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The fat-mass and 
obesity-associated gene 
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population and is associated with 
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metabolic dysfunction-associated 
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Background: The fat mass and obesity-associated (FTO) rs9939609 T>A 
polymorphism is associated with excess body fat and metabolic disturbances, 
including Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic 
liver disease (MASLD). However, the genetic effect of the T and the A alleles on 
the development of these diseases may vary among populations.
Objective: This study aimed to determine the distribution of the FTO rs9939609 
T>A polymorphism in West Mexican populations with variable genetic ancestry 
and analyze its effect on an admixed cohort’s anthropometric and metabolic 
profile.
Methods: In a cross-sectional study, 684 unrelated adults from West Mexico 
were included. Subjects were grouped as Amerindian (Wixárika and Nahuas) 
or admixed: Mestizo-Caucasians (Cuquío, San Miguel-Los Altos, and Villa 
Purificación) and Mestizo-Guadalajara (Mestizo-GDL). FTO genotyping was 
determined by an allelic discrimination assay. Assessment of anthropometrics, 
diet composition, and metabolic profile among 333 Mestizo-GDL subjects and 
their association with metabolic risk factors was conducted considering the 
dominant model (AA + AT vs. TT).
Results: The Wixárika group had the highest frequencies of the T allele (94%) 
and TT genotype (89%) among Amerindians, followed by mestizos from GDL 
(74% and 56%, respectively). In contrast, Mestizo-Caucasians from Cuquío 
had the highest A allele frequency (32.4%). No significant effect of the FTO 
genotype on body mass index (BMI)/body fat was observed in the Mestizo-
GDL population. However, the TT carriers exhibited higher waist-to-height 
ratios (0.52 ± 0.07 vs. 0.49 ± 0.08), insulin levels (10.8  ±  7.3 vs. 8.8 ± 5.2 μU/
mL), triglycerides (141.8 ± 66.5 vs. 125.8 ± 65.3 mg/dL), and VLDL-c (29.1 ± 14.8 
vs. 25.6 ± 14.2 mg/dL) than AA + AT carriers. The TT genotype was associated 
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with higher odds of hypertriglyceridemia (HTG) (OR = 1.7, 95% CI = 1.07–2.73, 
p = 0.027), insulin resistance (IR) (OR = 1.79, 95% CI = 1.06–3.07, p = 0.031), and 
hyperglycemia (HGL) (OR = 2.77, 95% CI = 1.5–5.36, p = 0.002). Multivariable 
logistic regression confirmed that TT genotype carriers had greater odds of HGL 
(OR = 2.50, 95% CI = 1.2–5.15, p = 0.013).
Conclusion: The FTO T allele was prominent among native Mexicans. In contrast, 
the A allele prevailed among the Mestizo with higher European ancestry. The TT 
genotype carriers had higher odds of IR, HTG, and HGL, highlighting the genetic 
predisposition to T2D and MASLD in populations exposed to obesogenic and 
hepatopathogenic environments.

KEYWORDS

FTO, Amerindian, type 2 diabetes, MASLD, metabolic syndrome, dyslipidemia, obesity, 
ancestry

1 Introduction

Excess visceral adipose tissue, or abdominal obesity, is a 
significant risk factor for metabolic abnormalities such as 
hypoalphalipoproteinemia (HALP), hypertriglyceridemia (HTG), 
hypercholesterolemia (HCL), insulin resistance (IR), hyperglycemia 
(HGL), and elevated levels of liver enzymes, alanine aminotransferase 
(ALT), and aspartate aminotransferase (AST). Most of these obesity-
related conditions are key triggers of Type 2 diabetes mellitus (T2D), 
cardiovascular disease, and non-alcoholic fatty liver disease (1–3), 
now referred to as metabolic dysfunction-associated steatotic liver 
disease (MASLD) (4).

Globally, the number of women and men with obesity in 2022 
was 504 million and 374 million, respectively, which represents 
an increase of 684 million people since 1990 (5). Countries 
experiencing a nutrition transition tend to have the highest rates 
of obesity, T2D, and MASLD (6–9). Currently, in Mexico, 74% of 
the population has excess body weight, of which 4% presents class 
III obesity (10). Consequently, a significant portion of Mexicans 
are at risk for various health conditions. Estimates from the 2022 
National Survey of Health and Nutrition indicate a prevalence of 
22.1% of prediabetes and 18.3% of T2D (11). In a recent study 
carried out in West Mexico, 57% of 505 patients were at risk for 
MASLD (12). These chronic conditions rank within the top five 
causes of morbidity in Mexico (13) and are caused by intricate 
interactions between obesogenic environments (including 
hepatopathogenic foods, sedentary lifestyles, and stress) and 
genetic risk factors, which may vary by region.

The fat mass and obesity-associated (FTO) gene, originally 
named “Fatso” due to its abbreviation from “FT” (short for “Fused 
Toes”), referring to limb deformities observed in rats lacking this 
gene (14), has attracted renewed attention in recent years due to its 
association with weight gain. Genome-wide Association Studies 
have identified FTO as the first obesity-susceptibility gene in 
populations of European ancestry, resulting in its renaming as the 
“fat mass and obesity-associated” gene (15, 16). The FTO gene 
(16q12.2) encodes an alpha-ketoglutarate-dependent dioxygenase 
that performs oxidative demethylation, modifying nucleic acids 
(DNA and RNA). This enzyme has biological activity in a variety 
of tissues, predominantly in the brain, regulating the hunger/

satiety axis and reward system; in the liver, controlling the 
expression of lipogenic genes and cellular proliferation; and in 
adipocytes, influencing the size of white adipose tissue, cell 
differentiation, browning, and thermogenesis (17, 18).

The FTO gene has been extensively studied for its implications 
in energy balance (19–21), stimulating adipogenesis, and 
promoting lipid storage in mature adipocytes (22–24). This gene 
is highly polymorphic, and among the most studied single-
nucleotide polymorphisms (SNP) is the FTO rs9939609 T>A 
variant in which the highest frequency of the risk A allele has 
been found in African (49%) and European populations (45%) 
(25). The presence of the A allele increases FTO gene expression 
and adipocyte size, which results in a lower quantity of 
mitochondria (26). Each copy of the A allele is associated with 
increased BMI by approximately 0.4 kg/m2 and body weight by 
1.2 kg in adults (15). Clinical research indicates that the A allele 
is linked to lower satiety, overeating, a preference for energy-
dense foods, lower resting energy expenditure, and a higher 
prevalence of obesity and severe obesity in Caucasian populations 
(26–28).

Several studies have reported the association between the A 
allele and elevated BMI in Mexican subpopulations differing by 
geographic locations and genetic ancestries (29–32). This ancestral 
genetic diversity is distinguished by variable degrees of 
Amerindian, European, and African lineages, considerably 
influencing several biological characteristics, including 
anthropometric and metabolic phenotypes (33–35). Furthermore, 
in prior research, we  reported a differential distribution of the 
genetic and phenotypic traits associated with dyslipidemias across 
Mexican subpopulations of West Mexico (36, 37) that have been 
linked to the increased prevalence of IR, HTG, HALP, HCL, and 
HGL in at-risk individuals for MASLD (12).

Considering the role of FTO in weight gain and the genetic 
heterogeneity of the Mexican population, it is plausible that the 
respective T and the A alleles could differentially influence the 
anthropometric and metabolic profile linked to the risk for T2D and 
MASLD. Therefore, this study aimed to determine the distribution of 
the FTO rs9939609 T>A polymorphism in West Mexican populations 
with variable genetic ancestry and analyze its effect on an admixed 
cohort’s anthropometric and metabolic profile.
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2 Materials and methods

2.1 Participants and study design

This cross-sectional study involved 684 adult participants of both 
genders from different regions of the State of Jalisco and Nayarit in 
Western Mexico. The distribution of the FTO (rs9939609) 
polymorphism among participants was determined using a 
convenience sampling method. The study population was stratified 
into three groups according to their prominent genetic ancestry, as 
described previously (38, 39). Briefly, Wixárika (also known as 
Huichol) (n = 100) and Nahuas (n = 84) with a background of 
Amerindian history; Mestizo-Guadalajara (Mestizo-GDL) (n = 333) 
are admixed populations with an intermediate Amerindian-European 
ancestry, and Mestizo with major European ancestry were denoted as 
Mestizo-Caucasians (towns of Cuquío, n = 102; San Miguel-Los Altos, 
n = 33; Villa Purificación, n = 32).

The recruitment process for the Amerindian groups took place at 
their rural medical service following an invitation placed by their 
tribal chief. Mestizo-Caucasian participants were recruited at their 
community health centers by a public invitation.

The sample size for association analyses in the Mestizo-GDL 
population was calculated using the formula for quantitative 
variables in comparative studies, and was based on the allele 
frequency of the FTO (rs9939609) polymorphism in a case (obese)-
control (normal weight) study in Mexicans reported by Villalobos-
Comparán et  al. (29). The Mestizo-GDL group was outpatients 
attending the Nutrigenetic Clinic of the Department of Genomic 
Medicine in Hepatology, Civil Hospital of Guadalajara “Fray 
Antonio Alcalde.” Participants eligible for inclusion were adults with 
a BMI ≥18.5 kg/m2 who self-reported as healthy and had no prior 
medical diagnosis of metabolic dysfunction-associated steatotic liver 
disease, T2DM, or other chronic conditions, and were not currently 
receiving treatment for any metabolic disorder. Exclusion criteria 
comprised pregnancy or lactation, a history of excessive alcohol 
consumption (>20 g/day for females and >40 g/day for males), 
confirmed hepatitis B or C virus infection, or evidence of drug-
induced hepatotoxicity. The study was conducted from February 
2018 to December 2019 and was approved by the Institutional Board 
Committee (#CI-07218). All participants signed an informed 
consent before the study.

2.2 Genotyping analysis

Genomic DNA was extracted from leucocytes by a modified 
salting-out method (40). FTO rs9939609 T>A polymorphism 
genotyping was performed using a predesigned TaqMan allelic 
discrimination assay (C_30090620_10, Applied Biosystems, Foster, 
CA, United States) by a Real-Time PCR technique running on Step 
One Plus thermocycler (Applied Biosystems, Foster, CA, 
United States). DNA concentration per sample and assay was 20 ng/
μL. PCR conditions were enzyme activation at 95 °C for 10 min, 
followed by 40 cycles of denaturation at 95 °C for 15 s and annealing/
extension at 60 °C for 1 min. Genotyping concordance was verified by 
including a positive control corresponding to the three possible 
genotypes in the run. Genotyping was repeated on 10 random samples 
per plate as a quality control check. The allelic and genotypic 

distribution of the FTO rs9939609 T>A polymorphism was 
determined among the population groups by the simple count method.

2.3 Anthropometric and dietary intake 
assessment

Height was measured without shoes to the nearest 0.1 cm using a 
stadiometer (Rochester Clinical Research, NY, United States). Body 
circumferences were measured using a steel flexible tape (Ross Craft 
Anthrotape, Rosscraft Innovations Inc., Toronto, Canada). The waist 
circumference measurement was taken at the midpoint between the 
iliac crest and the edge of the last rib on a horizontal plane, with an 
accuracy of 0.1 cm. Hip circumference was measured at the maximum 
protuberance of the gluteus on a horizontal plane, with an accuracy of 
0.1 cm. Body composition was determined by electrical bioimpedance 
(InBody 3.0 Analyzer Composition, and Bio Space, Gangnam-gu, 
Seoul, Korea) and classified by BMI using the WHO criteria (41). 
Waist-to-height ratio (WHtR) was determined by the waist 
circumference divided by the individual’s height, measured 
in centimeters.

Diet was assessed using a three-day dietary record (two weekdays 
and one weekend). Average energy and nutrient intake data were 
processed using Nutrikcal software (Nutrikcal VO®, Mexico City, 
Mexico), which considers the nutritional composition database of 
Mexican foods (42).

2.4 Biochemical profile

A 10-mL blood sample was obtained via venipuncture after a 12-h 
overnight fast to assess the participants’ biochemical profile, which 
included glucose, insulin, triglycerides (TG), total cholesterol (TC), 
high-density lipoprotein cholesterol (HDL-c), AST, and ALT. All 
biochemical tests were conducted using the Clinical Chemistry 
System (Beckman Coulter’s Inc., California, United  States). 
Low-density lipoprotein cholesterol (LDL-c) concentration was 
determined using the Friedewald formula (43). Very low-density 
lipoprotein cholesterol (VLDL-c) concentration was calculated by 
subtracting the sum of LDL-c and HDL-c from total cholesterol.

IR was evaluated through the homeostatic model assessment 
(HOMA-IR) using the equation (fasting glucose mg/dL × fasting serum 
insulin μU/mL)/405 (44). Dyslipidemias were defined according to the 
NCEP-ATP III (National Cholesterol Education Program Adult 
Treatment Panel III) as follows: HCL as TC ≥200 mg/dL, high LDL-c 
(H-LDL) as LDL-c ≥130 mg/dL, HALP as HDL-c <40 mg/dL, and HTG 
as TG ≥150 mg/dL (45). In addition, HGL was defined as fasting glucose 
≥100 mg/dL (45), hyperinsulinemia (HINS) as fasting insulin >9 μU/mL 
(46), and IR as HOMA-IR ≥2.5 (44).

2.5 Statistical analysis

Qualitative traits were expressed as numbers and percentages, and 
quantitative traits as mean ± standard deviation (SD). Chi-square test 
was used to assess the differences between qualitative variables, and the 
allelic and genotypic frequencies between the study groups. The normal 
distribution of quantitative variables was evaluated using the 
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Kolmogorov–Smirnov test. Accordingly, the Student’s t-test or Mann–
Whitney U test evaluated significant differences between variables. The 
difference in dietary intake between the FTO rs9939609 genotypes was 
analyzed with the ANCOVA test adjusted for energy intake. It has been 
reported that the genetic effect of the FTO rs9939609 T>A polymorphism 
is additive (46); however, given the low prevalence of the AA genotype 
in the study population, the analyses based on the genotype were 
performed using the dominant genetic model (i.e., AA + AT vs. TT). 
Bivariate and BMI-adjusted multivariable logistic regression analyses 
were used to evaluate the association between FTO rs9939609 genotypes 
(AA + AT vs. TT) and metabolic abnormalities. Results were expressed 
as odds ratio (OR) with a 95% confidence interval (CI). A p-value <0.05 
was considered significant. The statistical analysis was performed with 
SPSS software (version 20.0; SPSS Inc., Chicago, IL, United  States). 
Hardy–Weinberg equilibrium (HWE) was analyzed with Arlequin 
software for Windows (version 3.1; Berne, Switzerland).

The principal component analysis (PCA) was implemented to plot 
the genetic divergence between the study populations. Reference 
populations EUR_TSI (Tuscans, Italy); EUR_CEU (Central Europe); 
EAS_JPT (East Japan, Tokyo) were included to analyze genetic 
differentiation and ancestral components based on the genotypic 
frequencies for the FTO rs9939609 T>A polymorphism (1,000 
Genomes Project, http://www.1000genomes.org/). Other Mexican 
study groups’ FTO rs9939609 allele frequency data were also included 
(Supplementary Table S1). The R programming language within the 
R Studio environment was used for the PCA (ver 4.3.3.).

3 Results

3.1 Distribution of the FTO rs9939609 
polymorphism and PCA analysis

Table  1 depicts the distribution of the FTO rs9939609 T>A 
polymorphism among the West Mexico subpopulations included in 
this study. The Wixárika population had the highest T allele and TT 
genotype frequencies (94% and 89%), followed by the Mestizo-GDL 
(74% and 56%). In contrast, Mestizo-Caucasians from the town of 
Cuquío had the highest A allele frequency (32.4%).

Figure 1 illustrates the genetic differentiation between the study 
and reference populations in agreement with this FTO allelic/genotypic 
distribution. The Wixárika (Huichol) were the most differentiated 
group among the Amerindian clusters, which contained data from the 
north (Yaquis, Seris), central (Nahuas-Puebla), and south (Mayas) of 
Mexico, and the Nahuas study group. The Cuquío, San Miguel-Los 
Altos, and Villa Purificación populations clustered towards the EUR_
TSI, EUR_CEU, and CDMX reference groups. In contrast, 
Mestizo-GDL formed an intermediate cluster with Mestizo-Northwest 
in agreement with the reported ancestry of these populations.

3.2 Association of the FTO rs9939609 T>A 
polymorphism with demographic, 
anthropometric, and biochemical 
characteristics of Mestizo-GDL

In the Mestizo-GDL group, anthropometric, dietary intake, and 
biochemical profile assessments were performed, and their association 
with the FTO rs9939609 polymorphism was analyzed. The clinical 
data of the Mestizo-GDL were analyzed by genotypes (AA + AT vs. 
TT) (Table 2). The mean age of the subjects was 36.4 ± 12.9 years, and 
the frequency of genotypes was 46% for AA + AT and 56% for TT. No 
significant differences were observed in age, gender, BMI, body fat 
percentage, HOMA-IR, TC, HDL-c, LDL-c, AST, and ALT between 
AA + AT and TT genotype carriers. Nevertheless, TT genotype 
carriers presented significantly higher mean values of WHtR 
(0.52 ± 0.070 vs. 0.49 ± 0.08), insulin (10.8 ± 7.3 μU/mL vs. 
8.8 ± 5.2 μU/mL), TG (141.8 ± 66.5 mg/dL vs. 125.8 ± 65.3 mg/dL), 
and VLDL-c (29.1 ± 14.8 mg/dL vs. 25.6 ± 14.2 mg/dL) compared to 
AA + AT genotype carriers (p < 0.05).

3.3 Association of FTO rs9939609 T>A 
polymorphism genotypes with metabolic 
abnormalities in Mestizo-GDL

Bivariate and BMI-adjusted multivariable logistic regression 
analysis was performed to assess the probability of metabolic 

TABLE 1  Allelic and genotypic distribution among the study population of West Mexico.

Ancestry

Total Amerindian Mestizo-GDL Mestizo-Caucasians

n = 684
Wixárika 
n = 100

Nahuas 
n = 84

Guadalajara 
n = 333

Cuquío 
n = 102

Los Altos 
n = 33

Villa P 
n = 32

Alleles (n, %)

A 160 (23) 6 (6) 14 (16.7) 88 (26) 33 (32.4) 9 (27.2) 9 (28.1)

T 524 (77) 94 (94)* 70 (83.3) 245 (74) 69 (67.6) 24 (71.8) 23 (71.9)

Genotypes (n, %)

AA 54 (8) 1 (1) 4 (4.8) 28 (8) 13 (12.7) 3 (9.1) 5 (15.6)

AT 211 (31) 10 (10) 20 (23.8) 120 (36) 40 (39.2) 13 (39.4) 8 (25)

TT 419 (61) 89 (89)* 60 (71.4) 185 (56) 49 (48) 17 (51.5) 19 (59.4)

HWE — 0.296 0.228 0.159 0.364 1.000 0.156

Data is presented as number (n) and percentage (%). Differences in allelic and genotypic frequencies between populations were analyzed using the chi-square test. *Wixárika vs. all groups 
p = 0001. HWE, Hardy–Weinberg equilibrium; Villa P, Villa Purificación; A, adenine; T, thymine.
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abnormalities associated with the genotypes of the FTO rs9939609 
T>A polymorphism among the Mestizo-GDL. In the bivariate analysis, 
HGL, HOMA-IR, and HTG were related to the TT genotype (p < 0.05) 
(Figure 2). According to multivariable analysis, individuals with the 
TT genotype had a 2.5-fold higher OR of having HGL (95% CI 1.213–
5.152, p = 0.013) than carriers of the AA + AT genotypes (Figure 2).

3.4 Dietary composition analysis of the 
study population adjusted by genotypes of 
the FTO rs9939609 polymorphism

Considering that dietary patterns can influence biochemical 
profiles, the nutritional characteristics of Mestizo-GDL subjects were 
analyzed according to FTO rs9939609 genotypes (AA + AT vs. TT) 
(Table 3). No significant differences in energy and nutrient intake by 
genotype were observed. Similarly, no significant differences were 
found when analyzing whether being a carrier of the T allele affected 
total kilocalories or impacted nutrient intake.

4 Discussion

This study reports the distribution of the FTO rs9939609 T>A 
polymorphism in West Mexican populations with different 

proportions of genetic ancestral components. A higher frequency of 
the wild-type or major T allele versus the A risk allele was found in 
Amerindian populations, particularly in the Wixárika 
(T = 0.94/A = 0.06), the highest frequency reported to date (47). These 
findings are consistent with earlier studies revealing a higher T vs. A 
allele frequency among Amerindians throughout Mexico. For 
example, the T/A allele proportion among the Yaquis and Seris of 
North Mexico ranges from 0.86/0.14 to 0.91/0.09, respectively (29, 
48). Other Amerindian groups follow the same pattern, such as the 
Nahuas from Central Mexico (0.94/0.06) (31), Zapotecas in southwest 
Oaxaca (0.99/0.01) (29), and Mayas in southeast Mexico (0.88/0.12) 
(49). In this study, the Mestizo-GDL characterized by an intermediate 
proportion of Amerindian and European ancestries as shown by the 
PCA, revealed a T/A proportion of 0.74/0.26, similar to other studies 
in Mexican-Mestizo (48), followed by those with a higher European 
ancestry (Mestizo-Caucasians) with a T/A average ratio of 0.70/0.30. 
Furthermore, this latter subgroup formed a cluster diverging from the 
Mestizo-GDL and Amerindians, consistent with these groups’ genetic 
and demographic history as previously reported (50). These results 
reflect the overall gradient of the European–Amerindian ancestral 
components encountered among admixed Mexicans across the 
country (33, 35, 51).

Earlier studies in the Mexican population have reported an 
association of the A allele with the risk of class III obesity (29–32) and 
emotional undereating or food preferences (49, 52, 53). This study 

FIGURE 1

Principal component analysis (PCA) of ancestrality based on the FTO rs9939609 polymorphism. Populations with similar genetic components 
clustered based on their genetic distances. Mexican Natives (Nahuas* and Wixárika*) grouped with Amerindian references, Mestizo-Caucasians 
(Cuquío*, San Miguel-Los Altos*, Villa Purificación*) clustered with higher European ancestry study groups, and Mestizo-GDL (Guadalajara*) with 
intermediate ancestry clustered with Mestizo-Northwest. *This study. Non-Mexican population references: EUR_TSI (Tuscans, Italy); EUR_CEU (Central 
Europe); EAS_JPT (East Japan, Tokyo) from 1,000 Genomes Project. Mexican population references: CDMX (29), Mestizo-Northwest (48), Culiacan 
(66), Mayas (49), Nahuas-Puebla (48), Seris (48), and Yaquis (48). Purple dots: European ancestry; Blue dots: Admixed ancestry. Green dots: Amerindian 
ancestry.
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found no significant differences in BMI or body fat percentage among 
the genotype (AA + AT vs. TT) categories. Nonetheless, carriers of the 
TT genotype exhibited significantly higher WHtR values, a reliable 
indicator of central obesity and cardiometabolic risk (54). In addition, 
these subjects had higher insulin, TG, and VLDL-c levels compared 
to AA + AT carriers. Furthermore, the bivariate analysis revealed a 
significant association between the TT genotype and HGL, IR, 
and HTG.

On the other hand, the multivariable analysis revealed that TT 
genotype carriers were 2.5-fold more likely to have HGL than AA + AT 
carriers, irrespective of their BMI. This finding may be unexpected 
since the A allele has been associated with increased risk, particularly 
of obesity, in various populations worldwide (55). Notably, the T allele 
or TT genotype has been associated with a leaner phenotype and 
better performance in energy sports among elite athletes (56).

As reported previously, the pre-Hispanic, traditional Mexican diets 
were historically rich in fiber, including soluble and insoluble fiber. These 
diets primarily consisted of endemic fruits and vegetables, particularly 
those found in the “Milpa” system (beans, maize, chili, zucchini, tomato). 
They were also abundant in minerals, vitamins with antioxidant 
properties, and bioactive compounds while being high in 
monounsaturated and polyunsaturated fats and low in saturated fats (36). 
However, the recent shift towards a diet rich in saturated fats and sugars, 
as shown in the study group, has been related to an evolutionary mismatch 
(57, 58). Although in this study, no significant differences in diet 
composition between the AA + AT and TT genotypes were observed, 
their dietary profiles were unhealthy, with high intakes of total fat, 
saturated fat, and simple carbohydrates. This dietary pattern is consistent 

with the “hepatopathogenic and obesogenic” features previously 
described in the West Mexican population, regardless of BMI (12). 
Furthermore, the metabolic abnormalities found in Mestizo-GDL 
subjects, particularly in carriers of the TT genotype, are components of 
the metabolic syndrome, a significant risk factor for developing 
cardiovascular disease, T2D, and MASLD (59). Therefore, replacing the 
traditional diet with contemporary hepatopathogenic foods, coupled with 
the presence of risk alleles, including the FTO rs9939609 polymorphism, 
could contribute to the higher susceptibility for dyslipidemias, IR, and 
HGL among the Mexican population (58, 60, 61).

Conventionally, the minor A allele (rs99396009) is the most 
widely studied in Mexico and globally associated with the risk for 
excess weight, body fat, and extreme obesity, as mentioned before. 
However, less attention has been given to the major T allele and its 
impact on metabolic health in at-risk populations, which were highly 
prevalent in this study. The findings in this study could be explained 
by considering the molecular role of the FTO gene, particularly in 
lipid metabolism, adipocyte maturation (20–22), and the adipose 
tissue expandability hypothesis (62). When the adipose capacity is 
exceeded due to excess caloric intake, the excess energy is stored in 
non-adipose tissues, favoring lipotoxicity and metabolic disturbances 
such as dyslipidemia and IR (62–64). A lower expression of FTO in 
TT genotype carriers has been reported (29, 30), which could 
contribute to decreased adipogenesis and limited energy storage by 
adipocytes (65), compared to AA genotype carriers, in which elevated 
adipose storage or obesity is observed (15, 55). Subjects carrying the 
AA + AT compared to TT genotypes might have different adipose cell 
storage capacities in response to excess energy intake.

Therefore, based on the high frequency of the FTO (rs9939609) 
TT genotype among the Wixárika and Nahuas, we suggest that this 
genotype could contribute to the Amerindian phenotype, 
characterized by a leaner body, lower adipose capacity, and lower risk 
of obesity/metabolic disturbances in an ancestral healthy cultural-
food environment (Figure  3). Nonetheless, under a modern 
Westernized lifestyle, with energy-dense diets and low physical 
activity, adipose capacity is exceeded, contributing to the risk of 
developing metabolic abnormalities and chronic diseases due to a 
mismatched gene–environment interaction (Figure 3). Recently, in a 
cross-sectional study among young university students, an association 
between the TT genotype and the appetite trait “emotional 
undereating” was reported, which may reflect an evolutionary 
homeostatic response to ambient stress (52). In contrast, AA + AT 
genotypes, which were more prevalent in the Mestizo-Caucasians 
subpopulations, may be more representative of the European/African 
population’s phenotype since they are characterized by higher white 
adipose tissue storage capacity related to different grades of obesity 
before developing metabolic disturbances (Figure 3). Further studies 
are warranted to decipher this ethnicity-based association between 
the FTO polymorphisms and environmental factors.

Despite the novel insights, one of the main limitations of this 
study is its cross-sectional design, which restricts the ability to infer 
causality between FTO genotype and metabolic alteration. Although 
significant associations were observed, future studies need to consider 
potential confounding factors that may independently influence 
metabolic disturbances and interact with genetic susceptibility. These 
factors include physical activity, sleeping habits, and socioeconomic 
status, among others. Another discrepancy between our findings and 
previous studies associating the A allele and obesity is the differences 

TABLE 2  Demographic, anthropometric, and biochemical characteristics 
of the Mestizo-GDL population.

Variables Total AA + AT TT p-value

Subjects, n (%) 333 (100) 148 (44) 185 (56) —

Age (years) 36.4 ± 12.9 35 ± 12.8 37.6 ± 12.9 0.061

Gender (F/M) 248/85 117/31 131/54 0.085

BMI (kg/m2) 28.3 ± 7.9 28.1 ± 8.1 28.4 ± 7.8 0.322

Body fat (%) 30.9 ± 9.2 30.3 ± 9 31.4 ± 9.4 0.327

Waist-to-height 

ratio
0.51 ± 0.08 0.49 ± 0.08 0.52 ± 0.07 <0.001

Glucose (mg/dL) 91.3 ± 18.6 88.7 ± 11.3 93.5 ± 22.6 0.065

Insulin (μU/mL) 9.9 ± 6.5 8.8 ± 5.2 10.8 ± 7.3 0.041

HOMA-IR 2.2 ± 1.8 1.9 ± 1.3 2.4 ± 2.1 0.178

TG (mg/dL) 134.6 ± 66.3 125.8 ± 65.3 141.8 ± 66.5 0.017

TC (mg/dL) 186.3 ± 38.6 182.4 ± 32.1 189.4 ± 42.8 0.092

HDL-c (mg/dL) 44.1 ± 12.6 45.8 ± 12.9 42.9 ± 12.2 0.085

LDL-c (mg/dL) 113.8 ± 31.6 111.2 ± 26 115.9 ± 35.4 0.221

VLDL-c (mg/dL) 27.5 ± 14.6 25.6 ± 14.2 29.1 ± 14.8 0.015

AST (IU/L) 27.4 ± 11.5 26 ± 10.7 28.4 ± 12 0.075

ALT (IU/L) 27.7 ± 15.6 26 ± 12.8 29.1 ± 17.5 0.201

Average values are expressed as mean ± SD. Data comparison between genotypes was 
performed using the Student’s t test or Mann–Whitney U test as appropriate. n, number; F, 
female; M, male; BMI, body mass index; HOMA-IR, homeostasis model assessment of 
insulin resistance; TG, triglycerides; TC, total cholesterol; HDL-c, high density lipoprotein 
cholesterol; LDL-c, low density lipoprotein cholesterol; VLDL-c, very low-density lipoprotein 
cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase.

https://doi.org/10.3389/fnut.2025.1569342
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Sepulveda-Villegas et al.� 10.3389/fnut.2025.1569342

Frontiers in Nutrition 07 frontiersin.org

in study design, statistical power, sample composition, and population 
characteristics that include more individuals with class III obesity (29, 
30, 49, 66).

Nonetheless, this study revealed the varying range of the T 
allele frequency consistent with the ancestral components of the 
Mexicans and several metabolic abnormalities among the 
Mestizo-GDL that may be attributed to the Amerindian the T allele 
component combined with lifestyle factors. These results have 
significant implications for public health strategies in Mexico, 
suggesting tailored approaches involving personalized medicine 
and nutrition that consider genetic differences, lifestyle choices, 
and cultural preferences (50).

Although one single polymorphism cannot determine an 
entire phenotype, it can offer guidance for interpreting genetic 
variants within a specific population under specific 
environmental conditions from a personalized medicine 
perspective (33, 67). This is a breakpoint to consider how the 
mismatch of our ancestral genome to our modern environment 
could potentially enhance the prevalence of obesity and metabolic 
abnormalities, which contribute to the leading causes of mortality 
among the Mexican population. Further investigation into the 
underlying mechanisms and pathways influenced by the FTO 
(rs9939609) TT genotype can offer opportunities for personalized 
medicine and nutrition strategies aimed at mitigating and 

FIGURE 2

Metabolic abnormalities associated with the TT genotype of the FTO rs9939609 polymorphism in the Mestizo-GDL population. Hosmer and 
Lemeshow test: chi-square = 1.497, p = 0.473. Only variables with p < 0.05 from the univariate analysis were introduced in the multivariable analysis. 
Definitions: OR (95% CI), odds ratio (95% confidence interval). Hyperglycemia was defined as fasting glucose levels ≥100 mg/dL, insulin resistance as 
HOMA-IR ≥ 2.5, hypertriglyceridemia as triglyceride levels ≥150 mg/dL, and hypercholesterolemia as total cholesterol levels ≥200 mg/dL.

TABLE 3  Dietary intake adjusted by FTO rs9939609 genotypes among the Mestizo-GDL group.

Variables Total AA + AT TT p-value

Subjects, n (%) 333 (100) 148 (44) 185 (56) —

Energy intake, kcal 2072.4 ± 799.4 2111.8 ± 923.1 2040.9 ± 685.6 0.578

Proteins, % 16.8 ± 4 16.9 ± 4.1 16.7 ± 3.9 0.573

Lipids, % 33.7 ± 9.1 33.3 ± 9.1 34 ± 9.2 0.441

Saturated fatty acids, g 22 ± 13.4 22.8 ± 14.7 21.3 ± 12.3 0.514

Monounsaturated fatty acids, g 25.7 ± 16.2 26.2 ± 19.2 25.2 ± 13.3 0.971

Polyunsaturated fatty acids, g 11.7 ± 8.3 11.9 ± 9.8 11.5 ± 7 0.894

Dietary cholesterol, mg (Median, Q1, Q3) 244.0 (165.0, 358.0) 229.5 (150.7, 318.5) 263.0 (170.0, 391.0) 0.064

Carbohydrates, % 50.8 ± 9.6 51.6 ± 10 50.2 ± 9.3 0.188

Values are expressed as mean ± SD unless expressed otherwise. Differences between energy and nutrient intake were tested by chi-square, Student’s t, or Mann–Whitney tests according to the 
variable type (qualitative or quantitative). ANCOVA tests were adjusted by energy intake. n, number; %, percentage; kcal, kilocalories.
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preventing the development of metabolic dysfunction-related 
diseases in Mexico.

5 Conclusion

The FTO T (rs9939609) allele was prominent among Amerindians, 
whereas the A allele prevailed among the Mestizo with higher 
European ancestry. Mestizo-GDL TT genotype carriers had higher 
odds of IR, HTG, and HGL, highlighting the genetic predisposition to 
T2D and MASLD in these populations exposed to obesogenic and 
hepatopathogenic environments.
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