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Background: Serum uric acid (SUA), a byproduct of purine metabolism, exerts 
both antioxidant and pro-inflammatory effects, making its role in aging and 
chronic diseases a subject of ongoing debate. Despite this, the mechanisms by 
which SUA influences the aging process remain poorly understood.

Methods: We analyzed data from the NHANES (1999–2010) and CHARLS (2011–
2015) cohorts to investigate SUA’s impact on biological aging. Generalized linear 
regression models assessed SUA’s effect on biological aging markers [ΔKDM-BA, 
ΔPhenoAge, and allostatic load (AL)], while Cox regression models estimated 
its association with all-cause and premature mortality. Dose–response 
relationships between SUA levels and aging markers (ΔKDM-BA, ΔPhenoAge, 
and AL), as well as all-cause and premature mortality, were evaluated using 
restricted cubic splines (RCS).

Results: In both cohorts, elevated SUA levels were significantly associated with 
accelerated aging. In the NHANES cohort, for each 1 mg/dL increase in SUA, 
ΔKDM-BA increased by 0.52 years (95% CI: 0.43–0.61, p < 0.0001), and AL 
increased by 0.38 (95% CI: 0.29–0.47, p < 0.0001). In the CHARLS cohort, SUA 
was similarly linked to an increase in ΔKDM-BA by 0.65 years (95% CI: 0.57–
0.74, p < 0.0001) and AL by 0.15 (95% CI: 0.12–0.18, p < 0.0001). RCS analysis 
revealed a nonlinear association between SUA and ΔKDM-BA in NHANES, with 
a more pronounced acceleration of aging when SUA levels exceeded 4.16 mg/
dL (nonlinear p < 0.0001). In CHARLS, SUA showed a nonlinear relationship 
with ΔKDM-BA (nonlinear p = 0.01). Additionally, in NHANES, SUA levels were 
associated with increased all-cause (HR: 1.04, 95% CI: 1.01–1.07, p = 0.01) and 
premature mortality (HR: 1.06, 95% CI: 1.00–1.13, p = 0.046). RCS analysis 
further demonstrated a U-shaped nonlinear relationship between SUA levels 
and both all-cause and premature mortality. In contrast, SUA did not show a 
significant association with mortality outcomes in the CHARLS cohort.

Conclusion: Elevated SUA is associated with accelerated biological aging in 
both U.S. and Chinese populations, but its link to mortality was evident only in 
the NHANES cohort. These findings highlight SUA as a potential aging marker 
and call for further population-specific investigation.
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Introduction

Aging represents a progressive decline in physiological integrity 
(1), increasing susceptibility to chronic diseases such as cardiovascular 
disease (CVD) (2), metabolic disorders (3), and neurodegenerative 
diseases (4). Although chronological age (CA) remains a strong 
predictor of health risk, it inadequately reflects inter-individual 
variability in the aging process. In contrast, biological age (BA)—
derived from multi-system physiological biomarkers—offers a more 
dynamic and individualized assessment of aging (5). However, the 
metabolic determinants underlying biological aging are not yet 
fully understood.

Serum uric acid (SUA), the end product of purine metabolism, 
has emerged as a particularly contentious factor in aging research. On 
one hand, SUA functions as an evolutionarily conserved antioxidant 
capable of scavenging reactive oxygen species (ROS) (6). On the other, 
elevated SUA levels can activate the NLRP3 inflammasome (7), impair 
endothelial function, and are linked to hypertension (8), chronic 
kidney disease (CKD) (9), and cardiovascular events. This biological 
paradox has been reflected in epidemiologic studies, many of which 
describe a U-shaped association between SUA levels and mortality 
risk (10, 11). Nevertheless, the mechanisms driving this nonlinear 
relationship remain unclear. Additionally, prior research has 
predominantly focused on single aging biomarkers or ethnically 
homogeneous populations, limiting both mechanistic insight 
and generalizability.

To address these gaps, we  conducted a comparative analysis 
leveraging data from two nationally representative cohorts: the 
National Health and Nutrition Examination Survey (NHANES, 
1999–2010) in the United  States and the China Health and 
Retirement Longitudinal Study (CHARLS, 2011–2015). We applied 
three complementary biological aging measures—Klemera–Doubal 
Method Biological Age (KDM-BA), Phenotypic Age (PhenoAge), 
and Allostatic Load (AL)—to evaluate the associations between 
SUA, biological aging, and mortality outcomes. This study aims to 
answer three key questions: (1) Does elevated SUA accelerate 
biological aging independent of traditional cardiometabolic risk 
factors? (2) What is the association between SUA and all-cause as 
well as premature mortality? (3) Do specific subgroups—such as 
women or individuals with CKD—exhibit heightened susceptibility 
to SUA-associated aging effects? By integrating multidimensional 
aging metrics across diverse populations, this research seeks to 
provide robust, population-based evidence to inform more targeted 
strategies for SUA monitoring and intervention in aging-
related health.

Methods

Study population and data sources

This study is based on data from the NHANES and the CHARLS, 
two independent national cohorts. NHANES, organized by the 
National Center for Health Statistics (NCHS) under the Centers for 
Disease Control and Prevention (CDC), has been ongoing since the 
1960s (12). It aims to collect data on health, nutrition, and lifestyle 
from a representative sample of the U.S. population. Detailed 
information on the survey and data collection methods is available on 

the official website.1 For this study, we used data from six NHANES 
cycles conducted between 1999 and 2010, comprising 62,160 
participants. We  excluded individuals under 20 years of age 
(n = 29,696), pregnant women (n = 1,299), those missing key 
biomarkers for KDM-BA or PhenoAge or SUA (n = 4,943), and those 
with incomplete mortality data as of December 31, 2019. After 
exclusions, 26,192 participants were included to assess the relationship 
between baseline SUA levels, accelerated aging, and all-cause mortality 
(Figure 1). All participants provided written informed consent and 
received ethical approval.

CHARLS is a national longitudinal survey of Chinese adults aged 
45 and older (13). This study used data from the 2011 baseline (Wave 
1), which included 17,705 participants. Based on study requirements, 
we excluded individuals under 45 years old at baseline (n = 404), those 
with missing sex information (n = 12), participants missing key 
biomarkers for KDM-BA or AL or SUA (n = 10,935), and those lost to 
follow-up during the 2013 survey (n = 414). After exclusions, 5,940 
participants were included to assess the relationship between baseline 
SUA levels, accelerated aging, and all-cause mortality (Figure 1). This 
project was approved by the Institutional Review Board at Peking 
University Medical School, and all participants provided written 
informed consent (IRB00001052-11014 and IRB00001052-11015).

BA measurement

To quantify aging, we utilized several previously published BA 
algorithms in both cohorts, including the KDM-BA, 
PhenoAge, and AL.

In the NHANES cohort, KDM-BA was calculated using the 
Klemera & Doubal method (14), which integrates eight biomarkers: 
hemoglobin A1c, systolic blood pressure (SBP), C-reactive protein, 
serum albumin, total cholesterol, alkaline phosphatase, serum 
creatinine, and blood urea nitrogen. PhenoAge, based on a 
multivariable analysis of mortality risk proposed by Levine et al. (15), 
uses nine clinical biomarkers—glucose, alkaline phosphatase, 
albumin, creatinine, C-reactive protein, white blood cell count, 
lymphocyte percentage, mean corpuscular volume, and red cell 
distribution width—to estimate an individual’s predicted age.

For the CHARLS cohort, KDM-BA was calculated using an 
adjusted algorithm validated for the Chinese population (16), which 
included total cholesterol, triglycerides, hemoglobin A1c, urea, 
creatinine, high-sensitivity C-reactive protein, platelet count, and 
SBP. Additionally, AL was used to assess cumulative physiological 
stress across multiple systems (17). This involved 14 biomarkers from 
various physiological systems, including systolic and diastolic blood 
pressure, body mass index (BMI), high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), total cholesterol, triglycerides, HbA1c, 
fasting glucose, hemoglobin, C-reactive protein, creatinine, cystatin 
C, and blood urea nitrogen. Values exceeding established high-risk 
thresholds were assigned a score of 1, while lower values received a 
score of 0. The total AL score ranged from 0 to 14. KDM-BA and 
PhenoAge were computed using the R package BioAge2 (18). For each 

1 https://www.cdc.gov/nchs/nhanes

2 https://github.com/dayoonkwon/BioAge
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algorithm, aging acceleration was defined as ΔAge = BA − CA, where 
positive values indicate faster biological aging relative to chronological 
age. Detailed formulas and biomarker compositions for KDM-BA, 
PhenoAge, and AL are described in the Supplementary materials.

Mortality outcome determination

In NHANES, mortality data through December 31, 2019, were 
obtained from the National Death Index, matched with death 
certificate records. The primary outcomes of interest were all-cause 
mortality and premature mortality, defined as death before age 70, 
based on global life expectancy in 2010 (19). In CHARLS, all-cause 
mortality was confirmed during the 2013 follow-up, with exact death 
dates recorded to calculate the interval between baseline birth dates 
and death dates. Premature mortality was also defined as death 
before age 70.

Covariates

In the NHANES cohort, covariates included sex, race, age, marital 
status, BMI (<25 or ≥25) (20), education level (categorized as below 
high school or high school and above, based on whether participants 
had completed 12th grade or obtained a high school diploma), family 
income-to-poverty ratio (PIR: <1, 1–3, >3), smoking status (never or 
current smoker), and drinking habits (never, low-to-moderate, heavy), 
as well as disease information for hypertension, diabetes, 
hyperlipidemia, atherosclerotic cardiovascular disease (ASCVD), and 
CKD. In the CHARLS cohort, covariates included sex, age, residential 
area (urban or rural), geographical location (south or north), 
education level, marital status, drinking frequency (none, less than 
once a month, or once a month or more), BMI (<24 or ≥24) (21), 
smoking status (never or current smoker), and diagnoses for diabetes, 

hypertension, hyperlipidemia, CVD, and CKD. In both studies, 
hyperuricemia was defined as SUA levels ≥420 μmol/L (7 mg/dL) for 
male and ≥360 μmol/L (6 mg/dL) for female (10). Hypertension was 
defined as average SBP ≥ 140 mmHg, average diastolic blood pressure 
(DBP) ≥ 90 mmHg, or confirmation via physician diagnosis or 
recorded antihypertensive medication use. Diabetes was defined based 
on the following criteria: self-reported diagnosis, HbA1c > 6.5%, 
fasting glucose ≥7.0 mmol/L, random glucose ≥11.1 mmol/L, or 2-h 
oral glucose tolerance test (OGTT) glucose ≥11.1 mmol/L, or the use 
of diabetes medications or insulin (22). Hyperlipidemia was defined 
as triglycerides ≥150 mg/dL, total cholesterol ≥200 mg/dL, 
LDL-C ≥ 130 mg/dL, or HDL-C ≤ 40 mg/dL for men and ≤50 mg/dL 
for women; participants reporting the use of cholesterol-lowering 
medications were also considered to have hyperlipidemia (23). 
ASCVD was diagnosed if participants reported being informed by a 
doctor or healthcare professional that they had coronary artery 
disease, angina, heart attack, or stroke. The diagnostic criteria for 
CVD in CHARLS are based on two survey questions: “Have you been 
told by a doctor that you have been diagnosed with heart disease 
(including angina, heart attack, heart failure, coronary heart disease, 
or other heart problems)?” and “Have you been told by a doctor that 
you  have been diagnosed with a stroke?.” CKD was defined by 
estimated glomerular filtration rate (eGFR) < 59 mL/min/1.73 m2 or 
albumin-to-creatinine ratio (ACR) > 30 mg/g (24).

Sensitivity analysis

For the NHANES cohort, we  included participants from the 
1999–2002 cycles (n = 2,525), which uniquely provide access to DNA 
methylation data (Figure 1). This enabled the calculation of epigenetic 
biological age using two established biomarkers: Levine’s DNA 
methylation–based PhenoAge (DNAmPhenoAge) (15) and Horvath’s 
DNA methylation-predicted mortality (GrimAge) (25). These 

FIGURE 1

Flow diagram of participant selection.
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measures were derived from DNA methylation-based telomere length 
(DNAmTL) or quantitative polymerase chain reaction–based telomere 
length (qPCRTL) data and allowed for a sensitivity analysis 
incorporating epigenetic markers of aging. In the CHARLS cohort, 
we used data from the 2015 follow-up survey (n = 10,327) to replicate 
the primary analysis (Figure 1). This wave was chosen for its superior 
data completeness and a longer observational interval compared to 
the 2013 survey, thereby enhancing the robustness of aging-
related inferences.

Statistical analysis

In the NHANES cohort analysis, sampling weights, stratification, 
and clustering were incorporated into all analyses. Data are presented 
as weighted mean ± standard error (SE) for continuous variables and 
as unweighted frequencies with weighted percentages for categorical 
variables. In the CHARLS cohort, unweighted analyses were 
performed. Continuous variables are presented as mean ± standard 
deviation (SD), and categorical variables as frequencies with 
percentages. Generalized linear regression models were used to 
evaluate the relationship between baseline SUA and biological aging 
(ΔKDM-BA, ΔPhenoAge, AL). Cox regression models were employed 
to estimate the hazard ratios (HR) and 95% confidence intervals (CI) 
for the association between baseline SUA and all-cause mortality and 
premature mortality, adjusting for multiple covariates in different 
models. To explore the dose–response relationship between SUA and 
outcomes and visualize it, restricted cubic splines (RCS) were used, 
with percentiles set at the 10th, 50th, and 90th percentiles (26). 
Kaplan–Meier survival curves were used to visualize survival rates, 
and log-rank tests were conducted to compare survival differences 
between groups. Stratified and interaction analyses were performed 
for subgroups such as age, sex, BMI, smoking, drinking, diabetes, 
hypertension, hyperlipidemia, and CKD to examine their modifying 
effects on the main outcomes. All statistical analyses were performed 
using R software (version 4.4.2), with two-sided p < 0.05 considered 
statistically significant.

Results

Baseline characteristics

In the NHANES cohort (n = 26,192), the mean age was 
46.85 ± 0.22 years, with females comprising 50.72%. The mean SUA 
level was 5.43 ± 0.01 mg/dL, with approximately 20.6% (n = 5,402) 
meeting the criteria for hyperuricemia. Individuals with 
hyperuricemia tended to be male, older, and former smokers, with 
higher rates of BMI, HbA1c, and various chronic diseases 
(hypertension, diabetes, hyperlipidemia, ASCVD, CKD) (Table 1). In 
the CHARLS cohort (n = 5,940), the mean age was 60.72 ± 9.84 years, 
with females comprising 53.41%. The mean SUA level was 
4.44 ± 1.25 mg/dL, with approximately 5.4% (n = 323) meeting the 
criteria for hyperuricemia. In this cohort, individuals with 
hyperuricemia were also typically older, had a higher proportion of 
males, lived more often in urban areas, and frequently had 
comorbidities such as hypertension, diabetes, hyperlipidemia, 
ASCVD, or CKD (Table 2).

Association between SUA and accelerated 
aging

In both cohorts, baseline SUA levels were significantly positively 
correlated with multiple markers of accelerated aging. In the 
NHANES cohort, for each 1 mg/dL increase in SUA, the difference 
between ΔKDM-BA increased by 1.22 years (95% CI: 1.14–1.29, 
p < 0.0001), and the difference between ΔPhenoAge increased by 
0.99 years (95% CI: 0.92–1.07, p < 0.0001). In the CHARLS cohort, 
for every 1 mg/dL increase in SUA, the difference between 
ΔKDM-BA increased by 1.25 years (95% CI: 1.17–1.33, p < 0.0001) 
in the crude model. Similarly, in the crude model, each 1 mg/dL 
increase in SUA was associated with an increase of 0.34 in AL (95% 
CI: 0.30–0.37, p < 0.0001). After comprehensive adjustment for 
confounding factors, this association weakened but remained 
statistically significant (Table 3). In multivariable regression, while 
the effect sizes for ΔKDM-BA and AL decreased slightly after 
stepwise adjustments, they still indicated a stable positive association 
between elevated SUA levels, accelerated aging, and increased multi-
system stress load.

Nonlinear relationship between SUA and 
accelerated aging

Using RCS to assess the dose–response relationship between SUA 
and accelerated aging, we found a significant nonlinear association 
with ΔPhenoAge in the NHANES cohort (nonlinear-p < 0.0001), with 
accelerated aging effects becoming more pronounced after SUA levels 
exceeded approximately 4.16 mg/dL. SUA was also nonlinearly 
associated with ΔKDM-BA (nonlinear-p = 0.02) (Figures 2A,B). In 
the CHARLS cohort, SUA was nonlinearly associated with ΔKDM-BA 
(nonlinear-p = 0.01) and linearly associated with AL 
(nonlinear-p = 0.31) (Figures 2C,D). The overall trend showed that 
higher SUA levels were associated with a shift toward accelerated 
aging markers.

Subgroup analysis

After stratification by age, sex, BMI, smoking, drinking, diabetes, 
hypertension, hyperlipidemia, CKD, and other factors in both 
NHANES and CHARLS, the impact of SUA on accelerated aging 
markers remained consistent across most subgroups (Figures 3A–D). 
Some subgroups exhibited statistical interactions, suggesting that SUA 
had a more significant effect on accelerated aging in older adults, 
females and CKD patients.

SUA and risk of all-cause and premature 
mortality

During long-term follow-up in NHANES (mean duration: 
12.9 years), a total of 5,907 deaths were recorded, including 1,313 
premature deaths. Cox regression analysis showed a statistically 
significant positive association between elevated SUA and both 
all-cause mortality and premature mortality. In the fully adjusted 
model, each 1 mg/dL increase in SUA was associated with a HR for 
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all-cause mortality of 1.04 (95% CI: 1.01–1.07, p = 0.01), and an HR 
for premature mortality of 1.06 (95% CI: 1.00–1.13, p = 0.046) 
(Table 4). The restricted cubic spline results indicated a U-shaped 
nonlinear relationship between SUA and mortality risk (Figures 4A,B), 
and Kaplan–Meier survival analysis showed a higher cumulative 

mortality rate in individuals with hyperuricemia (Figures  4C,D). 
Subgroup analysis trends were consistent with the main results, with 
SUA having a greater impact on mortality or premature mortality in 
individuals with chronic diseases, although no significant interaction 
was observed (Figures 4E,F).

TABLE 1 Baseline characteristics of NHANES participants.

NHANES Total 
(n = 26,192)

Without hyperuricemia 
(n = 20,790)

With hyperuricemia 
(n = 5,402)

p value

Age, years, mean (SE) 46.85 ± 0.22 45.86 ± 0.21 50.92 ± 0.35 < 0.0001

Sex, n (%) < 0.0001

  Female 12,977 (50.72) 10,615 (52.88) 2,362 (41.87)

  Male 13,215 (49.28) 10,175 (47.12) 3,040 (58.13)

Ethnicity, n (%) < 0.0001

  White 13,208 (72.04) 10,352 (71.75) 2,856 (73.24)

  Black 4,885 (10.14) 3,641 (9.79) 1,244 (11.59)

  Mexican 5,335 (7.70) 4,557 (8.25) 778 (5.44)

  Other 2,764 (10.12) 2,240 (10.21) 524 (9.74)

Marital status, n (%) < 0.0001

  Married/live with partner 15,776 (63.48) 12,681 (65.28) 3,095 (62.26)

  Never married 4,132 (16.31) 3,397 (16.86) 735 (15.61)

  Widowed/divorced/separated 5,874 (18.34) 4,387 (17.85) 1,487 (22.13)

Education, n (%) 0.04

  High school and above 18,156 (80.48) 14,430 (80.82) 3,726 (79.53)

  Below high school 7,997 (19.41) 6,328 (19.18) 1,669 (20.47)

Alcohol user, n (%) 0.15

  Heavy 4,932 (20.00) 3,918 (20.94) 1,014 (21.74)

  Low-to-moderate 16,339 (63.78) 12,943 (67.63) 3,396 (65.91)

  Never 3,434 (11.00) 2,712 (11.42) 722 (12.36)

Smoke, n (%) < 0.0001

  Former 6,854 (25.13) 5,076 (23.71) 1778 (31.01)

  Never 13,460 (51.27) 10,879 (51.89) 2,581 (48.88)

  Now 5,853 (23.54) 4,814 (24.39) 1,039 (20.11)

BMI, kg/m2, mean (SE) 28.29 ± 0.08 27.50 ± 0.07 31.59 ± 0.15 < 0.0001

Uric acid, mg/dl, mean (SE) 5.43 ± 0.01 4.94 ± 0.01 7.43 ± 0.02 < 0.0001

HbA1c, %, mean (SE) 5.51 ± 0.01 5.49 ± 0.01 5.62 ± 0.01 < 0.0001

KDM-BA, years, mean (SE) 46.32 ± 0.23 44.72 ± 0.22 52.85 ± 0.36 < 0.0001

ΔKDM-BA, years, mean (SE) −0.54 ± 0.10 −1.14 ± 0.10 1.93 ± 0.16 < 0.0001

PhenoAge, years, mean (SE) 42.21 ± 0.25 40.66 ± 0.24 48.57 ± 0.37 < 0.0001

ΔPhenoAge, years, mean (SE) −4.64 ± 0.08 −5.20 ± 0.08 −2.35 ± 0.12 < 0.0001

Hypertension, n (%) 11,071(36.00) 7,740(31.33) 3,331(55.16) < 0.0001

Diabetes, n (%) 4,180 (11.18) 2,934 (9.63) 1,246 (17.56) < 0.0001

Hyperlipidemia, n (%) 19,400 (72.93) 14,878 (70.21) 4,522 (84.08) < 0.0001

ASCVD, n (%) 2,822 (8.03) 1872 (6.65) 950 (13.67) < 0.0001

CKD, n (%) 4,911 (13.84) 3,105 (11.02) 1806 (25.96) < 0.0001

Death during follow-up, n (%) 5,907 (16.25) 4,110 (14.13) 1797 (24.92) < 0.0001

Premature death during follow-up, n 

(%)

1,313 (4.93) 947 (31.94) 366 (26.68) 0.002

Data are presented as weighted mean ± standard error (SE) for continuous variables and as unweighted frequencies with weighted percentages for categorical variables. p-values were 
calculated using survey-weighted t-tests for continuous variables and Chi-square tests for categorical variables to compare characteristics between groups. BMI, body mass index; KDM-BA, 
Klemera–Doubal Method Biological Age; CKD, chronic kidney disease; ASCVD, atherosclerotic cardiovascular disease.
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In the short-term follow-up in CHARLS (mean duration: 2 years), 
97 deaths and 33 premature deaths were observed. Cox regression 
analysis did not find a significant association between elevated SUA 
and all-cause or premature mortality (Table 4). In various adjusted 
models, the HR for all-cause mortality did not reach statistical 

significance. Specifically, in the crude model, each 1 mg/dL increase 
in SUA was associated with an HR for all-cause mortality of 1.08 (95% 
CI: 0.93–1.26, p = 0.30). After adjustment for demographic factors 
(age, sex, etc.), the HR decreased to 0.91 (95% CI: 0.77–1.08, p = 0.28). 
Further adjustment for lifestyle factors (BMI, smoking, drinking) 

TABLE 2 Baseline characteristics of CHARLS participants.

CHARLS Total (n = 5,940) Without hyperuricemia 
(n = 5,617)

With hyperuricemia 
(n = 323)

p value

Age, years, mean (SD) 60.72 ± 9.84 60.56 ± 9.80 63.34 ± 10.09 <0.0001

Sex, n (%) <0.01

  Female 3,148 (53.00) 3,000 (53.41) 148 (45.82)

  Male 2,792 (47.00) 2,617 (46.59) 175 (54.18)

Marital status, n (%) 0.23

  Married 4,919 (82.81) 4,654 (82.86) 265 (82.04)

  Never married 43 (0.72) 43(0.77)

  Widowed/divorced/

separated

978 (16.46) 920 (16.38) 58 (17.96)

Education, n (%) 0.92

  High school and above 452 (7.62) 429 (7.64) 23 (7.12)

  Below high school 5,486 (92.39) 5,186 (92.36) 300 (92.88)

Residence place, n (%) 0.02

  Rural 3,892 (65.52) 3,701 (65.89) 191 (59.13)

  Urban 2048 (34.48) 1916 (34.11) 132 (40.87)

Drink frequency last year, n 

(%)

0.07

  >1/month 1,484 (24.98) 1,389 (24.73) 95 (29.41)

  <1/month 446 (7.51) 429 (7.64) 17 (5.26)

  No 4,010 (67.51) 3,799 (67.63) 211 (65.33)

Smoke status, n (%) 0.21

  Never 3,591 (60.46) 3,407 (60.67) 184 (56.97)

  Smoke 2,348 (39.54) 2,209 (39.33) 139 (43.03)

BMI, kg/m2, mean (SD) 23.42 ± 3.92 23.37 ± 3.90 24.38 ± 4.21 <0.0001

Uric acid, mg/dl, mean (SD) 4.44 ± 1.25 4.27 ± 1.05 7.36 ± 0.96 <0.0001

HbA1c, %, mean (SD) 5.29 ± 0.81 5.29 ± 0.82 5.30 ± 0.62 0.73

KDM-BA, years, mean (SD) 60.18 ± 10.57 59.84 ± 10.48 66.08 ± 10.36 <0.0001

ΔKDM-BA, years, mean (SD) −0.53 ± 4.27 −0.72 ± 4.16 2.73 ± 4.68 <0.0001

Allostatic load, score, mean 

(SD)

2.52 ± 1.75 2.44 ± 1.71 3.86 ± 1.91 <0.0001

Hypertension, n (%) 2,553 (42.98) 2,358 (41.98) 195 (60.37) <0.0001

Diabetes, n (%) 937 (15.77) 860 (15.31) 77 (23.84) <0.0001

Hyperlipidemia, n (%) 1,405 (23.65) 1,263 (22.49) 142 (43.96) <0.0001

CVD, n (%) 826 (13.94) 768 (13.71) 58 (18.01) 0.04

CKD, n (%) 153 (2.58) 96 (1.71) 57 (17.65) <0.0001

Death during follow-up, n (%) 97 (1.63) 92 (1.64) 5 (1.55) 1.00

Premature death during follow-

up, n (%)

33 (0.56) 31 (0.55) 2 (0.62) 0.95

Data are presented as mean ± standard deviation (SD) for continuous variables and as frequencies with percentages for categorical variables. p-values were calculated using independent-
samples t-tests for continuous variables and Chi-square tests for categorical variables to compare characteristics between groups. BMI, body mass index; KDM-BA, Klemera–Doubal Method 
Biological Age; CKD, chronic kidney disease; CVD, cardiovascular disease.
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yielded an HR of 0.92 (95% CI: 0.77–1.10, p  = 0.36). In the fully 
adjusted model (including diabetes, hypertension, CVD, etc.), the 
association between SUA levels and all-cause mortality was not 
significant (HR = 0.90, 95% CI: 0.75–1.08, p = 0.25). Similarly, no 
significant association between SUA levels and premature mortality 
was observed in all models.

Sensitivity analysis

In NHANES, a subset of participants from the 1999–2002 period 
was included, and DNA methylation-derived BA was recalculated 

(Figures 5A–F). A sensitivity analysis was conducted by including the 
2015 follow-up population in CHARLS, and the results were consistent 
with the main analysis (Figures 6A–F). The association between SUA 
and aging processes remained consistent with the primary analysis, 
supporting the robustness of the findings.

Discussion

Uric acid, a product of purine metabolism, has long been a subject 
of debate regarding its role in aging and chronic disease. Initially 
recognized for its antioxidant properties (27), SUA was believed to 

TABLE 3 Association between SUA and accelerated aging.

NHANES ΔKDM-BA P ΔPhenotypic age p

Crude model 1.22 (1.14,1.29) <0.0001 0.99 (0.92,1.07) <0.0001

Model 1 1.15 (1.05, 1.24) <0.0001 0.85 (0.76, 0.94) <0.0001

Model 2 0.93 (0.82, 1.03) <0.0001 0.63 (0.53, 0.72) <0.0001

Model 3 0.52 (0.43, 0.61) <0.0001 0.38 (0.29, 0.47) <0.0001

CHARLS ΔKDM-BA P Allostatic load P

Crude model 1.25 (1.17,1.33) <0.0001 0.34 (0.30,0.37) <0.0001

Model 1 1.10 (1.01, 1.19) <0.0001 0.42 (0.38, 0.46) <0.0001

Model 2 1.00 (0.91, 1.09) <0.0001 0.33 (0.30, 0.37) <0.0001

Model 3 0.65 (0.57, 0.74) <0.0001 0.15 (0.12,0.18) <0.0001

For NHANES: model 1: age, ethnicity, sex, education, marital status, poverty; model 2: age, ethnicity, sex, education, marital status, poverty, BMI, alcohol user, smoke; model 3: age, ethnicity, 
sex, education, marital status, poverty, BMI, alcohol user, smoke, diabetes, hypertension, hyperlipidemia, atherosclerotic cardiovascular disease, chronic kidney disease. For CHARLS: model 1: 
sex, age, residence place, south/north, education, marital status; model 2: sex, age, residence place, south/north, education, marital status, drink frequency, smoke status, BMI; model 3: sex, 
age, residence place, south/north, education, marital status, drink frequency, smoke status, BMI, diabetes, hypertension, hyperlipidemia, cardiovascular disease, chronic kidney disease.

FIGURE 2

The RCS analysis between serum uric acid and accelerated aging. (A) NHANES - ΔKlemera-Doubal Biological Age, (B) NHANES - Δphenotypic age, 
(C) CHARLS - ΔKlemera-Doubal Biological Age, (C) CHARLS - allostatic load. For NHANES, the model was adjusted for age, ethnicity, sex, education, 
marital status, poverty, BMI, alcohol user, smoke, diabetes, hypertension, hyperlipidemia, atherosclerotic cardiovascular disease, chronic kidney disease. 
For CHARLS, the model was adjusted for sex, age, residence place, south/north, education, marital status, drink frequency, smoke status, BMI, diabetes, 
hypertension, hyperlipidemia, cardiovascular disease, chronic kidney disease.
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FIGURE 3

Subgroup analysis of the association between serum uric acid and accelerated aging. (A) NHANES - ΔKlemera-Doubal Biological Age, (B) NHANES - 
Δphenotypic age, (C) CHARLS - ΔKlemera-Doubal Biological Age, (D) CHARLS - allostatic load. For NHANES, the model was adjusted for age, ethnicity, 
sex, education, marital status, poverty, BMI, alcohol user, smoke, diabetes, hypertension, hyperlipidemia, atherosclerotic cardiovascular disease, chronic 
kidney disease. For CHARLS, the model was adjusted for sex, age, residence place, south/north, education, marital status, drink frequency, smoke 
status, BMI, diabetes, hypertension, hyperlipidemia, cardiovascular disease, chronic kidney disease.

counteract oxidative stress and free radical damage, thus potentially 
protecting against aging and cancer (28). However, increasing 
evidence now suggests that elevated SUA levels may contribute to 
oxidative stress (29, 30), leading to cellular damage and accelerating 
aging. Hyperuricemia has also been strongly associated with chronic 

low-grade inflammation, with studies indicating that SUA can induce 
an inflammatory state by promoting the release of pro-inflammatory 
cytokines such as IL-6 and TNF-α (31). Additionally, hyperuricemia 
contributes to endothelial dysfunction (32), increases arterial stiffness 
(33), and heightens the risk of hypertension and CVD. Furthermore, 
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elevated SUA levels are thought to impact telomere length and 
mitochondrial function, thus accelerating the aging process at the 
molecular level (34, 35).

Epidemiological studies have demonstrated that SUA levels are 
significantly correlated with several aging-related diseases, including 
CVD (36–38), CKD (39, 40), diabetes (41, 42), and cognitive decline 
(43). This study extends these findings by systematically evaluating the 
impact of SUA on various aging markers and mortality outcomes in 
two large cohorts. Consistent with prior research, we found a strong 
association between elevated SUA levels and accelerated biological 
aging (35, 43, 44). Notably, our study employed three complementary 
aging assessment models—KDM-BA, PhenoAge, and AL—which 
further confirmed that this association remained stable after adjusting 
for a variety of covariates. Moreover, the RCS analysis revealed a 
nonlinear relationship between SUA and biological aging, indicating 
that there is no clear “safe” threshold for SUA levels with respect to 
biological aging. This result was validated in two distinct national 
cohorts, providing robust evidence for SUA’s role in aging.

Subgroup analyses revealed that the impact of SUA on 
accelerated biological aging was more pronounced in women and 
patients with CKD. This suggests that SUA may influence the aging 
process through different biological mechanisms across various 
populations. Estrogen has been shown to lower SUA levels by 
inhibiting the URAT1 transporter (45), but this protective effect is 
lost in postmenopausal women, who are at a higher risk for gout 
compared to premenopausal women (46). Previous studies have 
indicated that hyperuricemia accelerates CKD progression 
through activation of the renin-angiotensin-aldosterone system 
(RAAS), inhibition of nitric oxide (NO) synthesis, and induction 
of chronic inflammation (47). Our findings align with these 
studies, as we  observed the most significant effect of SUA on 
biological aging in CKD patients, with a clear interaction with 
all-cause mortality. This may be due to urate-induced vascular 
damage, oxidative stress, and immune activation. While urate-
lowering therapy may help slow CKD progression, direct evidence 
supporting its clinical benefits for aging and mortality is lacking. 
Future studies should explore the underlying mechanisms and 
potential interventions.

The relationship between hyperuricemia, urate-lowering 
therapy, and mortality risk remains a topic of contention. Many 
observational studies have suggested a U-shaped curve between 
SUA levels and mortality risk (48–50), and our findings in the 
NHANES cohort are consistent with these studies, showing a 
U-shaped relationship between SUA levels and both all-cause and 
premature mortality. However, this relationship was not observed 
in the CHARLS cohort, likely due to its shorter follow-up duration 
(mean: 2.0 years) compared to NHANES (mean: 12.9 years), 
which may have reduced the statistical power to detect significant 
mortality associations. Notably, the average SUA in the CHARLS 
cohort (4.44 mg/dL) was significantly lower than in the NHANES 
cohort (5.43 mg/dL), and the prevalence of hyperuricemia was 
also much lower (5.4% vs. 20.6%). This discrepancy may 
be  attributed to racial differences or dietary patterns, such as 
low-purine diets (51), though the lack of dietary data in CHARLS 
prevents further investigation. Previous studies have shown that 
gout can lead to premature death (52), but the specific impact 
remains unclear. This study is the first to demonstrate a significant 
association between hyperuricemia and premature mortality. 
After adjusting for confounders, the association between SUA 
levels and premature mortality showed a U-shaped nonlinear 
relationship. Janis Timsans and colleagues suggested that 
hyperuricemia without renal dysfunction (metabolic 
hyperuricemia) may increase the risk of premature death through 
the induction of CVD (53), a finding that is consistent with our 
subgroup analysis. We observed that SUA had a more pronounced 
effect on premature death in individuals with hypertension, 
hyperlipidemia, ASCVD, and CKD, emphasizing the importance 
of managing SUA levels in cardiovascular, renal, and 
metabolic diseases.

SUA levels also reflect nutritional status (54), and some studies have 
found that sarcopenia and weight loss are more common in patients with 
low SUA levels (55). Differences in body composition may help explain 
the association between low SUA levels and higher mortality (56). 
Studies conducted on hemodialysis populations found that patients with 
lower SUA levels, along with a low lean tissue index and high geriatric 
nutrition risk index, exhibited greater mortality risk. This suggests that 

TABLE 4 Association between SUA and risk of all-cause and premature mortality.

Death p Premature death p

NHANES

Crude model 1.23 (1.20,1.26) <0.0001 1.202 (1.150,1.256) <0.0001

Model 1 1.10 (1.07, 1.13) <0.0001 1.074 (1.002,1.151) 0.044

Model 2 1.12 (1.09, 1.16) <0.0001 1.090 (1.016,1.170) 0.016

Model 3 1.04 (1.01, 1.07) 0.01 1.064 (1.001,1.132) 0.046

CHARLS

Crude model 1.08 (0.93,1.26) 0.30 1.07 (0.82,1.39) 0.62

Model 1 0.91 (0.77, 1.08) 0.28 0.94 (0.69, 1.28) 0.70

Model 2 0.92 (0.77,1.10) 0.36 0.93 (0.68, 1.27) 0.64

Model 3 0.90 (0.75,1.08) 0.25 0.93 (0.68, 1.27) 0.64

For NHANES: model 1: age, ethnicity, sex, education, marital status, poverty; model 2: age, ethnicity, sex, education, marital status, poverty, BMI, alcohol user, smoke; model 3: age, ethnicity, 
sex, education, marital status, poverty, BMI, alcohol user, smoke, diabetes, hypertension, hyperlipidemia, atherosclerotic cardiovascular disease, chronic kidney disease. For CHARLS: model 1: 
sex, age, residence place, south/north, education, marital status; model 2: sex, age, residence place, south/north, education, marital status, drink frequency, smoke status, BMI; model 3: sex, 
age, residence place, south/north, education, marital status, drink frequency, smoke status, BMI, diabetes, hypertension, hyperlipidemia, cardiovascular disease, chronic kidney disease.
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FIGURE 4

Association between serum uric acid and the risk of all-cause and premature mortality. Panel (A,B) show the results of RCS analysis depicting the 
relationship between serum uric acid levels and all-cause mortality and premature mortality, respectively. Kaplan–Meier survival curves are presented 
for all-cause mortality (C) and premature mortality (D). Panel (E,F) display subgroup analyses evaluating the association between SUA levels and all-
cause mortality and premature mortality, respectively. The model was adjusted for age, ethnicity, sex, education, marital status, poverty, BMI, alcohol 
user, smoke, diabetes, hypertension, hyperlipidemia, atherosclerotic cardiovascular disease, chronic kidney disease.
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better nutritional status, rather than elevated SUA levels, may help reduce 
mortality risk (57). Furthermore, the effect of ULT on mortality risk 
remains debated. The CARES trial showed that febuxostat treatment in 
gout patients with CVD resulted in significantly higher all-cause 
(HR = 1.22) and cardiovascular (HR = 1.34) mortality rates compared to 
allopurinol, with the difference being more pronounced in patients with 
lower baseline SUA levels (58). This suggests that excessively lowering 

SUA may increase mortality risk, potentially due to the loss of SUA’s 
antioxidant effects, acute inflammation from urate crystal dissolution, 
and vascular dysfunction (59). Further research is needed to clarify the 
causal relationship between uric acid-lowering therapy and mortality.

This study advances our understanding of SUA’s role in 
biological aging through several methodological improvements. By 
using data from two nationally representative cohorts (NHANES 

FIGURE 5

Sensitivity analysis results for the NHANES cohort. Panels (A,B) present the association between serum uric acid levels and ΔDNA methylation–based 
PhenoAge and ΔGrimAge. Panels (C,D) display the results of RCS analysis examining the relationship between serum uric acid and ΔDNA methylation–
based PhenoAge and ΔGrimAge, respectively. Subgroup analyses of the association between serum uric acid levels and ΔDNA methylation–based 
PhenoAge and ΔGrimAge are shown in panel (E,F). Model 1: age, ethnicity, sex, education, marital status, poverty; Model 2: age, ethnicity, sex, 
education, marital status, poverty, BMI, alcohol user, smoke; Model 3: age, ethnicity, sex, education, marital status, poverty, BMI, alcohol user, smoke, 
diabetes, hypertension, hyperlipidemia, atherosclerotic cardiovascular disease, chronic kidney disease.
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and CHARLS), we provide the first multi-country evidence that 
elevated SUA levels are consistently associated with accelerated 
aging across various biomarkers, including Klemera-Doubal BA, 
PhenoAge, and AL. These findings were robust even after adjusting 

for various demographic, behavioral, and confounding factors. 
Furthermore, restricted cubic spline analysis further described the 
nonlinear relationship between SUA and mortality risk in the 
NHANES cohort. However, this study has several limitations. First, 

FIGURE 6

Sensitivity analysis results for the CHARLS cohort. Panels (A,B) present the association between serum uric acid levels and Klemera-Doubal Biological 
Age and allostatic load, respectively, in the CHARLS cohort. Panels (C,D) display the results of RCS analysis examining the relationship between serum 
uric acid and Klemera-Doubal Biological Age and allostatic load, respectively. Subgroup analyses of the association between serum uric acid levels and 
(E) Klemera-Doubal Biological Age and (F) allostatic load are shown. Model 1: sex, age, place of residence, south/north, education, marital status; 
Model 2: sex, age, place of residence, south/north, education, marital status, drink frequency, smoking status, BMI; Model 3: sex, age, place of 
residence, south/north, education, marital status, drink frequency, smoking status, BMI, diabetes, hypertension, hyperlipidemia, cardiovascular disease, 
chronic kidney disease.
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as an observational study, it cannot establish causality, and residual 
confounding from unmeasured factors (e.g., dietary patterns, 
genetic polymorphisms in urate transporters) may still be present 
despite comprehensive adjustments. Second, the statistical power 
of the CHARLS cohort is limited due to fewer death events (n = 97) 
and a shorter follow-up period, which may have weakened our 
ability to detect significant mortality associations. Third, reliance 
on a single SUA measurement may obscure the cumulative effects 
of chronic hyperuricemia, as longitudinal SUA trajectories are 
more strongly associated with clinical outcomes than static 
assessments. Fourth, while the use of standardized aging 
biomarkers enhances comparability, differences in biomarker 
measurement protocols across cohorts (e.g., CRP measurement 
methods) may introduce heterogeneity in BA measurements. 
Finally, although we  applied a unified definition of premature 
mortality across cohorts to facilitate comparison, differences in life 
expectancy between the U.S. and China may affect its clinical 
relevance (19, 60, 61). Future studies should consider cohort-
specific thresholds to better reflect population-level aging and 
mortality risk.

Conclusion

Based on data from the NHANES and CHARLS cohorts, 
we  found that elevated SUA levels were significantly associated 
with accelerated biological aging in both populations. In the 
NHANES cohort, higher SUA levels were also linked to an 
increased risk of all-cause and premature mortality, with a 
U-shaped nonlinear relationship. However, this association was not 
observed in the CHARLS cohort, suggesting potential population-
specific differences. These findings underscore the role of SUA as a 
potential contributor to aging and mortality risk, highlighting the 
need for further research to clarify the causal relationship and 
evaluate the long-term benefits and risks of uric acid-
lowering strategies.
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