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Objective: To explore the correlation of dietary index for gut microbiota (DI-
GM) with non-alcoholic fatty liver disease (NAFLD).

Methods: Data of 6,711 participants were extracted from the National Health and 
Nutrition Examination Survey (NHANES) during 2007–2018. A weighted logistic 
regression analysis was employed for assessment of the correlation of DI-GM 
with NAFLD, and a restricted cubic spline (RCS) analysis was implemented to 
examine potential non-linear associations. Subgroup analyses were conducted 
to identify particularly susceptible groups. Additionally, the synergistic effects of 
different DI-GM components on NAFLD risk was assessed by weighted quantile 
sum (WQS) regression.

Results: The DI-GM exhibited statistically significant correlation with NAFLD [OR 
(95%CI):0.91 (0.85, 0.98), p = 0.015]. The results of the RCS analysis indicated 
a linear correlation of DI-GM and NAFLD (p = 0.810 for non-linearity). Further 
stratified analyses indicated that the negative correlation of DI-GM with NAFLD 
were significant and consistent for all subgroups. The results of WQS regression 
revealed that soybean (27%), refined grains (17%), coffee (16%), and red meat 
(9%) had the highest contribution weights to NAFLD.

Conclusion: As an important tool for assessment of the influences of diet on gut 
microbiota, DI-GM is negatively correlated with NAFLD risk factors. Soybean, 
refined grains, coffee, and red meat are key factors influencing NAFLD. The 
direct correlation of DI-GM with NAFLD shall be explored and the effectiveness 
of prevention and treatment of NAFLD shall be evaluated by improving DI-GM 
scores via dietary interventions.
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Introduction

As a liver disease correlated to metabolic disorders, non-alcoholic 
fatty liver disease (NAFLD) is characterized by abnormal fat 
accumulation in liver induced by factors other than alcohol 
consumption (1–3). NAFLD comprises non-alcoholic fatty liver 
(NAFL) and non-alcoholic steatohepatitis (NASH), and it may further 
progress to hepatocellular carcinoma (1, 4–6). The incidence of 
NAFLD is approximately 38% globally, with regional variations 
ranging from 25.10% in Western Europe to 44.37% in Latin America 
(7). The prevalence of NAFLD and NASH in key regions such as 
China and USA is expected to increase by up to 30–56% from 2016 to 
2030 (8). NAFLD has been demonstrated to be correlated with various 
factors, including insulin resistance (9, 10), lipotoxicity (11), 
inflammatory response (12), genetic polymorphisms (13), epigenetics 
(14), adipokines (15), myokines (15), hepatokines (15, 16), bile acids 
(17, 18), and gut microbiota (19–22).

Gut microbiota (GM), also known as the gut flora, refers to the 
microbial community in human intestine, and it plays a significant 
role in digestion and metabolism (23–25). Gut microbiota coexists 
symbiotically with the human body as the “second genome” (22). 
Previous studies have shown that GM is a dominant factor influencing 
incidence and progression of NAFLD (19–22). Diet determines the 
composition and diversity of GM (26–28). Furthermore, dietary 
interventions that can alter gut microbiota have attracted great 
attention (28). Kase et  al. (26) reported a review of 14 dietary 
components with different influences on gut microbiota. The Dietary 
Index for the Gut Microbiota (DI-GM) was proposed for assessment 
of dietary quality associated with gut microbiota (26). Contrary to 
other dietary indices such as healthy eating index-2015 (HEI-2015) 
and alternative healthy eating index-2010 (AHEI-2010), DI-GM was 
established on the basis of gut microbiota but not food groups. 
Moreover, DI-GM had a positive correlation with urinary levels of 
intestinal diols and lactones, both of which are markers of gut 
microbiota diversity, indicating that DI-GM is associated with the 
diversity of GM (26). Hence, DI-GM can be  used to effectively 
evaluate the influences of dietary patterns on GM (26) and serve as a 
standardized tool for diet assessment. Recent studies have shown that 
high DI-GM indicates low risk of accelerated aging (29), and DI-GM 
is inversely related to the prevalence of depression (30). Furthermore, 
compelling evidences have revealed that gut microbiota generates a 
variety of bioactive substances that interact with the host liver cells 
through the portal vein, which may lead to inflammation and further 
liver damage (31). However, the specific correlation of DI-GM with 
NAFLD remains unclear.

In this study, the correlation of DI-GM and NAFLD was 
investigated on the basis of the data extracted from the National 
Health and Nutrition Examination Survey (NHANES), and the 
potential of DI-GM which has been widely used for diet assessment 
for GM in prevention and dietary treatment of NAFLD was explored.

Materials and methods

Target community

Information acquired from public files for NHANES data cycles 
in 2007–2018 was analyzed. Across these cycles, 40,959 participants 

were enrolled, while the final cohort comprised 6,711 subjects only 
(Figure 1) as participants who provided incomplete data of fatty liver 
index (FLI) (n = 23,670), incomplete data of DI-GM (n = 845), with 
viral hepatitis (n = 315), excessive alcohol consumption (n = 4,527), 
or incomplete data for any covariate (n = 4,891) were excluded.

Diagnosis of NAFLD

The FLI was employed for non-invasive diagnosis of NAFLD (32), 
and its accuracy and clinical significance in screening and diagnosis 
of NAFLD have been demonstrated in various studies (33). The FLI 
can be determined by: FLI = (e0.953 × loge [Triglycerides (TG)] + 0.139 × Body mass index 

(BMI) + 0.718 × loge [γ-glutamyltransferase (GGT)] + 0.053 × Waist circumference (WC)  – 15.745)/
(1 + e0.953 × loge [TG] + 0.139 × BMI + 0.718 × loge [GGT] + 0.053 × WC – 15.745) × 100, and the 
FLI of 60 or higher indicates a high risk of NAFLD (32).

Assessment of DI-GM

Fourteen food or nutrients constituting key elements of DI-GM 
were identified (26). Beneficial elements include chickpeas, avocados, 
coffee, broccoli, fermented dairy products, cranberries, soybean, green 
tea, fiber, and whole grains. Meanwhile, detrimental elements such as 
refined grains, processed meat, red meat, and a high-fat diet were 
identified (26). The DI-GM was determined on the basis of the dietary 
recall data of NHANES 2007–2018, as shown in Supplementary  
Table S2. For food items with positive impacts on gut microbiota, 1 
point was assigned when the gender-specific median was reached for 
intake, otherwise 0; for food items with negative impacts on gut 
microbiota, 0 was assigned when the gender-specific median was 
reached for intake or it accounts for 40% of total caloric intake (for 
high-fat diets), otherwise 1 point (26). A DI-GM score ranging from 
0 to 13 (ranging from 0 to 9 for promoting the gut microbiota and 0 
to 4 for negatively affecting the gut microbiota) was determined based 
on these scores, and then the participants were classified into Groups 
A (0–3), B (4), C (5) and D (≥6) (30), as presented in Supplementary  
Table S1.

Covariables

In this survey, several potential confounding factors were 
considered: (1) Demographic factors: age, gender (male/female), race, 
marital status, and education. (2) Lifestyle factors: Smoking history 
(never, now, former). (3) Financial status: family poverty income ratio 
(PIR) (low, middle, high). (4) Health comorbidities: hypertension, 
cardiovascular disease (CVD), and diabetes mellitus (DM). (5) BMI 
(kg/m2). (6) Liver function indicators: Alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) (both in U/L). Detailed 
information could be achieved in Supplementary Table S2.

Statistical analysis

Recommended sample weights were employed to enhance 
accuracy and undesired influences were mitigated by intricate 
multistage sampling. The results of categorical variables were 
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denoted as weighted percentages, while the results of continuous 
variables were presented as weighted means ± standard deviations. 
To clarify the correlation of DI-GM and NAFLD, weighted 
multivariate logistic regression analyses were conducted. Herein, 
various confounding factors were considered and adjusted for. 
Three models were employed in this study. Model 1 was 
non-adjusted; Model 2 incorporated adjustments for key 
demographic variables; Model 3 additionally adjusted for BMI, PIR, 
smoking history, hypertension, DM, CVD, ALT and AST. Weighted 
restricted cubic spline (RCS) curves were introduced to Model 3 to 
investigate the correlation of DI-GM and NAFLD. Additionally, 
subgroup analyses were executed based on age, race, gender, 
education, marital status, smoking history, and common chronic 
diseases (hypertension and CVD). Considered the potential 
influences of physical activity, alcohol intake, medication use on the 
results. Accordingly, we  further adjusted for these variables as 
outlined in Model 3 to assess the robustness of our findings in 
sensitivity analysis. Weighted quantile sum (WQS) regression 
models were employed for assessment of the synergistic effects of 
different DI-GM components on the risk of NAFLD, and the WQS 
index was determined on the basis of 60% training dataset, 40% 
validation dataset and 1,000 bootstrapping (34). To address the 
multicollinearity, weights were assigned to components according 
to their contributions to the results. The integrity of the statistical 

computations was validated using R software, with p < 0.05 denoting 
statistical significance.

Results

Characteristics of the participants

Table 1 shows the characteristics of the 6,711 subjects enrolled 
grouped by DI-GM. The average age was 51.06 ± 0.30 years. 51.28% 
were male and 48.72% were female. Significant differences were detected 
(p < 0.05) across DI-GM for demographic characteristics, financial 
status (PIR), lifestyle (smoking history), physical well-being (NAFLD, 
hypertension, CVD, DM), and anthropometric measures (BMI).

Association of DI-GM and NAFLD

Logistic modeling was executed to explore the association of DI-GM 
and NAFLD. According to Table 2, a significant negative correlation was 
identified [OR (95%CI): 0.88 (0.85, 0.92), p < 0.001], and the negative 
correlation remained robust after variable adjustment [OR (95%CI):0.91 
(0.85, 0.98), p = 0.015] in Model 3, suggesting a 9% relative risk reduction 
per DI-GM unit which is modest at the individual level and meaningful 

FIGURE 1

Flow diagram of study cohort selection.
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TABLE 1 Weighted characteristics of the study population according to the DI-GM groupa.

Characteristics DI-GM p-value

Overall 0–3 4 5 >=6

Number 6,711 1,246 1,436 1,526 2,503

Age (years) 51.06 (0.30) 49.76 (0.62) 50.21 (0.67) 49.88 (0.62) 52.72 (0.44) <0.001

Sex (%) 0.205

  Male 3,354 (51.28) 667 (54.11) 707 (51.71) 760 (52.36) 1,220 (49.23)

  Female 3,357 (48.72) 579 (45.89) 729 (48.29) 766 (47.64) 1,283 (50.77)

Race (%) <0.001

  Non-Hispanic White 3,068 (70.32) 505 (65.29) 617 (65.49) 681 (69.75) 1,265 (75.26)

  Non-Hispanic Black 1,270 (10.25) 321 (15.02) 302 (12.35) 287 (10.31) 360 (7.12)

  Mexican American 893 (6.50) 179 (7.86) 224 (8.23) 225 (7.39) 265 (4.52)

  Other Race 1,480 (12.92) 241 (11.82) 293 (13.93) 333 (12.55) 613 (13.10)

Educational attainment (%) <0.001

  High school or less 2,956 (36.26) 673 (47.22) 732 (43.09) 701 (37.27) 850 (27.51)

  More than high school 3,755 (63.74) 573 (52.78) 704 (56.91) 825 (62.73) 1,653 (72.49)

Marital status (%) 0.030

  Married or living with 

partner
4,282 (68.21) 794 (66.14) 865 (65.63) 958 (67.09) 1,665 (71.05)

  Living alone 2,429 (31.79) 452 (33.86) 571 (34.37) 568 (32.91) 838 (28.95)

PIR (%) <0.001

  Low 1,270 (12.35) 266 (15.32) 311 (13.81) 333 (14.88) 360 (8.88)

  Middle 3,542 (48.21) 731 (55.54) 803 (52.66) 775 (44.44) 1,233 (44.98)

  High 1899 (39.43) 249 (29.14) 322 (33.52) 418 (40.68) 910 (46.14)

Smoking status (%) 0.003

  Never 4,143 (62.93) 730 (62.03) 860 (61.27) 954 (62.94) 1,599 (64.15)

  Now 871 (11.70) 188 (13.59) 215 (13.87) 216 (13.19) 252 (8.93)

  Former 1,697 (25.38) 328 (24.38) 361 (24.86) 356 (23.88) 652 (26.92)

NAFLD (%) <0.001

  No 3,769 (56.27) 624 (49.59) 771 (52.70) 847 (53.28) 1,527 (62.67)

  Yes 2,942 (43.73) 622 (50.41) 665 (47.30) 679 (46.72) 976 (37.33)

Hypertension (%) 0.021

  No 3,558 (58.35) 623 (56.28) 740 (54.42) 824 (59.22) 1,371 (60.74)

  Yes 3,153 (41.65) 623 (43.72) 696 (45.58) 702 (40.78) 1,132 (39.26)

CVD (%) 0.251

  No 5,833 (89.09) 1,056 (87.90) 1,236 (87.86) 1,332 (89.55) 2,209 (89.97)

  Yes 878 (10.91) 190 (12.10) 200 (12.14) 194 (10.45) 294 (10.03)

DM (%) <0.001

  No 5,075 (81.40) 886 (77.58) 1,048 (79.29) 1,173 (81.31) 1968 (84.15)

  Yes 1,636 (18.60) 360 (22.42) 388 (20.71) 353 (18.69) 535 (15.85)

BMI (kg/m2) 29.11 (0.13) 29.74 (0.24) 29.79 (0.23) 29.43 (0.23) 28.32 (0.19) <0.001

ALT (U/L) 24.01 (0.18) 24.11 (0.51) 24.65 (0.46) 23.80 (0.50) 23.76 (0.32) 0.436

AST (U/L) 24.19 (0.20) 23.83 (0.54) 24.37 (0.34) 23.75 (0.43) 24.50 (0.34) 0.509

DI-GM, dietary index for gut microbiota; PIR, family poverty income ratio; NAFLD, nonalcoholic fatty liver disease; CVD, cardiovascular disease; DM, diabetes mellitus; BMI, body mass 
index; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
aValues are weighted means (standardized errors) or number of participants (weighted percentages) unless otherwise indicated.
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at the population level. Furthermore, slight increase in DI-GM could also 
offer significant benefits for NAFLD, especially for the implementation 
of large scale and high-risk populations strategies. Meanwhile, the 
percentage of participants with DI-GM ≥ 6 had a significantly negative 
correlation with NAFLD [OR (95%CI):0.59 (0.48, 0.71), p < 0.001], and 
the negative correlation remained robust after variable adjustment [OR 
(95%CI):0.65 (0.47, 0.90), p = 0.010] in Model 3.

Non-linear correlation

To explore the non-linearity of the associations of DI-GM and the 
NAFLD, a weighted multivariable–adjusted RCS analysis was executed 

in this study. As shown in Figure  2, no non-linear correlation of 
DI-GM and NAFLD was detected (p = 0.810 for non-linearity), and a 
negative dose–response correlation of DI-GM and NAFLD was 
identified (p = 0.003).

Subgroup analyses and sensitivity analysis

In this study, subgroup analysis was used to explore the specific 
correlations of DI-GM and NAFLD in different subgroups, indicating 
that the negative correlation of DI-GM and NAFLD was consistent 
(Figure 3). The results of the sensitivity analyses indicate that, even 
after further adjusting for physical activity, alcohol intake, medication 

TABLE 2 Weighted multivariate logistic regression analysis of DI-GM and NAFLDa.

Characteristic Model 1
OR (95%CI), p-value

Model 2
OR (95%CI), P-value

Model 3
OR (95%CI), P-value

DI-GM (continuous) 0.88 (0.85,0.92), <0.001 0.88 (0.85,0.92), <0.001 0.91 (0.85,0.98), 0.015

DI-GM (categorical)

 0–3 Reference Reference Reference

 4 0.88 (0.73,1.07), 0.196 0.89 (0.74,1.08), 0.253 0.86 (0.62,1.20), 0.372

 5 0.86 (0.70,1.05), 0.148 0.88 (0.72,1.08), 0.216 0.88 (0.64,1.22), 0.453

 >=6 0.59 (0.48,0.71), <0.001 0.59 (0.48,0.72), <0.001 0.65 (0.47,0.90), 0.010

P for trend <0.001 <0.001 0.013

DI-GM, dietary index for gut microbiota; PIR, family poverty income ratio; NAFLD, nonalcoholic fatty liver disease; CVD, cardiovascular disease; DM, diabetes mellitus; BMI, body mass 
index; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
aModel 1: unadjusted; Model 2: adjusted for age, sex, race, educational attainment, and marital status; Model 3: adjusted for age, sex, race, education attainment, marital status, BMI, PIR, 
smoking status, hypertension, DM, CVD, ALT and AST.

FIGURE 2

Association between DI-GM with NAFLD. Adjustment factors included age, sex, race, education attainment, marital status, BMI, PIR, smoking status, 
hypertension, DM, CVD, ALT and AST.
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use, the positive correlation between DI-GM and NAFLD persists 
(Supplementary Table S3).

WQS regression

A weighted index was developed based on the WQS regression to 
assess the impacts and weight contributions of different DI-GM 
components on NAFLD (Figure  4). Herein, consistent variable 
adjustments were applied. The results demonstrated that soybean 
(27%), refined grains (17%), coffee (16%) and red meat (9%) had high 
weight contributions, while fiber (0%) and whole grains (0%) had low 
weight contributions.

Discussion

As demonstrated, DI-GM remained an independent risk factor 
for NAFLD after variable control. According to the RCS curves, 
DI-GM had negligible non-linear, dose-dependent association with 

NAFLD. Additionally, DI-GM was negatively related to the probability 
of NAFLD, suggesting that DI-GM can serve as an effective indicator 
for NAFLD, and adjustment of the diet structure could aid in 
preventing NAFLD.

In previous studies, DI-GM has been found to be associated with 
biological age through the mediation role of body mass index, while 
biological age is linked with various biomarkers possibly in relation 
with NAFLD (29). After consulting relevant literature, gut microbiota 
can interact with the pathogenesis of NAFLD by various mechanisms: 
(1) gut microbiota translocation: dysbiosis of gut microbiota induces 
translocation of bacteria or their metabolites from gut to liver, causing 
liver inflammation and damage (35–38); (2) production of endogenous 
ethanol: gut microbiota can produce endogenous ethanol, which may 
affect the metabolism and inflammatory response of liver (36, 39–44); 
(3) abnormal regulation of bile acid and choline metabolism: gut 
microbiota participates in the metabolism of bile acids and choline, 
and changes in these metabolites may affect liver health (22, 36, 41, 
45–48); (4) endotoxemia: dysbiosis of gut microbiota could result in 
increased level of endotoxins (e.g., lipopolysaccharides), resulting in 
inflammation and insulin resistance (36, 49–53). Overall, GM is closely 

FIGURE 3

Subgroup analyses between DI-GM with NAFLD. Each subgroup analysis adjusted for age, sex, race, education attainment, marital status, BMI, PIR, 
smoking status, hypertension, DM, CVD, ALT and AST.
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related to NAFLD, with a two-way influence through the gut-liver axis 
regulatory mechanism (22, 35, 36, 46, 49, 54–57). Therefore, a balanced 
gut microbiota helps maintain hepatic homeostasis, while disruption 
of GM may promote the incidence and progression of NAFLD.

The associations of various dietary indicators and the NAFLD have 
been thoroughly investigated. It has been demonstrated that specific 
dietary patterns could significantly reduce the risk of MASLD and 
relevant liver fibrosis (MASLD-LF) (58). Meanwhile, high scores of the 
HEI or the AHEI were significantly correlated with low incidence of 
MAFLD (59), and high-quality diets led to low mortality rates of 
MAFLD (60). To date, several dietary assessment tools, including HEI 
and AHEI, have been employed to evaluate dietary quality. Nevertheless, 
they barely considered the specific correlations of dietary components 
with gut microbiota, which are essentially important for liver health (61).

The DI-GM is distinctive in that it specifically examines the impact 
of the gut microbiota, addressing a gap in existing dietary indices. Based 
on the integrated effects of 14 key dietary components on gut microbiota, 
the DI-GM’s structured approach not only offers insights into dietary 
impacts on the microbiota but also reflects overall dietary quality (26). 
The DI-GM provides an assessment framework, making it exceedingly 
valuable for exploration of the relationship between microbiota and 
metabolic health. Its correlation with the HEI exemplifies the dual 
applicability and scientific relevance of the DI-GM in assessing 
nutritional status and gut microbiota (26). Therefore, future dietary 
interventions could leverage the DI-GM to optimize dietary structures, 
thereby improving the conditions of GM and relieving NAFLD.

The results of the WQS regression model indicate that soy, refined 
grains, coffee, and red meat are key food components influencing 
NAFLD. Among them, soybean and coffee, as beneficial components 
of the DI-GM, may play critical roles in the prevention and 
management of NAFLD. Indeed, soybean can regulate lipid metabolism 
and oxidative stress, thus protecting the liver of NAFLD patients (62). 
Consequently, soybean may serve as an effective dietary intervention 
for NAFLD (62). Some studies claimed that coffee consumption could 
reduce the risk of NAFLD (63), while conflicting results regarding its 
impact on prevention of NAFLD have also been reported. For NAFLD 
patients, coffee intake can relieve liver fibrosis (64). On the contrary, 
refined grains and red meat, as detrimental components of the DI-GM, 
may elevate the risk of NAFLD. Indeed, the consumption of refined 
grains led to increased incidence of NAFLD, while the intake of whole 
grains may positively affect the clinical conditions of NAFLD patients 
and relieve disease progression (65). Furthermore, the consumption of 
red meat has been confirmed to have a positive correlation with 
NAFLD risk (66). Eating one serving of legumes per week instead of 
red or processed meats or poultry led to reduced incidence of NAFLD 
(67). However, the mechanism by which these foods influence the 
pathogenesis of NAFLD by modulating gut microbiota remains 
unclear. Moreover, the content of GM in dietary fiber and whole grains 
were relatively low, which may lead to the 0% of dietary fiber and whole 
grains of the DI-GM in the contributions of NAFLD.

This study provides epidemiological evidence supporting the 
inverse association between DI-GM scores and NAFLD prevalence. 

FIGURE 4

Weighted quantile sum (WQS) model regression index weights for the NAFLD, adjusted for age, sex, race, education attainment, marital status, BMI, PIR, 
smoking status, hypertension, DM, CVD, ALT and AST.
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These findings underscore the potential utility of DI-GM optimization 
as a preventive strategy in metabolic health management. To advance 
clinical translation, future longitudinal investigations should employ 
standardized DI-GM assessments across diverse cohorts to establish 
causal relationships, validate risk prediction models, and facilitate 
early risk stratification in susceptible populations.

Contributions and limitations

This study made contributions in several aspects. First, a broad 
cross-sectional approach leveraging NHANES data was used for the 
first time, revealing a linear negative correlation of the DI-GM related 
to GM diversity and NAFLD. Second, sampling weights, variable 
adjustment, and statistical tools were involved, resulting in 
significantly improved precision and robustness. Third, a WQS 
regression model was employed to evaluate the overall impacts and 
their weights of different DI-GM components on NAFLD.

Nevertheless, this study has several limitations: (1) the causality 
of DI-GM and NAFLD cannot be  determined due to the cross-
sectional approach used; (2) the findings may not be applicable for 
other populations; (3) recall bias arises from self-reported 24-h dietary 
records, which weakens the reliability of our results; (4) the 
confounding effects induced by measurement errors in unknown 
confounding factors or unmeasured variables cannot be completely 
ruled out.

Conclusion

DI-GM can effectively assess the influences of diet on GM, and it is 
negatively correlated with NAFLD risk. Soybean, refined grains, coffee, 
and red meat are key food components influencing NAFLD. Future 
studies may focus on the direct correlation of DI-GM with NAFLD, 
assessment of the effectiveness of prevention and treatment of NAFLD 
by improving DI-GM scores through dietary interventions.
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