than 
7 million deaths worldwide (3).

In children, SARS-CoV-2 infection is usually mild, although more 
severe manifestations of the disease can sometimes develop (4, 5). The 
progression of COVID-19 involves complex interactions between 
many pathophysiological mechanisms, including the immune system’s 
innate and adaptive responses (6, 7). Disruption of the adaptive 
immune response, coupled with excessive activation of the innate 
immune system (inflammatory macrophages and neutrophils), 
contributes to severe disease outcomes (8, 9). Clinical data indicate 
that the severity of COVID-19 correlates with increased levels of the 
pro-inflammatory cytokine interleukin-6 (IL-6), elevated neutrophil-
to-lymphocyte ratio (NLR), and lymphopenia. Hyperinflammation, 
driven by these immune changes, plays a central role in the 
development of acute respiratory distress syndrome and tissue 
damage, leading to airway collapse, multi-organ failure, and, 
ultimately, death in severe cases (10, 11).

Clinical or demographic risk factors for severe SARS-CoV-2 
infection include older age, male sex, chronic diseases such as diabetes, 
cardiovascular diseases, immunosuppression, and obesity (12, 13), as 
well as suboptimal vitamin and micronutrient status (14–16). Key 
vitamins A, C, and D, and micronutrients such as selenium, copper, 
and zinc, which are essential for proper immune function, have been 
widely discussed regarding their impact on susceptibility to 
COVID-19 and disease progression (15, 17–20). Zinc (Zn2+) is an 
essential micronutrient necessary for supporting a variety of 
fundamental biological processes due to its roles as a cofactor, 
signaling molecule, and structural component (21, 22). Specifically, it 
is involved in growth development, neuro-sensory functions, 
deoxyribonucleic acid (DNA) synthesis, and gene expression (23). 
One of the most important roles of zinc in the human body is its broad 
impact on the immune system (21, 22), as zinc levels affect both 
adaptive and innate immunity. In adaptive immunity, zinc influences 
T-lymphocyte maturation, differentiation, and cytokine production. 
B-cell activation and plasma cell differentiation also depend on zinc 
signaling (22, 24). In innate immunity, zinc plays an anti-inflammatory 
role (25). Specifically, zinc deficiency is associated with higher levels 
of interleukin-1 (IL-1) beta and tumor necrosis factor alpha 
(TNF-alpha) (26), as well as altered monocyte, neutrophil, and natural 
killer (NK) cell activity (27). Accordingly, zinc deficiency leads to 
increased susceptibility to inflammatory and infectious diseases (22).

Several studies have illustrated a connection between upper 
respiratory tract infections, the duration of symptoms, and serum zinc 
levels (28, 29). The current literature on the effect of zinc on the course 
of COVID-19 is limited, with most of the information focusing on the 
adult population. For example, Vogel-González et al. (30) observed a 
significant association between prolonged clinical recovery, increased 
intensive care unit (ICU) stay, mortality, and lower zinc levels in the 
serum of adult patients. Chen et al. (31) conducted a retrospective 
review of patients with the Omicron variant of COVID-19 and found 
that zinc deficiency was connected with acute and persistent 
inflammation. However, other studies show contradictory results. Yao 
et al. (32) did not demonstrate a causal relationship between zinc 

levels and improved prognosis or survival in acute SARS-CoV-2 
infection. However, studies examining the role of zinc in the 
development and course of COVID-19 in children are few, and their 
findings are inconsistent (14, 33, 34). The aim of our study was to 
determine the zinc levels in children with COVID-19 and assess their 
association with symptoms, inflammation markers, and 
disease progression.

Materials and methods

Study design

A prospective cohort study included hospitalized pediatric 
patients with a confirmed diagnosis of SARS-CoV-2 infection through 
polymerase chain reaction (PCR), rapid tests, or serological methods 
(detection of IgM), which were used interchangeably.

The study was conducted from September 2022 to March 2024 in 
the pediatric infectious diseases department of Municipal City 
Hospital №2 in Ternopil, Ukraine.

Participants

The study involved hospitalized patients under 18 years who had 
a confirmed diagnosis of SARS-CoV-2 infection.

The inclusion criteria for the study were: age under 18 years, 
confirmed cases of SARS-CoV-2 infection, informed consent from 
parents for participation, and the ability to measure serum zinc levels 
during hospitalization. Exclusion criteria included the refusal of 
parents to consent to the study and unconfirmed cases of COVID-19.

Throughout the study, we adhered to all recommendations of the 
Helsinki Declaration of 1975 (as revised in 2000). The study was 
approved by the I. Horbachevsky Ternopil National Medical University 
Ethics Committee (Minutes № 70 from August 1, 2022). Upon 
admission, all parents or children over the age of 16 signed an 
informed, voluntary consent form for participation in the study, as 
well as for the use of diagnostic and treatment results in 
scientific publications.

Data and samples collection

We carefully collected baseline and clinical data from patients 
upon hospital admission. Baseline characteristics included age and 
sex, while clinical data included comorbidities, disease severity, and 
duration of hospitalization. Laboratory tests upon admission included 
an expanded complete blood count, biochemical markers, and the 
determination of C-reactive protein (CRP) and ferritin levels.

COVID-19 severity was determined according to the World 
Health Organization (WHO) definition (35). Based on this, patients 
were divided into four groups: mild, moderate, severe, and critical.

Blood samples for determining serum zinc levels were collected 
from patients in the morning or afternoon of the same or the following 
day if the SARS-CoV-2 test result was positive. The samples were left 
to clot, then centrifuged at 4000 rpm for 10 min to separate the serum. 
Zinc concentration in the serum was measured using a Multiskan 
FC-357 microplate photometer (Thermo Fisher Scientific). A 
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colorimetric zinc (Zn) assay kit (Elabscience E-BC-K137-M, USA) 
was used for the analysis. The coefficients of variation (CV) for zinc 
content analysis in the samples were: inter-assay CV – 0.04%, and 
intra-assay CV – 2.7%.

Participants’ groups

Patients with confirmed COVID-19 were divided into two groups 
based on whether they had low or normal zinc levels in their serum. 
Currently, there is no universally accepted threshold for low serum 
zinc concentrations. In our study, we used 10.7 μmol/L as the cutoff 
for low zinc concentration in serum. Сlinical zinc deficiency was 
defined as a concentration of <70 μg/dL (10.7 μmol/L) (36).

Statistical analysis

Statistical analysis of the results was performed using STATISTICA 
12 software. The median and interquartile range (IQR) were used for 
non-normal distribution of data and categorical variables were 
expressed as frequency (percentage). Categorical variables were 
compared using the Chi-square test. A p-value of less than 0.05 was 
considered statistically significant and is highlighted in bold in 
the tables.

Results

Demographic and clinical characteristics of 
the study population

In total, 140 hospitalized patients were included in the study. 
Clinical and laboratory characteristics of the children with COVID-19 
are presented in Table 1. The average age of the hospitalized patients 
was 3.56 ± 4.55 years, ranging from 1 month to 18 years. The male sex 
predominated over the female sex in the study population (56.4% 
vs. 43.6%).

Comorbid conditions were identified in more than half of the 
patients (50.7%). The most common comorbidities were allergic 
conditions (28.6%) and nutritional disorders (22.1%). Diseases of the 
nervous, digestive, urinary, and cardiovascular systems observed 
less frequently.

Mild COVID-19 was diagnosed in 90.7% of the studied children. 
Only 5 patients (3.6%) had a moderate course, 6 children (4.3%) had 
a severe course, and 2 children (1.4%) had a critical course. No deaths 
were observed in our sample. The average duration of hospitalization 
was 4.6 ± 3.4 days, ranging from 1 to 20 days.

Zinc levels in patients during the acute 
phase of SARS-CoV-2 infection

Zinc deficiency was identified in 40 children (28.6%), while 
optimal zinc levels were found in 100 children (71.4%) with COVID-
19. The number of children with zinc deficiency did not depend on the 
age of the patients (Figure 1a). In patients older than 6 years, optimal 
zinc levels were more commonly observed, though the difference was 

not statistically significant (78.8% vs. 69.2%, p = 0.3790). Conversely, 
30.8% of children under 6 years demonstrated zinc deficiency.

Zinc levels were independent of the patients’ age. The median zinc 
concentration in children under 6 years was 12.0 μmol/L (IQR: 10.4; 
14.3), while in children older than 6 years, it was 13.2 μmol/L (IQR: 
11.6; 15.7), p = 0.0983 (Figure 1b).

Comparison of clinical characteristics of 
COVID-19 based on zinc levels

The comparison of clinical characteristics of COVID-19 patients 
based on zinc levels is presented in Table 1.

Among the symptoms of acute SARS-CoV-2 infection, fever was 
present in 100.0% of children with zinc deficiency, while it was 
observed in 92.0% of those with normal zinc levels (p = 0.0654). The 
next most frequent symptoms were respiratory signs, followed by 
fatigue and loss of appetite, although the frequency of these symptoms 
did not depend on zinc status (p = 0.8502, p = 0.3633, and p = 0.2704, 
respectively) (Figure 2).

Comorbidities were observed in both groups with similar 
frequency (42.5% vs. 54.0%, p = 0.2189). Malnutrition and diseases of 
the nervous and urinary systems were more frequently found in 
children with low serum zinc levels, but these differences were not 
statistically significant (p = 0.1966, p = 0.5329, and p = 0.5646, 
respectively).

The severity of COVID-19 and the duration of hospitalization 
were not dependent on zinc status.

Levels of leukocytes, neutrophils, lymphocytes were not 
significantly different between the two cohorts of patients. However, 
the NLR was found to be higher in children with zinc deficiency than 
in those with normal levels (p = 0.0010). The percentage of patients 
with a ratio greater than 4 was four times higher in the group with 
reduced zinc levels, and the difference was statistically significant 
(p = 0.0060).

The median CRP level was significantly higher in children with 
hypozincemia (p = 0.0053). Elevated CRP levels were also more 
frequently observed in the group with reduced zinc levels.

The median platelet count and the frequency of thrombocytopenia 
did not differ statistically. A tendency toward a higher frequency of 
thrombocytosis was observed in patients with low zinc levels 
(p = 0.0692). The mean values of prothrombin time, activated partial 
thromboplastin time (aPTT), and D-dimer were not dependent on 
serum zinc status. However, a trend toward more frequent increases 
in aPTT and D-dimer was observed in children with hypozincemia 
(p = 0.0674 and p = 0.0923, respectively). The median fibrinogen level 
was higher and hyperfibrinogenemia was significantly more common 
in children with zinc deficiency (p = 0.0057, p = 0.0338, respectively), 
although the percentage of its reduced levels was higher in children 
with optimal zinc values (p = 0.0290).

Analysis of creatinine and total protein levels did not show any 
significant differences based on zinc status.

Discussion

In our study, the frequency of hypozincemia among children with 
acute SARS-CoV-2 infection was 28.6%. However, findings from other 
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TABLE 1 Clinical characteristics of the patients with COVID-19 and their dependence on serum zinc levels.

Characteristics Total number, 
n = 140

Zinc deficiency 
(<10.7 μmol/L), n = 40

Optimal zinc levels 
(>10.7 μmol/L), n = 100

P-value

Median (interquartile range, IQR) or n (%)

Age of children, years 1.3 (0.7; 5.21) 1.05 (0.65; 3.7) 1.3 (0.73; 6.0) 0.5051

Gender

Female 61 (43.6) 16 (40.0) 45 (45.0) 0.5899

Male 79 (56.4) 24 (60.0) 55 (55.0) 0.5899

Comorbid conditions 71 (50.7) 17 (42.5) 54 (54.0) 0.2189

Allergic diseases 40 (28.6) 10 (25.0) 30 (30.0) 0.5541

Nutritional disorders 31 (22.1) 6 (15.0) 25 (25.0) 0.1980

Overweight 11 (7.9) 0 11 (11.0) 0.0289

Obesity 9 (6.4) 1 (2.5) 8 (8.0) 0.2307

Undernutrition 11 (7.9) 5 (12.5) 6 (6.0) 0.1966

Cardiovascular pathologies 1 (0.7) 0 1 (1.0) 0.5256

Nervous system diseases 14 (10.0) 5 (12.5) 9 (9.0) 0.5329

Digestive system diseases 6 (4.3) 1 (2.5) 5 (5.0) 0.5094

Urinary system diseases 5 (3.6) 2 (5.0) 3 (3.0) 0.5646

COVID-19 severity

Mild 127 (90.7) 38 (95.0) 89 (89.0) 0.2691

Moderate 5 (3.6) 1 (2.5) 4 (4.0) 0.6657

Severe 6 (4.3) 1 (2.5) 5 (5.0) 0.5094

Critical 2 (1.4) 0 2 (2.0) 0.3676

Duration of hospitalization, days 4.0 (3.0; 5.0) 3.0 (3.0; 5.5) 4.0 (3.0; 5.0) 0.4633

Leukocytes, 109/L 5.92 (4.47; 8.71) 5.93 (4.3; 9.13) 5.88 (4.53; 8.29) 0.9555

Leukopenia, % 21/139 (15.1) 9/40 (22.5) 12/99 (12.1) 0.1219

Leukocytosis, % 17/139 (12.2) 5/40 (12.5) 12/99 (12.1) 0.9508

Neutrophils, 109/L 2.37 (1.33; 3.68) 2.79 (1.85; 4.51) 2.19 (1.13; 3.68) 0.1055

Neutrophilia, % 8/134 (6.0) 3/39 (7.7) 5/95 (5.3) 0.5898

Lymphocytes, 109/L 2.18 (1.25; 3.92) 1.88 (0.87; 3.93) 2.29 (1.42; 3.92) 0.0897

Lymphopenia 62/134 (46.3) 21/39 (53.9) 41/95 (43.2) 0.2597

Neutrophil-to-lymphocyte ratio (NLR) 1.16 (0.44; 2.67) 1.84 (0.63; 4.22) 1.09 (0.39; 2.27) 0.0010

NLR > 4, % 16/134 (11.9) 10/39 (25.6) 6/95 (6.3) 0.0017

C-reactive protein (CRP), mg/L 5.25 (1.37; 15.1) 9.65 (3.14; 28.03) 3.96 (0.62; 11.46) 0.0053

Elevated CRP, % 63/123 (51.1) 26/38 (68.4) 37/85 (43.5) 0.0107

Thrombocytes, 109/L 243 (204; 307) 244.5 (210.5; 322.5) 240.0 (203.0; 297.0) 0.3931

Thrombocytopenia, % 10/138 (7.3) 5/40 (12.5) 5/98 (5.1) 0.1283

Thrombocytosis, % 9/138 (6.5) 5/40 (12.5) 4/98 (4.1) 0.0692

Prothrombin time (PT), sec 14.6 (13.3; 15.8) 14.6 (13.5; 16.2) 14.7 (13.3; 15.8) 0.6821

Prolonged PT (more than 15 s) 52/125 (41.6) 15/35 (42.9) 37/90 (41.1) 0.8589

Activated partial thromboplastin time 

(aPTT), sec

38.3 (34.2; 44.3) 38.2 (35.4; 46.8) 38.3 (33.4; 43.5) 0.3005

Prolonged aPTT (more than 35 s) 88/124 (71.0) 29/35 (82.9) 59/89 (66.3) 0.0674

Fibrinogen, g/L 2.26 (1.67; 3.05) 2.88 (1.94; 3.43) 2.07 (1.56; 2.84) 0.0057

More than 4 g/L 4/121 (3.3) 3/34 (8.8) 1/87 (1.2) 0.0338

Less than 2 g/L 51/121 (42.2) 9/34 (26.5) 42/87 (48.3) 0.0290

(Continued)
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studies on the prevalence of zinc deficiency in children with 
COVID-19 have been variable, likely due to differences in study 
design, patient populations, and methods of zinc level assessment.

Doğan et al. (10) found that zinc deficiency occurred in 23.9% of 
outpatient children diagnosed with COVID-19, which aligns with our 
findings, although our cohort consisted of hospitalized patients. In 
contrast, Ekemen Keleş et  al. (33) reported a lower prevalence of 
hypozincemia (11.0%) among children visiting outpatient clinics due 
to COVID-19, with a significantly higher average zinc concentration 
compared to our cohort. On the other hand, another study (37) 
identified zinc deficiency in 57.4% of children with COVID-19.

Several factors beyond SARS-CoV-2 infection can influence zinc 
levels. These include older age, male sex, and certain comorbidities, 
such as diabetes, overweight, and obesity (38–41). In our study 
population, zinc status did not significantly depend on either the age 
or sex of the patients. Interestingly, we did not observe zinc deficiency 
in children with overweight, while 11% of those with an optimal zinc 

level had excessive weight (p = 0.0289). Some studies report a negative 
correlation between body mass index and zinc levels (42–44), while 
others have observed a positive impact of zinc supplementation on 
weight reduction (45, 46). However, other researchers dispute this 
hypothesis, indicating no significant relationship between zinc status 
and obesity (47, 48). We did not study zinc intake from food sources 
or the impact of other factors on zinc status, which could have also 
influenced the results of our study.

We did not find any difference in the frequency of hypozincemia 
depending on the severity of COVID-19 or the duration of 
hospitalization. The conclusions on this issue are contradictory. 
Ekemen Keleş et al. (33) reported that patients with low serum zinc 
levels did not have longer hospital stays compared to those with 
normal zinc levels, which is consistent with our results. In contrast, 
Yasui et al. (49) demonstrated a connection between zinc deficiency 
and the severity of COVID-19  in adult patients. Fujita et  al. (50) 
showed that individuals requiring oxygen therapy during the acute 

TABLE 1 (Continued)

Characteristics Total number, 
n = 140

Zinc deficiency 
(<10.7 μmol/L), n = 40

Optimal zinc levels 
(>10.7 μmol/L), n = 100

P-value

Median (interquartile range, IQR) or n (%)

D-dimer, ng/mL 293.5 (100.0; 840.0) 346.0 (117; 840) 212.0 (87.5; 795.0) 0.2991

More than 250 ng/mL 31/59 (52.5) 13/19 (68.4) 18/40 (45.0) 0.0923

Ferritin 51.7 (29.3; 88.2) 48.7 (26.3; 86.5) 53.6 (32.2; 89.5) 0.7148

Hyperferritinemia, % 2/44 (4.6) 0/14 (0) 2/30 (6.7) 0.3227

Creatinine, μmol/L 36.0 (37.0; 47.0) 36.0 (28.5; 42.0) 36.0 (30.0; 49.0) 0.3576

Total protein, g/L 61.7 (56.0; 66.0) 61.5 (55.5; 66.5) 61.7 (57.0; 65.0) 0.8444

Hypoproteinemia, % 53/133 (39.9) 18/40 (45.0) 35/93 (37.6) 0.4262

Zinc level, μmol/L 12.3 (10.6; 14.6) 9.17 (7.94; 10.27) 13.27 (12.02; 16.11) <0.0001

Statistically significant values are highlighted in bold.

FIGURE 1

Dependence of zinc levels on age in children with COVID-19: (a) Comparison of median zinc concentration in deficiency and optimal levels in children 
under 6 years and over 6 years, p = 0.9576; (b) Comparison of zinc levels between children under 6 years and over 6 years, p = 0.0983.
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phase of SARS-CoV-2 infection had a higher prevalence of zinc 
deficiency, and the presence of hypozincemia at the time of COVID-19 
diagnosis was an independent risk factor for severe disease.

Some studies demonstrate the impact of zinc deficiency on 
mortality from COVID-19, especially among the adult population (51, 
52). Razeghi Jahromi et al. (51) found that patients with zinc deficiency 
had higher rates of hospitalization, acute respiratory distress 
syndrome, and mortality. Maares et al. (52) revealed that the overall 
serum zinc level was significantly lower in patients with COVID-19 
compared to the control group, with the lowest levels observed in 
those who died from the coronavirus disease.

Laboratory analysis showed that the levels of lymphocytes and 
neutrophils were not dependent on zinc status. In contrast, the NLR 
was significantly higher in patients with reduced serum zinc levels 
(p = 0.0010). Similar results were observed in the study by Ekemen 
Keleş (33), which also found no statistically significant differences 
between zinc levels and the number of leukocytes, neutrophils, or 
lymphocytes in the blood. Another study showed that the median 
lymphocyte count was lower in patients with hypozincemia, although 
the difference was not statistically significant (30). Research involving 
older adults found that, compared to normal zinc levels, hypozincemia 
was associated with biomarkers of severe COVID-19, including a 
higher NLR and lymphopenia (p < 0.001) (53).

The association between zinc deficiency and a higher NLR may 
be explained by zinc’s crucial role in immune system regulation (22). 
Zinc is essential for lymphocyte proliferation, differentiation, and 
function, particularly in maintaining T-cell homeostasis and adaptive 
immunity (24). A deficiency in zinc leads to lymphocyte dysfunction 
and increased apoptosis, contributing to lymphopenia. At the same 
time, zinc plays an anti-inflammatory role by regulating neutrophil 
activity and reducing excessive inflammatory responses. In a state of 
zinc deficiency, neutrophil activation becomes dysregulated, leading 
to an increased neutrophil count and a higher NLR, which is 
considered a marker of systemic inflammation and disease severity in 
infections such as COVID-19 (9, 54–56). This imbalance between 
neutrophils and lymphocytes in patients with hypozincemia may 

contribute to the exacerbation of inflammatory responses and worse 
clinical outcomes. The limited antiviral response in COVID-19 in the 
presence of reduced zinc levels may enhance neutrophil infiltration, 
leading to severe inflammation (57).

The study of inflammation markers during acute viral infection 
with SARS-CoV-2 is of significant importance, as they can serve as 
prognostic factors for severe disease progression, mortality, or the 
development of long-term consequences. In our study, the median 
CRP was significantly higher in children with COVID-19 and zinc 
deficiency (p = 0.0053). Elevated CRP levels were observed in 68.4% 
of patients with hypozincemia, and the difference was statistically 
significant (p = 0.0120). Vogel-González et al. (30) also noted that the 
median CRP was more than twice as high in adult patients with zinc 
deficiency, and this difference was statistically significant. Razeghi 
Jahromi et  al. (51) also showed a statistically significant negative 
correlation between zinc levels and CRP using Spearman’s correlation 
analysis. Almasaud et al. (58) demonstrated a significant negative 
correlation between serum zinc and inflammation markers, such as 
leukocytes, CRP, procalcitonin, lactate dehydrogenase, and ferritin. 
Another study also showed that high CRP levels were significantly 
associated with hypozincemia, as well as the median ferritin, which 
was significantly higher in adults with decreased serum zinc 
levels (53).

Zinc plays an important role in modulating the inflammatory 
response. Zinc functions as an anti-inflammatory and 
immunoregulatory micronutrient, influencing various signaling 
pathways involved in immune activation. It inhibits the NF-κB 
signaling pathway, a key regulator of pro-inflammatory cytokine 
production, including IL-6, a major inducer of CRP synthesis in the 
liver (59, 60). When zinc levels are insufficient, this inhibitory effect is 
weakened, leading to an increased release of pro-inflammatory 
cytokines and subsequently higher CRP levels (61).

Additionally, zinc is essential for maintaining the integrity of cell 
membranes and reducing oxidative stress. A deficiency in zinc results 
in increased production of reactive oxygen species (ROS) and 
promotes systemic inflammation, further contributing to elevated 

FIGURE 2

Symptoms of acute SARS-CoV-2 infection depending on zinc status.
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CRP levels (20, 62). This mechanism may explain why children with 
hypozincemia exhibit a more pronounced inflammatory response 
during SARS-CoV-2 infection.

It is known that zinc acts as an effector of coagulation, 
anticoagulation, and fibrinolysis, and has properties that regulate 
hemostasis and thrombosis (63). When analyzing all coagulation 
markers, we found that the fibrinogen level was significantly higher in 
patients with zinc deficiency (p = 0.0057), and there was also a trend 
toward thrombocytosis, increased aPTT, and D-dimer levels. Another 
of our studies showed the age-related characteristics of coagulation 
markers in children with COVID-19 (64). Vogel-González et al. (30) 
noted that the average D-dimer level was significantly higher in 
patients with decreased serum zinc levels. Another study demonstrated 
that the median platelet count was significantly lower in children with 
hypozincemia, although D-dimer was higher in the cohort with 
optimal zinc levels (33).

When analyzing biochemical indicators, we did not observe a 
statistically significant difference between creatinine and total protein 
levels. Jothimani et al. (37) also noted that the median creatinine level 
was not significantly related to zinc levels, unlike lactate 
dehydrogenase, which was significantly higher in children with 
zinc deficiency.

Strengths and limitations of the study

This study provides valuable information about the role of zinc in 
children with the SARS-CoV-2 viral infection, an area where data 
remains limited. Most studies focus on adults, which makes this work 
a significant contribution to understanding the symptoms and course 
of COVID-19 in pediatric patients. The study features a prospective 
cohort design with careful monitoring, allowing for a detailed analysis 
of clinical and laboratory characteristics of COVID-19 based on 
zinc status.

However, the study has several limitations. The sample size is 
relatively small, which may affect the generalizability of the results. 
The study population was selected from a tertiary pediatric hospital, 
meaning the patients may differ from those in other pediatric 
hospitals. Additionally, the study did not include a control group 
consisting of healthy children who did not have COVID-19. Such a 
group would have provided comparative data on zinc levels in 
uninfected populations. Another limitation is that serum zinc 
concentrations were measured after the children were infected. 
Inflammation can direct zinc to tissues, which can cause a significant 
decrease in serum or plasma zinc concentrations, regardless of zinc 
nutriture (65, 66). This phenomenon is typically reversible after 
recovery. Since infections are known to decrease serum zinc levels 
without affecting overall body zinc stores, it is unclear whether the 
observed lower zinc levels are related to a true deficiency or simply 
part of the normal acute-phase response. In future studies, it would 
be important to correct for acute-phase response effects, and including 
CRP as a covariate in zinc analyses could help address this limitation. 
Although we did not find a correlation between zinc levels and CRP 
levels, which could suggest that the observed decrease in serum zinc 
levels may not be  solely due to inflammation or the acute-phase 
response. In future studies, it would be important to correct for acute-
phase response effects, and including CRP as a covariate in zinc 
analyses could help address this limitation.

Conclusion

Zinc deficiency was found in 28.6% of children with 
COVID-19 and did not depend on age. In children with 
hypozincemia, higher levels of inflammation markers were 
observed, including the neutrophil-to-lymphocyte ratio and 
CRP. No effect of zinc status on other clinical symptoms of 
COVID-19 or disease severity was detected. Further studies into 
the impact of zinc status on the course of COVID-19 and other 
viral infections require the determination of serum concentrations 
of the trace element in children before illness and immediately 
after recovery to retrospectively assess whether low values on 
admission were transient and likely caused by acute inflammation 
or whether zinc deficiency is still present. This may improve our 
understanding of the pathogenesis, symptoms, course, and 
outcomes of acute infection and predict the likelihood of 
developing complications.
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