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ZJU index as a predictive 
biomarker of gestational diabetes 
mellitus: a prospective cohort 
analysis
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Background: The ZJU index, incorporating fasting plasma glucose (FPG), lipid 
profiles, liver enzymes, and body mass index (BMI), serves as a multidimensional 
tool for assessing metabolic dysregulation. This prospective investigation 
examined first-trimester ZJU index associations with both gestational diabetes 
mellitus (GDM) risk and nonalcoholic fatty liver disease (NAFLD) during 
pregnancy, while simultaneously evaluating the relationships between lipid 
profiles, liver enzymes, and GDM development.

Methods: We conducted analyses using multivariable logistic regression and 
restricted cubic splines (RCS) to assess associations of the ZJU index, liver 
enzymes, and blood lipids with GDM, as well as the association between the 
ZJU index and NAFLD. Subgroup analyses were conducted to evaluate the 
correlation between the ZJU index (stratified by age and reproductive history) 
and GDM. The receiver operating characteristic (ROC) curve assessed the 
ZJU index’s predictive power. The robustness of the findings was verified via 
sensitivity analyses.

Results: In the multivariable regression model, the ZJU index showed a significant 
positive association with GDM, after adjusting for confounders [OR = 1.22, 95% CI 
(1.13–1.32)]. The RCS analysis revealed a linear dose-response relationship between 
the ZJU index and GDM. The area under the curve (AUC) for the ZJU index was 
0.802, indicating a high predictive ability for GDM. Associations between the ZJU 
index and GDM remained consistent across subgroups and sensitivity analyses.

Conclusion: The ZJU index is closely associated with GDM prevalence.
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1 Introduction

Gestational diabetes mellitus (GDM), characterized by hyperglycemia first detected during 
pregnancy, is the most common gestational metabolic disorder, affecting 14% of pregnancies 
and posing a significant health burden worldwide (1, 2). The etiology of GDM is multifactorial, 
involving complex interactions among genetic, epigenetic, and environmental elements. 
Recognized risk factors include maternal obesity, advanced maternal age, multiple pregnancies, 
and excessive gestational weight gain (3, 4). GDM substantially increases the risk of perinatal 
complications such as pre-eclampsia and macrosomia, while also significantly raising the long-
term risk of metabolic disorders like obesity, cardiovascular disease (CVD), and type 2 diabetes 
mellitus (T2DM) for mothers and their offspring (5–7). Recent research indicates that 
managing GDM in the early pregnancy (before 20 weeks) can mitigate gestational and 
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postnatal complications, improving long-term health outcomes 
(8–11). Nevertheless, traditional mono-biomarkers for early GDM 
screening exhibit limitations in sensitivity and specificity (12), posing 
obstacles in precise clinical risk assessment and underscoring the need 
for efficient, cost-effective screening innovations.

Metabolic disorders during early pregnancy have been linked to 
the onset of GDM (12). Distinctive biomarker changes, including 
elevated liver enzymes [e.g., alanine aminotransferase (ALT) and 
aspartate aminotransferase (AST)] and dyslipidemia [e.g., heightened 
triglyceride (TG)], have been documented in GDM patients (13–16). 
However, studies across diverse populations exhibit significant 
heterogeneity in the associations between liver enzymes, lipid profiles, 
and GDM risk. Notably, NAFLD is a pathological manifestation of the 
metabolic syndrome at the hepatic level and is strongly associated with 
the risk of GDM (17, 18). Nonetheless, the feasibility and safety of 
using imaging to screen NAFLD during pregnancy are limited. Thus, 
clarifying the independent associations of liver enzymes and lipid 
markers with GDM, and developing reliable predictive biomarkers for 
NAFLD during pregnancy, hold substantial clinical importance.

The ZJU index, a novel NAFLD biomarker developed in China, 
combines fasting plasma glucose (FPG), TG, ALT/AST ratio, and body 
mass index (BMI) to assess comprehensive metabolic status (19). 
Compared with traditional single biomarkers, it comprehensively 
captures metabolic dysfunction. It has demonstrated higher predictive 
efficacy for NAFLD in numerous studies and is strongly associated 
with T2DM (19–21). However, its application during pregnancy 
demands exploration. It is essential to recognize that both GDM and 
T2DM derive from similar underlying mechanisms involving insulin 
resistance and glucose-lipid metabolism disorders. Furthermore, lipid 
anomalies during early pregnancy precede clear elevations in glycemic 
levels (22). Therefore, the relationship between the ZJU index and 
GDM should be explored further.

Considering the substantial impact of GDM and its associated 
complications, identifying valid biomarkers for early risk assessment 
is of significant clinical importance. While the ZJU index has been 
validated in general populations for NAFLD and diabetes risk, its 
predictive value during the early stages of pregnancy for GDM 
remains unexplored. This study hypothesizes that higher ZJU index 
values at 10–14 weeks of gestation are linked to an elevated risk of 
developing GDM.

2 Materials and methods

2.1 Study design

To investigate the relationship of ZJU with GDM, we used studies 
from South Korea for a secondary analysis of the data. The prospective 
cohort study was from Korea, the “fatty liver in pregnancy” registry 
(NCT02276144) (23).

2.2 Data source

Prospective studies from Korea were sourced from a publication 
published in PLoS One, volume 14, issue 8, article number e0221400 
(2019). In accordance with the stipulations of the Creative Commons 
Attribution License, the material in question is made available for 

use, distribution and replication in any format, free of charge, on the 
condition that the source and author are duly acknowledged (23).

2.3 Study participants

A total of 663 pregnant women with singleton pregnancies at 
≤14 weeks of gestation were enrolled from Seoul National University 
Boramae Medical Center (affiliated with the Seoul Metropolitan 
Government) and Seoul Women’s Hospital in Incheon. Data collection 
was conducted as part of the ongoing “Fatty Liver in Pregnancy” registry 
between November 2014 and July 2016 (ClinicalTrials.gov, Registration 
No. NCT 02276144). Prior to registration, all subjects were required to 
sign an informed consent form. The studies involving humans were 
approved by the Institutional Review Board of the Seoul National 
University Boramae Medical Center and the Public Institutional Review 
Board of the Korean Ministry of Health and Welfare. No further ethical 
review was required for our secondary analysis. The original study was 
conducted in accordance with the principles set forth in the Declaration 
of Helsinki, and our secondary analysis was performed in compliance 
with the STROBE guidelines, as applicable.

Between November 2014 and July 2016, a total of 663 pregnant 
women without chronic liver disease, a history of alcohol abuse, or 
pregestational diabetes were enrolled, all of whom underwent liver 
ultrasonography at 10–14 weeks of gestation. After excluding 
individuals lost to follow-up (n = 35) and those who delivered before 
34 weeks of gestation (n = 5), a final analytic cohort of 623 participants 
was included in the data analysis (17). The study initially encompassed 
585 singleton pregnancies. Of these, 38 cases were excluded due to 
incomplete key datasets, including 25 cases with missing lipid profiles 
[TG, high-density lipoprotein (HDL)], incomplete liver function tests 
(ALT, AST), BMI and metabolic markers (FPG, insulin), as well as 13 
cases with lack of diagnostic data for GDM. The comprehensive 
participant screening process is systematically delineated in Figure 1.

2.4 Measurement of GDM and NAFLD

In accordance with guidelines from the American College of 
Obstetricians and Gynecologists (ACOG), all participants underwent 
a two-step screening protocol for GDM at 24–28 weeks of gestation 
(24). The first step involved a 50-g oral glucose challenge test (GCT) 
administered in a non-fasting state, with capillary blood glucose 
measured 1 h after glucose ingestion. A GCT result of ≥7.8 mmol/L 
was considered positive. For women with a positive GCT, a subsequent 
100-g oral glucose tolerance test (OGTT) was performed. GDM was 
diagnosed when two or more of the following OGTT thresholds were 
met: fasting plasma glucose ≥5.3 mmol/L, 1-h glucose ≥10.0 mmol/L, 
2-h glucose ≥8.6 mmol/L, or 3-h glucose ≥7.8 mmol/L. The GDM 
(dichotomous: 0 = non-GDM, 1 = GDM) is the outcome variable.

The presence of NAFLD is defined as a bright echo pattern in the 
liver detected by ultrasound.

2.5 Assessment of covariates

General clinical and demographic information, including 
maternal age, parity, and pre-gestational height and weight, was 
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collected using the validated cut-annoyed-guilty-eye questionnaire 
(25). BMI was calculated as the body weight divided by the standing 
height squared.

Venous blood samples were collected from participants between 
10 and 14 weeks of gestation following an overnight fast of at least 8 h. 
All samples underwent centrifugation, aliquotation, and storage at 

FIGURE 1

Flowchart of the study design.
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−70°C for subsequent analysis of hematological parameters. FPG, 
routine lipid profiles, and hepatic enzyme concentrations were 
quantified using enzymatic assays on a Roche/Hitachi 911 chemistry 
analyzer (Roche Diagnostics, Indianapolis, IN, United States), with 
glucose measured via the hexokinase method. Insulin concentrations 
were assayed using a single-batch immunoradiometric kit (INS-
IRMA; DIAsource ImmunoAssays, Louvain-la-Neuve, Belgium), and 
adiponectin levels were determined by enzyme-linked immunosorbent 
assay (ELISA; R&D Systems, Minneapolis, MN, United States).

Covariates were selected using a hybrid analytical framework that 
synergized data-driven techniques (bidirectional stepwise regression) 
with theory-informed approaches incorporating directed acyclic 
graphs (DAGs), existing evidence from literature, and clinical 
expertise (26). The final adjusted model included three covariates: 
maternal age, nulliparity, and adiponectin levels.

2.6 Measurement of ZJU

Venous blood samples were collected from participants between 
10 and 14 weeks of gestation, following an overnight fast of at least 8 h. 
All samples were centrifuged and stored at −70°C for subsequent 
analysis of hematological markers, including FPG (mmol/L), ALT 
(U/L), AST (U/L), TG (mg/dL) (19).

 

( ) ( ) ( )
( ) ( ) ( )

∗= + +

+ +

2ZJU index FPG mmol / L BMI kg / m 3 ALT U / L /

AST U / L ratio 2 if female TG mmol / L

2.7 Statistical analysis

Baseline characteristics of the participants were presented 
according to their GDM status. For managing missing data, 
we  employed listwise deletion, removing any observations with 
incomplete values from all analyses. The analysis included means and 
standard deviations for continuous variables, and frequencies and 
percentages for categorical variables. Group comparisons for 
continuous variables were performed using the t-test or analysis of 
variance, while chi-square tests were utilized for categorical variables. 
The Box-Tidwell method was employed to test the linearity of 
logarithmic variables. Covariates selection was guided by the 10 events 
per variable principle and which adopted a hybrid approach combining 
data-driven bidirectional stepwise regression and theory-driven 
methods, including DAGs (Supplementary Figure S1), clinical 
expertise, and prior literature (26, 27). Multicollinearity among 
independent variables was assessed using the variance inflation factor 
(VIF). Multivariable logistic regression and restricted cubic splines 
(RCS) were used to assess associations of the ZJU index with liver 
enzymes, blood lipids, and GDM, as well as the association between the 
ZJU index and NAFLD.

The three models were estimated in order to perform the requisite 
tests. In the study, model1 no adjustments were made for potential 
confounding variables; model 2 was adjusted for age and nulliparity; and 
model 3 was adjusted for age, nulliparity and adiponectin. Besides, a 
multivariable logistic regression model was employed to assess the 
correlation between liver enzyme, blood lipid and GDM. The adjustment 

factors include: age, nulliparity, and pregnancy BMI. Receiver operating 
characteristic (ROC) curves were used to assess the predictive accuracy 
of the GDM, and the Youden index method determined the optimal 
predicted probability cut-off points. Subgroup analysis methods 
explored the relationship between the ZJU index and GDM, stratified 
by age and nulliparity. Guided by clinical insights and prior evidence 
(17, 28), we conducted four sensitivity analyses to assess the robustness 
of ZJU index-GDM associations: (1) to address bias, we  used 1:1 
propensity score matching (PSM) with greedy nearest neighbor 
matching (caliper = 0.02), matching on age and nulliparity. Post-
matching balance was confirmed via standardized mean differences 
(SMD <0.1). Multivariable logistic regression was applied to matched 
data; (2) including NAFLD in our fully adjusted model; (3) exclusive 
inclusion of participants with normal hepatic function (ALT ≤40 U/L, 
AST ≤40 U/L, GGT ≤50 U/L); (4) application of Firth penalized 
regression to address potential small-sample bias. As the sample size was 
entirely dependent on the available data, no formal power calculation 
was performed, and the analyses were exploratory in nature.

Data processing and analysis were performed using Empower 
software (www.empowerstats.com; X&Y solutions, Inc., Boston, MA) 
and R version 4.4.0 (2024-04-24). A < 0.05 p-value was considered a 
statistically significant difference.

3 Results

3.1 Clinical characteristics of study 
participants

Table  1 summarizes demographic and clinical characteristics 
stratified by GDM status. Among 585 participants, 36 (6.2%) 
developed GDM, with an overall median maternal age of 32 years. 
Compared to non-GDM counterparts, women with GDM exhibited 
significantly higher prevalence of NAFLD (p < 0.05) and demonstrated 
distinct metabolic profiles characterized by elevated fasting 
biomarkers (FPG, insulin, FFA), increased homeostatic model 
assessment of insulin resistance (HOMA-IR), reduced adiponectin 
levels, dyslipidemia (elevated TG, decreased HDL), and hepatic 
dysfunction (abnormal ALT and GGT activities) (all p < 0.05).

3.2 Relationship between ZJU index with 
GDM and NAFLD

Supplementary Table S1 demonstrated that all variables in the 
multicollinearity diagnosis had VIF <5, indicating no multicollinearity 
issues. The Box-Tidwell test in Supplementary Table S2 revealed a 
linear relationship between the ZJU index and GDM risk (p = 0.96), 
satisfying the linearity assumption for logistic regression.

We evaluated the association between the ZJU index both as a 
continuous variable and within tertile groups and GDM. Results from 
Table  2 showed that each 1-unit increase in the ZJU index was 
associated with a 22% higher GDM risk (OR = 1.22, 95% CI: 1.13–
1.32) in Model 3. Tertile-group analysis further revealed a significant 
trend of increased GDM risk across ZJU index tertiles (p for trend 
<0.05). The RCS analysis confirmed a significant linear association 
between the ZJU index and GDM risk (p nonlinear = 0.949), with the 
dose-response relationship illustrated in Figure 2.
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Furthermore, Table 2 also showed a significant positive correlation 
between the ZJU index and NAFLD after adjusting for the same 
covariates (OR = 1.26, 95% CI: 1.19–1.34, p < 0.0001). In Figure 3, 
RCS analysis confirmed a linear dose-response relationship, as 
indicated by p nonlinear = 0.824.

3.3 Associations between liver enzymes, 
lipids index and GDM

Table 3 shows the relationship between liver enzymes, blood lipids, 
and GDM after adjusting for all confounding factors. Single liver 
enzymes in early pregnancy were not associated with GDM, while ALT 
/ AST showed a significant positive association with GDM [OR 2.80 95% 
CI (1.04–7.56)]. TG in early pregnancy was associated with GDM risk, 
with one unit of TG elevation indicating a 2% increase in the risk of 
GDM [OR 1.02 95% CI (1.01–1.02)]. Early pregnancy HDL and GDM 
demonstrated a protective relationship [OR 0.96, 95% CI (0.94–0.99)].

3.4 Subgroup analysis

Table 4 shows the results of the subgroup analysis stratified by age, 
nulliparity. No significant interactions were observed between these 

variables and the effect of the ZJU index on GDM risk (age: 
p-interaction = 0.931; nulliparity: p-interaction = 0.750). The results 
suggest that the relationship between ZJU and GDM is robust.

3.5 Predictive value of ZJU for the GDM

As shown in Figure  3 and Table  5, ROC curves evaluated the 
diagnostic performance of the ZJU index for GDM. The ZJU index 
exhibited superior predictive ability for GDM, with an area under the 
curve (AUC) of 0.802 (95% CI: 0.72–0.88), significantly outperforming 
single biomarkers: TG (AUC = 0.781, 95% CI: 0.70–0.86), FPG 
(AUC = 0.659, 95% CI: 0.56–0.76), ALT/AST (AUC = 0.648, 95% CI: 
0.55–0.75), and HDL (AUC = 0.603, 95% CI: 0.50–0.71). The optimal 
diagnostic cutoff for the ZJU index, identified using the Youden index 
method, was 33.64351, yielding a sensitivity of 0.722 and specificity 
of 0.7577.

3.6 Sensitivity analysis

The results of sensitivity analyses are detailed in 
Supplementary Table S3. First, multivariable regression on PSM data 
(baseline characteristics of the matched cohort in 
Supplementary Table S4) demonstrated a consistent association: ZJU 
index was significantly associated with GDM risk (OR = 1.22, 95% CI: 

TABLE 1 Clinical characteristics of study participants.

Characteristic Without GDM 
(N = 549)

With GDM 
(N = 36)

p-value

Age (years) 32.0 ± 3.8 32.6 ± 3.6 0.586

BMI (kg/m2) 21.8 ± 3.2 25.8 ± 5.2 <0.001

AST (IU/L) 17.7 ± 8.2 19.7 ± 7.3 0.061

ALT (IU/L) 13.1 ± 9.2 18.8 ± 13.3 0.002

GGT (IU/L) 13.7 ± 8.4 17.7 ± 8.9 0.002

TC (mg/dL) 172.4 ± 26.9 180.2 ± 29.7 0.145

TG (mg/dL) 115.1 ± 41.7 176.1 ± 83.1 <0.001

HDL (mg/dL) 65.3 ± 13.2 58.9 ± 16.5 0.038

LDL (mg/dL) 84.0 ± 21.2 84.0 ± 28.7 0.912

FBG (mg/dL) 76.5 ± 9.0 84.6 ± 15.2 0.001

Insulin (μIU/mL) 9.1 ± 6.2 16.3 ± 8.9 <0.001

FFA (μEq/L) 642.5 ± 268.9 743.6 ± 304.9 0.035

ZJU 31.5 ± 3.7 37.2 ± 5.6 <0.001

Nulliparity 0.97

  No 288 (52.5%) 19 (52.8%)

  Yes 261 (47.5%) 17 (47.2%)

NAFLD <0.001

No 459 (83.6%) 16 (44.4%)

Yes 90 (16.4%) 20 (55.6%)

Adiponectin (ng/mL) 6,297 ± 4,305 2,622 ± 2,156 <0.001

HOMA-IR 1.8 ± 1.7 3.6 ± 2.4 <0.001

BMI, body mass index; TG, triglyceride; TC, total cholesterol; HDL, high-density lipoprotein 
cholesterol; LDL, low-density lipoprotein cholesterol; FPG, fasting plasma glucose; ALT, 
alanine Aminotransferase; GGT, gamma-glutamyltransferase; AST, aspartate 
aminotransferase; FFA, free fatty acid; NAFLD, nonalcoholic fatty liver disease; HOMA-IR, 
homeostatic model assessment of insulin resistance; GDM, gestational diabetes mellitus. 
Values were expressed as mean (standard deviation) or n (%).

TABLE 2 Association between ZJU with GDM and NAFLD in multivariable 
logistic regression.

Variable OR (95% CI), p-value

Model 1 Model 2 Model 3

Association between ZJU and GDM

Continuous

  ZJU
1.30 (1.20, 

1.40) < 0.0001

1.30 (1.21, 

1.41) < 0.0001

1.22 (1.13, 

1.32) < 0.0001

Categories

  Q1 (23.84–29.65) Ref. Ref. Ref.

  Q2 (29.65–32.88)
4.13 (0.87, 19.70) 

0.0753

4.10 (0.86, 19.57) 

0.0768

3.66 (0.75, 

17.80) 0.1080

  Q3 (32.89–48.61)
14.85 (3.47, 

63.48) 0.0003

14.84 (3.47, 

63.48) 0.0003

7.70 (1.76, 

33.71) 0.0068

  p for trend <0.0001 <0.0001 0.0017

Association between ZJU and NAFLD

Continuous

  ZJU
1.27 (1.20, 

1.34) < 0.0001

1.28 (1.21, 

1.35) < 0.0001

1.26 (1.19, 

1.34) < 0.0001

Categories

  Q1 (23.84–29.65) Ref. Ref. Ref.

  Q2 (29.65–32.88)
1.45 (0.72, 2.90) 

0.2960

1.46 (0.73, 2.92) 

0.2879

1.42 (0.71, 2.85) 

0.3250

  Q3 (32.89–48.61)
7.34 (4.02, 

13.38) < 0.0001

7.43 (4.07, 

13.57) < 0.0001

6.35 (3.42, 

11.79) < 0.0001

  p for trend <0.0001 <0.0001 <0.0001

OR, odds ratio; CI, confidence interval. Model 1: no covariates were adjusted. Model 2: 
adjusted for age and nulliparity. Model 3: adjusted for age, nulliparity, and adiponectin.
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1.12–1.32, p < 0.0001). Subsequently, adding NAFLD as a covariate in 
the fully adjusted model did not alter the stability of the association 
(OR = 1.18, 95% CI: 1.08–1.28, p = 0.0003). Additionally, restricting the 
analysis to pregnant women with normal liver function (ALT ≤40 U/L, 
AST ≤40 U/L, GGT ≤50 U/L) yielded a stable effect estimate (OR = 1.22, 
95% CI: 1.12–1.33, p < 0.0001). Finally, to address potential bias from 
small sample size, Firth penalized regression was applied, confirming 
the association (OR = 1.21, 95% CI: 1.12–1.32, p < 0.0001). Collectively, 
these multiple sensitivity analyses consistently demonstrated the robust 
association between the ZJU index and GDM risk (all p < 0.05).

As shown in Supplementary Table S5, the E-value for the ZJU 
index-GDM association was 1.74, indicating that an unmeasured 

confounder would need to have a risk ratio of at least 1.74 (relative to 
both the exposure and outcome) to fully explain away the observed 
effect. This suggests that the association is unlikely to be substantially 
influenced by unknown or unmeasured confounding factors, thereby 
supporting the reliability of our findings.

4 Discussion

In this prospective cohort study involving 585 Korean women, the 
ZJU index was significantly and positively associated with GDM 
(OR = 1.22, 95% CI: 1.13–1.32), exhibiting a linear dose-response 
relationship. Multiple sensitivity analyses supported the robustness of 
these findings. The ZJU index demonstrated high predictive 
performance for GDM, with AUC of 0.802. Collectively, these results 
suggest that the ZJU index serves as an effective predictive marker 
for GDM.

The association between liver enzymes, lipids, and subsequent 
GDM has been controversial in prior research. Our study found no 
independent association between individual liver enzyme markers 
and GDM in early pregnancy, while among lipid profiles, only TG 
(OR = 1.02, 95% CI: 1.01–1.02, p < 0.0001) and HDL (OR = 0.96, 
95% CI: 0.94–0.99, p = 0.0079) showed correlations. These findings 
are directionally consistent with but have smaller effect sizes than 
those of retrospective studies (TG: 1.25 vs. 1.02), potentially due to 
differences in study design (recall bias in retrospective cohorts) or 
cultural, dietary, and environmental variations between countries 
(29). Notably, while individual liver enzyme levels were not directly 
associated with GDM risk, the ALT/AST ratio exhibited significant 
correlations (OR = 2.80, 95% CI: 1.04–7.56), likely because this 
ratio better identifies hepatic steatosis than single enzyme markers 
(30). This aligns with similar studies (31), though the lower effect 
size reported in a Chinese two-center study (OR = 1.60, 95% CI: 
1.10–2.34) may relate to differences in gestational age at 
measurement (10–14 weeks vs. 8–12 weeks) and unmeasured 
residual confounding. The complex pathogenesis of GDM makes it 
difficult for a single liver enzyme index to fully reflect its 

FIGURE 2

Dose-response relationship between ZJU with GDM and NAFLD. (A) Dose-response relationship between ZJU with GDM. (B) Dose-response 
relationship between ZJU with NAFLD.

FIGURE 3

ROC curves for predicting GDM. AUC, area under the curve; BMI, 
body mass index; TG, triglyceride; HDL, high-density lipoprotein 
cholesterol; FPG, fasting plasma glucose, ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; HOMA-IR, 
homeostatic model assessment of insulin resistance; GDM, 
gestational diabetes mellitus.
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pathogenesis, which is consistent with previous studies (32–34). 
Therefore, the establishment of a comprehensive monitoring system 
that includes multiple biomarkers is crucial to accurately assess the 
risk of GDM.

Although the precise pathophysiological mechanisms of GDM are 
not fully understood, extensive evidence links hepatic dysfunction and 
lipid metabolism abnormalities to GDM pathogenesis (17, 35–37). 
Recent studies suggest that lipid metabolites play a pivotal role in 
mediating the complex relationship between HSI, a reliable biomarker 
for non-alcoholic fatty liver disease, and GDM (38). Obesity is 
identified as a contributing factor within the link between lipids and 
GDM (39). In light of these findings, this study hypothesized that the 
ZJU index was associated with the occurrence of GDM.

As shown in previous studies, there was a correlation between 
ZJU nonalcoholic fatty liver disease, T2DM, as well as insulin 
resistance (19–21, 40). Large cohort studies have shown that the ZJU 
index is a reliable tool for identifying NAFLD (19). A cross-sectional 
study in China including 3,329 participants demonstrated that the 
ZJU index served as a robust indicator for identifying insulin 
resistance (IR) in the general Chinese population, with the risk of IR 
significantly elevated in the highest quartile of the index (20). In a 
Japanese prospective cohort study of 15,464 participants, the ZJU 
index was positively associated with incident diabetes in the general 
population (21). However, the utility of the ZJU index in pregnant 
women remains underexplored. To the best of our knowledge, this 
study is among the first to investigate the associations of the ZJU index 
with NAFLD and GDM during pregnancy.

As demonstrated in previous studies, the ZJU index has been 
shown to possess a significantly higher predictive efficacy for NAFLD 

than a single biomarker (AUC = 0.823) (41). The present study 
further confirmed its equally strong predictive ability for GDM 
(AUC = 0.802). Despite the findings of numerous studies indicating 
that TG, HDL, FPG, ALT/AST ratio, BMI and HOMA-IR are 
independently associated with the risk of GDM (31, 42–45), the 
results of the ROC analysis demonstrated that the predictive efficacy 
of the ZJU index was significantly superior to that of the 
aforementioned indicators (AUC range: 0.603–0.781). It is 
noteworthy that the risk of GDM was found to be  considerably 
elevated at a ZJU index threshold greater than 33.64351  in early 
pregnancy, indicating the necessity for early clinical intervention.

The ZJU index combines FPG, lipids, liver enzymes and 
BMI. It is a representative marker of irregular liver metabolism. 
Although the relationship between the ZJU index and GDM is 
unknown, the relationship with insulin resistance is not difficult 
to speculate. The liver is critical for the maintenance of glucose 
homeostasis and insulin resistance mechanisms (46). Abnormal 
hepatic metabolism drives increased hepatic TG synthesis and 
accumulation of unbound fatty acids and toxic lipids, which 
disrupt insulin signaling in pancreatic β cells and promote 
abnormal glucagon secretion (47). Concurrently, abnormal weight 
further aggravates the excessive expansion of fat reserves and the 
accumulation of fat in atypical areas, inducing lipotoxic effects 
that impair organelle function. This process is accompanied by 
massive reactive oxygen species release and intensified 
inflammatory responses, triggering systemic inflammation that 
disrupts insulin signaling pathway efficacy and culminates in 
insulin resistance (21, 48, 49). Furthermore, hepatic metabolic 
dysfunction upregulates ALT activity, sustaining inappropriate 
gluconeogenesis; in this state, insulin fails to suppress hepatic 
gluconeogenesis effectively, exacerbating insulin resistance and 
inducing hyperglycemia and hyperinsulinemia (50, 51). During 
pregnancy, hyperglycemia induces insulin resistance via oxidative 
stress-mediated cellular dysfunction (52). Therefore, it is 
reasonable to assume that the ZJU index and GDM are closely 
related and may be a risk factor for GDM in early pregnancy.

Our study found that the ZJU index was closely related to 
non-alcoholic fatty liver disease and GDM. This finding, that 
identifying women at risk for NAFLD and GDM early in 
pregnancy provides a simple and effective indicator with high 
clinical utility. Specifically, the ZJU index demonstrates its 
superiority over single indices in predicting GDM risk, thus 

TABLE 3 Associations between liver enzymes, lipids index, and GDM.

Variables OR (95% CI), p-value

Model 1 Model 2 Model 3

GGT 1.03 (1.01, 1.06) 0.0118 1.03 (1.01, 1.06) 0.0115 1.01 (0.98, 1.05) 0.5920

ALT 1.04 (1.01, 1.06) 0.0018 1.04 (1.02, 1.07) 0.0012 1.03 (1.00, 1.05) 0.0507

AST 1.02 (0.99, 1.05) 0.1754 1.02 (0.99, 1.05) 0.1696 1.01 (0.98, 1.05) 0.3856

ALT/AST 4.22 (1.74, 10.23) 0.0014 4.56 (1.84, 11.27) 0.0010 2.80 (1.04, 7.56) 0.0415

TG 1.02 (1.01, 1.02) < 0.0001 1.02 (1.01, 1.03) < 0.0001 1.02 (1.01, 1.02) < 0.0001

HDL-C 0.96 (0.94, 0.99) 0.0056 0.96 (0.94, 0.99) 0.0053 0.96 (0.94, 0.99) 0.0079

TC 1.01 (1.00, 1.02) 0.0929 1.01 (1.00, 1.02) 0.0950 1.01 (0.99, 1.02) 0.3528

LDL 1.00 (0.98, 1.02) 0.9981 1.00 (0.98, 1.02) 0.9998 0.99 (0.98, 1.01) 0.3305

OR, odds ratio; CI, confidence interval. Model 1: no covariates were adjusted. Model 2: adjusted for age and nulliparity. Model 3: adjusted for age, nulliparity, and pre-pregnancy BMI.

TABLE 4 Subgroup analysis of the associations between ZJU and GDM.

Subgroups OR (95% CI) p for interaction

Age (years) 0.931

  <30 1.22 (1.03, 1.43) 0.020

  ≥30 1.23 (1.12, 1.35) < 0.001

Nulliparity 0.750

  No 1.25 (1.11, 1.40) < 0.001

  Yes 1.19 (1.06, 1.33) 0.002

OR, odds ratio; CI, confidence interval. Adjusted for all covariates except for this subgroup 
of variables (adjusted for age, nulliparity, and adiponectin).
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supporting its incorporation into routine screening processes to 
significantly enhance the accuracy of identifying female patients 
with GDM. Additionally, the ZJU index, with its accessibility and 
cost-effectiveness, facilitates broader application in clinical 
practice and enhances its utility in clinical decision-making. The 
ZJU index exhibits considerable predictive efficacy in the early 
stages of pregnancy, which is crucial for implementing 
personalized early intervention treatments. Early identification 
and treatment measures have been shown to effectively prevent 
the progression of GDM, reduce complications during pregnancy 
and postpartum, thereby promoting women’s health.

In conclusion, this study presents two principal findings. First, 
the correlation between single liver enzymes and lipids and GDM 
is limited; thus, comprehensive prediction through multiple 
biomarkers is crucial. Second, the ZJU index not only correlates 
with NAFLD during early pregnancy but also demonstrates robust 
predictive efficacy for GDM, thereby providing a novel strategy 
for early prevention, precise diagnosis, and personalized 
clinical interventions.

One key strength of our study is its prospective design. 
We  innovatively investigated the association between the ZJU 
index and the risk of GDM in early pregnancy. Further studies are 
necessary to confirm and validate the potential role of the ZJU 
index in predicting GDM during early pregnancy and to explore 
the underlying biological mechanisms. However, several 
limitations are acknowledged. First, this study demonstrated only 
the association between the ZJU index and GDM without 
establishing a causal relationship. Additionally, this study’s sample 
is limited to Korean women, and the generalizability of the 
findings to other racial/regional populations may be restricted 
due to the regional heterogeneity in GDM incidence and 
differences in metabolic characteristics and environmental factors 
across populations (2). Although the ZJU index has been validated 
in East Asian populations, its predictive efficacy for GDM in 
non-Asian populations remains unclear, and relevant thresholds 
require further calibration. Furthermore, our analysis was 
confined to the first trimester (10–14 weeks of gestation), limiting 
the evaluation of its predictive value in mid-pregnancy and the 
postpartum period. As a secondary analysis, inherent limitations 
are present despite adjustments for major covariates. Specifically, 
the inability to prospectively define variables led to potential 
residual confounding from unmeasured factors, such as family 
history of diabetes, gestational age, medication use, lifestyle 

behaviors, and genetic predisposition. To assess the effect of these 
unmeasured confounders, the E value was calculated, revealing a 
relatively weak effect on our conclusions. Additionally, the 
diagnosis of NAFLD in this study primarily relied on liver 
ultrasonography, not histopathological examination. Notably, 
histological confirmation of NAFLD is challenging in 
asymptomatic pregnant individuals due to the invasive nature of 
tissue sampling. Finally, using a single baseline ZJU Index 
assessment in early pregnancy potentially introduces measurement 
errors and misses dynamic changes across gestation.

Future research will focus on conducting comprehensive dynamic 
monitoring studies that provide in-depth insights into physiological 
changes throughout pregnancy. Additionally, efforts are needed to 
validate the generalizability of the ZJU Index across diverse racial, 
geographical, and clinical populations and facilitate its integration into 
evidence-based GDM screening algorithms.

5 Conclusion

Our findings demonstrate that an elevated ZJU index in early 
pregnancy is significantly associated with GDM, with extensive 
sensitivity analyses supporting the robustness of these results. This 
index provides a novel approach to GDM’s early screening and 
monitoring. Prospective validation across multicenter cohorts with 
diverse ethnic populations and interventional trials stratified by ZJU 
index thresholds are imperative to establish generalizability and 
evaluate its clinical utility in informing personalized GDM 
prevention strategies.
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Glossary

GDM - Gestational diabetes mellitus

CVD - Cardiovascular disease

T2DM - Type 2 diabetes mellitus

ALT - Alanine aminotransferase

AST - Aspartate aminotransferase

TG - Triglyceride

NAFLD - Nonalcoholic fatty liver disease

FPG - Fasting plasma glucose

BMI - Body mass index

RCS - Restricted cubic splines

ROC - Receiver operating characteristic

AUC - Area under the curve

HOMA-IR - Homeostatic model assessment for insulin resistance

PSM - Propensity score matching

SMD - Standardized mean differences

DAGs - Directed acyclic graphs

VIF - Variance inflation factor

IR - Insulin resistance

OR - Odds ratio

CI - Confidence interval

HDL - High-density lipoprotein cholesterol

LDL - Low-density lipoprotein cholesterol

TC - Total cholesterol

FFA - Free fatty acid
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