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Background: Obesity and underweight are increasingly common among young 
adult women, often resulting from complex interactions between diet, lifestyle, 
and socioeconomic factors. This study addresses that gap by applying machine 
learning to a wide range of behavioral, dietary, and demographic data. The 
main research question asks: What are the key factors influencing weight status 
among female university students, and how accurately can machine learning 
models identify them? We  hypothesize that different factors are significantly 
associated with underweight, overweight, and obesity, and that machine 
learning can reliably detect these patterns. The aim is to identify the strongest 
predictors and support more targeted weight management strategies.

Methods: This cross-sectional study analyzed data from 7,092 female university 
students (aged 18–30 years) in Palestine and the UAE. Sociodemographic, 
dietary, and lifestyle predictors were evaluated using machine learning (Random 
Forest, SVM, logistic regression, gradient boosting, decision trees, and ensemble 
methods). Synthetic Minority Over-sampling (SMOTE) addressed class 
imbalance. Model performance was assessed via 10-fold cross-validation, with 
significance determined by the chi-square test (p < 0.05, 95% CI).

Results: The Random Forest model achieved the highest accuracy (obesity: 
96.8%, underweight: 94.6%, overweight: 90.3%) and AUC (0.95–0.97). The main 
drivers of weight status categories were as follows: underweight was associated 
with low water/milk intake and preference for fast food; overweight with added 
oil, large eating quantity, and low physical activity; and obesity with energy drink 
consumption, salty snacks, and irregular meals. All findings were statistically 
significant (p < 0.001). Socio-demographic factors (e.g., low income and marital 
status) and lifestyle habits (e.g., sleep <5 h and fast eating) were also significantly 
related to weight status.

Conclusion: The integration of these findings into weight management 
frameworks can significantly enhance the detection and understanding of 

OPEN ACCESS

EDITED BY

Gianpiero Greco,  
University of Bari Aldo Moro, Italy

REVIEWED BY

Fentaw Wassie Feleke,  
Woldia University, Ethiopia
Haoxian Tang,  
First Affiliated Hospital of Shantou University 
Medical College, China
Viral Ishvarlal Champaneri,  
Zydus Medical College and Hospital, India

*CORRESPONDENCE

Radwan Qasrawi  
 radwan@staff.alquds.edu  

Haleama Al Sabbah  
 haleemah.alsabah@adu.ac.ae

RECEIVED 07 April 2025
ACCEPTED 26 June 2025
PUBLISHED 18 July 2025

CITATION

Qasrawi R, Ajab A, Cheikh Ismail L, Al 
Dhaheri A, Alblooshi S, Abu Ghoush R, Vicuna 
Polo S, Amro M, Thwib S, Issa G and Al 
Sabbah H (2025) What drives weight status 
among female university students? A machine 
learning analysis of sociodemographic, 
dietary, and lifestyle determinants.
Front. Nutr. 12:1574063.
doi: 10.3389/fnut.2025.1574063

COPYRIGHT

© 2025 Qasrawi, Ajab, Cheikh Ismail, Al 
Dhaheri, Alblooshi, Abu Ghoush, Vicuna Polo, 
Amro, Thwib, Issa and Al Sabbah. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 18 July 2025
DOI 10.3389/fnut.2025.1574063

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1574063&domain=pdf&date_stamp=2025-07-18
https://www.frontiersin.org/articles/10.3389/fnut.2025.1574063/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1574063/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1574063/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1574063/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1574063/full
mailto:radwan@staff.alquds.edu
mailto:haleemah.alsabah@adu.ac.ae
https://doi.org/10.3389/fnut.2025.1574063
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1574063


Qasrawi et al. 10.3389/fnut.2025.1574063

Frontiers in Nutrition 02 frontiersin.org

modifiable determinants, thereby informing public health interventions, guiding 
the development of targeted weight management strategies, and contributing 
to the global movement toward healthier bodies.
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body mass index, dietary patterns, lifestyle behaviors, machine learning, obesity, 
weight management

1 Introduction

Obesity and weight status are escalating public health challenges 
worldwide, contributing to a range of chronic conditions, including 
diabetes, cardiovascular disease, and certain cancers, and imposing 
substantial burdens on healthcare systems (1, 2). While non-modifiable 
factors such as genetics and family history influence weight status, 
modifiable behaviors, especially dietary patterns and lifestyle choices, 
play a critical role in determining an individual’s body mass index 
(BMI) (3, 4). Accordingly, identifying and integrating these modifiable 
risk factors are essential for developing effective interventions aimed 
at preventing and managing unhealthy weight trajectories across 
populations (5, 6).

In recent years, healthcare provision has begun shifting from a 
general-purpose approach toward personalized precision health, 
which uses individual characteristics to customize prevention and 
treatment strategies (7–9). Personalized precision health focuses on 
adapting healthcare interventions to the personal characteristics and 
needs of individual patients (9). One critical aspect of personalized 
precision health is the prediction and management of weight status, a 
key determinant of overall health and wellbeing (10). This evolution 
has been primarily driven by advances in technology, particularly in 
the areas of machine learning (ML) and artificial intelligence (AI) 
(11), which offer powerful tools to analyze complex, high-dimensional 
data and uncover non-linear relationships among risk factors (9–12). 
By incorporating a broad range of clinical, sociodemographic, and 
behavioral variables into predictive models, ML techniques can 
enhance the accuracy of weight status predictions and support the 
design of targeted, data-driven weight management programs 
(13–15).

Recent literature demonstrates the promise of ML in obesity 
research at multiple life stages. One study focusing on early childhood 
used electronic health records and ML algorithms to predict obesity 
risk, enabling timely preventive measures (16). In adults, various ML 
methods, including support vector machines, Random Forest, and 
gradient boosting, have been applied to large survey and 
epidemiological datasets to identify key predictors of overweight and 
obesity (17).

Additional studies emphasized weight management as an essential 
strategy for combating obesity and related disorders, including 
lifestyle changes, dietary adjustments, and the use of AI-based meal 
recommendation systems (18, 19). Optimizing machine learning for 
weight status prediction is particularly appealing due to its capacity to 
incorporate a wide range of clinical and lifestyle-related variables into 
predictive models (20). Recent research has emphasized the 
significance of considering multiple factors when addressing weight-
related concerns. Elements such as physical activity, dietary choices, 
sleep quality, and stress levels collectively influence an individual’s 
weight status (10, 14, 21).

Despite these advances, many existing models concentrate on 
isolated predictors or lack comprehensive integration of lifestyle, 
dietary, and sociodemographic factors (21, 22). Consequently, there 
remains a need for holistic predictive frameworks that not only classify 
weight status but also identify the most influential modifiable factors 
driving transitions between the underweight, normal weight, 
overweight, and obese categories.

In this study, the gap is addressed by using ML classifiers, including 
support vector machines, Random Forest, logistic regression, gradient 
boosting, decision trees, and ensemble methods, to analyze a synthetic 
dataset of 7,092 young adult women from Palestine and the UAE. The 
target variable was set as weight status (underweight, healthy, 
overweight, or obese) and all other input values work to predict the 
classification accordingly. Feature selection tests are then performed to 
determine which factors have the most predictive influence on weight 
group classification (22, 23). This study aims to develop and validate a 
comprehensive machine learning-based predictive model that identifies 
and ranks the most influential sociodemographic, lifestyle, and dietary 
factors associated with weight status in young adult women, with the 
objective of guiding personalized weight management strategies.

2 Materials and methods

2.1 Data source

2.1.1 Study settings
To gather study data, the authors used a cross-sectional survey 

design involving female students from Zayed University and Sharjah 
University in the United Arab Emirates (UAE), as well as Al-Quds 
University in Palestine (https://emfid.org/zayed/).

2.1.2 Study period
The data collection was carried out from August 2023 to January 

2024, capturing a representative sample during this timeframe.

2.1.3 Study population
Participants in the study comprised national and expatriate 

students, particularly in the UAE, who fully participate in the 
Palestinian or Emirati cultures. Recruitment efforts were undertaken 
at both institutions using classroom announcements and 
advertisements. The ultimate goal was to ensure a balanced 
representation of weight statuses, using the body mass index (BMI). 
The authors aimed to acquire a dataset that encompassed individuals 
across underweight, healthy, overweight, and obese weight ranges (24).

2.1.4 Inclusion and exclusion criteria
To be included in the study, participants were required to meet 

several criteria. They had to be female and between the ages of 18 and 
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30 years. Additionally, they needed to be enrolled at Zayed University 
or Sharjah University in the United Arab Emirates (UAE) or Al-Quds 
University in Palestine. Participation was contingent upon providing 
informed consent, and individuals had to be generally healthy, with 
no chronic illnesses that could influence their dietary habits or 
body weight.

Several exclusion criteria were also applied. Male students and 
individuals who were either younger than 18 or older than 30 years 
were not eligible to participate. Students not enrolled at Zayed 
University, Sharjah University, or Al-Quds University in Palestine 
were excluded, as were those who did not provide informed consent. 
Participants diagnosed with chronic illnesses or medical conditions 
that could significantly affect their diet or weight were also excluded. 
Furthermore, pregnant students and those with incomplete or missing 
data on key study variables were excluded from the study.

2.1.5 Sample size and sampling procedures
The initial dataset consisted of 680 participants, presenting a 

notable class imbalance that could negatively impact model 
performance. To address this, we applied the Synthetic Minority Over-
sampling Technique (SMOTE) exclusively to the training set after 
splitting the data into training (70%), testing (20%), and validation 
(10%) subsets. SMOTE generates synthetic samples for the minority 
class by interpolating between existing instances, thereby enhancing 
class balance without duplicating records (25, 26).

This oversampling increased the size of the training set, allowing 
the machine learning models to learn from a more representative and 
balanced dataset. Importantly, the test and validation sets were left 
untouched, preserving their original distribution and ensuring an 
unbiased evaluation of the models. The final training data size, after 
SMOTE, was expanded to 7,092 records, which was limited to model 
training only.

Following oversampling, the training data distribution was 
assessed and confirmed to approximate normality, which supports the 
assumptions of subsequent statistical procedures. Recognizing that 
SMOTE can introduce potential risks such as overfitting or artificial 
decision boundaries, we used 10-fold cross-validation during training 
to monitor model generalizability and prevent overfitting (see 
Section 2.5).

Additionally, all model hyperparameters were fine-tuned within 
the cross-validation framework using only the training data, as 
detailed in Section 2.4. This approach ensured that our model 
development process remained free from data leakage and provided 
reliable performance estimates based on unseen data.

2.1.6 Data collection and quality assurance
The questionnaire used for data collection was developed based 

on established tools and literature relevant to dietary habits, lifestyle 
behaviors, and sociodemographic characteristics. It was initially 
drafted in English, then translated into Arabic and back-translated to 
ensure linguistic accuracy. A pilot study was conducted with a sample 
of 40 participants from the target population to evaluate the 
questionnaire’s clarity, readability, and cultural relevance. Based on the 
feedback, minor adjustments were made to improve question phrasing 
and overall flow. Content and face validity were assessed by a panel of 
experts in nutrition, public health, and behavioral sciences. Internal 
consistency was evaluated using Cronbach’s alpha, confirming the 
reliability of the instrument. Prior to data collection, all field 

researchers received standardized training by the principal 
investigators on ethical procedures, interview techniques, and survey 
administration. The data collection process was closely supervised to 
ensure quality, consistency, and adherence to the study protocol.

This study was conducted in accordance with the principles of the 
Declaration of Helsinki, and all procedures involving human 
participants were approved by the Zayed University Ethical Committee 
(Approval No. ZU20\_163\_F). Before data collection began, all 
participants provided informed consent through a detailed consent 
form that explained the study’s purpose, procedures, potential risks, 
and expected benefits. Participants then completed a structured 
questionnaire online, which collected data on demographics, lifestyle 
habits, and dietary behavior.

To ensure data reliability, pre-tested questionnaires were used, and 
participants received clear instructions on how to complete them. 
Incomplete responses or logically inconsistent answers were identified 
and excluded.

2.2 Feature selections

The study collected a thorough set of features generally related to 
body weight, body composition, dietary patterns, and food preferences 
and consumption. These variables served as predictor variables for the 
target, the weight group. Participants were categorized into these 
groups based on their Body Mass Index (BMI), with underweight 
defined as BMI < 18.5, normal weight as BMI 18.5–24.9, overweight 
as BMI 25–29.9, and obese as BMI ≥ 30. A breakdown of the features 
is provided below and further illustrated in Table 1.

 • Assessing Body Weight and Body Composition: This category of 
features includes essential measurements related to participants’ 
physical characteristics. It encompasses variables such as body 
weight, measured in kilograms, which provides insight into 
participants’ overall mass and height, measured in meters, and 
offers information about their stature.

 • Physical Activities: The physical activity was classified into three 
categories. Highly Active: Responds “Yes” to both Question 1 and 
Question 2, indicating that the individual meets or exceeds the 
recommended levels of both moderate and vigorous physical 
activities. Moderately Active: Responds “Yes” to Question 1 but 
“No” to Question 2, indicating that the individual meets the 
recommended levels of moderate physical activity but not 
vigorous physical activity, or responds “Yes” to Question 2 but 
“No” to Question 1, indicating that the individual meets the 
recommended levels of vigorous physical activity but not 
moderate physical activity. Low Activity: Responds “No” to both 
Question 1 and Question 2 but “Yes” to Question 3, indicating 
that the individual engages in both moderate and vigorous 
activities but does not meet the recommended levels for either. 
Inactive: Responds “No” to all three questions, indicating that the 
individual does not meet the recommended levels for either 
moderate or vigorous physical activities.

 • Understanding Dietary Patterns: These features explored 
participants’ dietary habits and preferences. A validated Food 
Frequency Questionnaire (FFQ) was used to assess their dietary 
patterns (27). The frequency of food consumption is categorized 
as never, daily, weekly, or monthly, along with a measure of daily 
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consumption in cups of specific items such as milk and juice, 
among others. Participants’ preferences for various food items are 
measured on a three-level scale (do not like, like, or like a lot). 
This information provides valuable details about their food 
choices, including fruits, vegetables, legumes, meats, snacks, 
beverages, and cultural food items (28).

 • Fast-Food Consumption: This category focuses on the frequency 
of fast-food consumption among participants. Participants are 
asked to indicate how often they consume specific fast-food 
items, with options ranging from never to twice to four times a 
week (29). Fast-food items assessed include burgers, fried 
chicken, fries, pizza, shawarma, chips, and noodles. This data 
provides information on participants’ fast-food consumption 
habits, allowing for the assessment of their regularity in 
consuming these items.

2.3 Statistical and ML analysis

Before applying machine learning algorithms, descriptive 
statistical analysis was performed using IBM SPSS Statistics 27 
software to examine the distribution of weight status categories across 
various sociodemographic, lifestyle, and dietary factors. Associations 
between categorical predictors and weight status categories were 
assessed using chi-square tests of independence, reported with χ2 
statistics and p-values.

Following the descriptive analysis, various machine learning 
algorithms were used using Python 3.11, each serving different 
purposes depending on the properties of the dataset. Understanding 
the strengths and weaknesses of each model is essential for effective 
application in the health domains where accuracy is critical.

This study utilized the following models for prediction and factor 
analysis: support vector machines (SVM) (30), Random Forest (RF) 
(31), logistic regression (LR) (32, 33), gradient boosting (GB) (32), 
and decision tree (DT) (34). Voting and Stacking models, which are 
ensemble learning techniques used to improve predictive performance 
by combining multiple machine learning models, were also used. All 

seven of these models have proven track records in prediction, 
detection, management, and prevention applications across various 
areas of the health domain. These models were applied to the dataset 
at hand to predict each individual’s weight status as a measure of 
reliability. Then they ranked the feature importance of the predicted 
factors that most contributed to the classification result.

2.4 Optimization and validation

Each ML model has a unique set of model-specific parameters 
called hyperparameters. Fine-tuning their values is essential to 
optimizing model performance and enhancing predictive capabilities. 
Table 2 comprises a list of the hyperparameter values for the SVM, RF, 
LG, GB, and DT models.

To validate the findings of the study, an exhaustive set of 
performance measures (metrics) was utilized along with k-fold cross-
validation, a method that is widely recognized in healthcare research. 
Here, the 10-fold cross-validation approach (k = 10) was specifically 
used, where the dataset was divided into 10 equal parts. In each 
iteration, 90% of the data was used for training the model, and the 
remaining 10% served as the test set. This process was repeated 10 
times, ensuring that every data record participated in the test set at 
least once. This method enhances the reliability of our models by 
ensuring thorough exposure to a variety of data scenarios, which 
enhances generalization prospects to unseen data.

Evaluating the classification performance of our models involved 
several metrics, each offering unique insights into their effectiveness. 
The primary tool for this assessment was the confusion matrix, which 
supported the visualization of performance by categorizing 
predictions into true positives, false positives, true negatives, and false 
negatives. Accuracy, one of the key metrics, was calculated as the ratio 
of correctly predicted observations to the total observations. While 
high accuracy indicates overall effectiveness, it might not always 
provide a complete picture, especially in imbalanced datasets. 
Therefore, other metrics were also considered, such as precision and 
sensitivity. Precision is crucial when minimizing false positives is a 

TABLE 1 Description of the features in the machine learning models.

Category Features

Assessing body weight Body weight (kg), height (m)

Understanding dietary patterns
Dietary habits assessed using FFQ* include food consumption patterns (never, daily, weekly, monthly), daily consumption (cups) 

for specific items, and food preferences (do not like, like, like a lot) for various food items.

Fast food consumption
Frequency of consuming fast-food items (never, 1–2 times a month, less than four times a month, once a week, 2–4 times a week) 

for: burgers, fried chicken, fries, pizza, shawarma, chips, and noodles.

Lifestyle variables

Moderate physical activity: Do you do moderate physical activity (activities that take moderate physical effort and make 

you breathe somewhat harder than normal) at least 150 to 300 min per week? “No” or “Yes.”

Vigorous physical activity: Do you do vigorous physical activity (activities include heavy lifting, digging, aerobics, or fast 

bicycling, etc.) at least 75–150 min per week? “No” or “Yes.”

Combination of moderate and vigorous physical activity: Do you do both moderate physical activities less than 150 min, and 

vigorous activity, less than 75 min per week? “No” or “Yes.”

Eating habits Regular lunch, regular dinner, daily breakfast, breakfast on the weekend, eating speed, and drink water

Sociodemographic variables Gender, age, education level, income level, marital status, and nationality

Food allergy
Include reactions to peanuts, tree nuts (such as almonds, walnuts, and cashews), milk, eggs, wheat, soy, and fish, or any specific 

food.

*FFQ, food frequency questionnaire.
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priority, while sensitivity (or recall) is vital for correctly identifying as 
many true positives as possible. In the context of the current study, 
ensuring that the model accurately identifies obese individuals 
(precision) while also capturing as many cases as possible (recall) 
was essential.

To balance the trade-off between sensitivity and recall, the 
F1-score was used to combine the two metrics. Given that 
different scenarios might require a stronger emphasis on either 
precision or recall, the Fβ score with β set at 0.5 was implemented, 
prioritizing precision slightly more than recall. Additionally, the 
Matthews correlation coefficient (MCC) was computed, offering 
a balanced measure of classification performance even in 
imbalanced datasets. MCC ranges from −1 to 1, where 1 indicates 
perfect prediction, 0 indicates random performance, and −1 
indicates total disagreement between prediction and observation.

The MCC is defined as:

 ( )( )( )( )
× − ×

=
+ + + +

TP TN FP FNMCC
TP FP TP FN TN FP TN FN

where TP, TN, FP, and FN represent true positives, true negatives, 
false positives, and false negatives, respectively.

Unlike accuracy, MCC considers all four confusion matrix 
categories and is thus considered a robust metric for evaluating binary 
and multiclass classification tasks, especially when the data are 
imbalanced (35).

Finally, the area under the receiver operating characteristic (ROC) 
curve, or AUC, was used to measure the model’s ability to distinguish 
between classes. AUC values range from 0.5 to 1, with higher values 
indicating greater discriminatory power. This metric is especially 
useful in understanding how well our model can differentiate between 
different weight statuses.

3 Results

3.1 Descriptive analysis

Table 3 presents an extensive analysis of the distribution of weight 
groups across various sociodemographic, lifestyle, and eating habit 
factors, revealing significant correlations among them. Each factor’s 
influence on weight status (underweight, healthy, overweight, or 
obese) is reflected in the percentages below and highlighted by the Χ2 
(p-value), indicating statistical significance.

Individuals from low-income families show a higher prevalence 
of obesity (30.4%) compared to being underweight (23.2%). 
Conversely, those with high family incomes are more likely to 
be underweight (36.5%) and less likely to be obese (14.5%). This trend, 
noticeable by a significant (Χ2 = 74.4, p = 0.001), suggests a strong 
correlation between income levels and weight status. It highlights how 
economic factors can influence dietary choices and lifestyle habits, 
ultimately affecting weight. The impact of marital status is also 
noteworthy. Among single individuals, the distribution across weight 
statuses is relatively even, with a slight disposition toward being 
underweight (26.6%). In contrast, married individuals exhibited a 
significantly higher rate of obesity (76.9%). This difference, confirmed 
by a high (Χ2 = 560.1, p = 0.001), suggests the potential influence of 
marital life on lifestyle choices that affect weight, such as diet and 
physical activity.

Regarding living status, those residing with family have an even 
distribution across weight statuses. In comparison, individuals living 
with roommates show higher percentages of obesity. This observation 
is statistically significant (Χ2  = 49.4, p  = 0.001) and may reflect 
differences in dietary habits and social influences on eating behaviors 
in different living arrangements.

Students are more likely to be underweight or have a normal 
weight, while individuals with a bachelor’s degree tend to 
be  overweight or obese. This pattern (Χ2  = 72.3, p = 0.001) could 
be  attributed to post-education lifestyle changes, including work-
related sedentary behavior and altered eating habits.

Interestingly, smoking habits do not show a significant correlation 
with weight status (Χ2 = 0.7, p = 0.415), suggesting that factors other 
than smoking are more influential in determining weight. On the 
other hand, physical activity levels have a noticeable effect. Active 
individuals are more likely to be overweight or obese, while inactive 
individuals tend toward a normal weight (Χ2 = 75.2, p = 0.001). This 
suggests that while physical activity is crucial for health, it is not the 
sole determinant of weight status and must be balanced with other 
factors such as diet. Sleep patterns contribute significantly to weight 
status. Individuals getting 6–8 h of sleep show a balanced weight 
distribution, whereas those sleeping less than 5 h are more prone to 
obesity (Χ2 = 17.6, p = 0.001). This finding emphasizes the importance 
of adequate sleep in maintaining a healthy weight and suggests that 
sleep deprivation may lead to lifestyle choices that promote obesity.

TABLE 2 Hyperparameter optimization of machine learning models.

ML models Hyperparameters Value

SVM

Kernel type ‘rbf ’

Regularization parameter (C) 1.0

Kernel-specific parameters (γ) ‘scale’

RF

Number of decision trees (n_

estimators)
100

Maximum depth of trees (max_

depth)
10

Number of features to consider for 

each split (max_features)
‘auto’

LG

Regularization strength (C) 1.0

Penalty type ‘l2’

Solver algorithms ‘lbfgs’

GB

Learning rate (η) 0.1

Number of boosting stages (n_

estimators)
100

Maximum depth of individual trees 

(max_depth)
3

Subsample fraction (subsample) 1.0

DT

Maximum depth of the tree (max_

depth)
10

Minimum samples required to split 

(min_samples_split)
2

Minimum samples required at a leaf 

node (min_samples_leaf)
1
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Food allergies are significantly associated with weight status, 
where the absence of allergies correlates with a higher percentage of 
obesity (Χ2  = 80.7, p  = 0.001). This might be  due to dietary 

restrictions in individuals with food allergies, resulting in different 
food choices that affect weight. Meal regularity also influences 
weight status; irregular patterns in lunch and dinner are associated 

TABLE 3 Percentage distribution of weight status by sociodemographic, lifestyle, and eating habits.

Variable Categories Underweight
n (%)

Normal
n (%)

Overweight
n (%)

Obese
n (%)

Χ2 (P-value)

Family income Low 406 (23.2) 357 (20.4) 455 (26) 531 (30.4)

74.4**Moderate 908 (22.2) 1,070 (26.2) 1,048 (25.6) 1,060 (25.9)

High 459 (36.5) 346 (27.5) 270 (21.5) 182 (14.5)

Marital status Single 1772 (26.6) 1726 (25.9) 1722 (25.8) 1,444 (21.7)
560.1**

Married 1 (0.2) 47 (11) 51 (11.9) 329 (76.9)

Living status With family 1743 (25.6) 1,681 (24.7) 1,693 (24.9) 1,682 (24.7)
49.4**

With a Roommate 30 (10.2) 92 (31.4) 80 (27.3) 91 (31.1)

Academic level Student 1,518 (27.1) 1,447 (25.8) 1,357 (24.2) 1,288 (23)
72.3**

Bachelor’s degree 255 (17.2) 326 (22) 416 (28.1) 485 (32.7)

Smoking No 1,677 (25.2) 1,647 (24.7) 1,627 (24.4) 1708 (25.6)
0.7

Yes 96 (22.2) 126 (29.1) 146 (33.7) 65 (15)

Physical activity Active 1,190 (24.1) 1,087 (22) 1,324 (26.8) 1,335 (27)
75.2**

Inactive 583 (27) 686 (31.8) 449 (20.8) 438 (20.3)

Sleeping hours 6–8 h 1,196 (24.4) 1,342 (27.4) 1,250 (25.5) 1,109 (22.6)
17.6**

< 5 h 577 (26.3) 431 (19.6) 523 (23.8) 664 (30.3)

Food allergy No 1,314 (23.8) 1,382 (25) 1,186 (21.5) 1,642 (29.7)
80.7**

Yes 459 (29.3) 391 (24.9) 587 (37.4) 131 (8.4)

Regular lunch No 1,216 (24.4) 1,200 (24.1) 1,202 (24.2) 1,356 (27.3)
5.8*

Yes 557 (26.3) 573 (27.1) 571 (27) 417 (19.7)

Regular dinner No 519 (18.6) 772 (27.6) 737 (26.4) 765 (27.4)
42.2**

Yes 1,254 (29.2) 1,001 (23.3) 1,036 (24.1) 1,008 (23.4)

Daily breakfast Yes 1,014 (24.2) 1,094 (26.1) 1,030 (24.6) 1,046 (25)
3

No 759 (26.1) 679 (23.3) 743 (25.6) 727 (25)

Breakfast on the 

weekend

Yes 1,246 (24.9) 1,297 (25.9) 1,352 (27) 1,119 (22.3)
94.5**

No 527 (25.4) 476 (22.9) 421 (20.3) 654 (31.5)

Water quantity Normal 1,515 (29.9) 1,334 (26.3) 1,073 (21.2) 1,145 (22.6)
257.2**

A lot 258 (12.7) 439 (21.7) 700 (34.6) 628 (31)

Eating speed Normal 1,186 (27.9) 1,047 (24.6) 1,065 (25.1) 952 (22.4)
17.3**

Quick eater 587 (20.7) 726 (25.5) 708 (24.9) 821 (28.9)

Water drink Normal 940 (20.9) 1,179 (26.2) 1,285 (28.6) 1,093 (24.3)
74**

Low 833 (32.1) 594 (22.9) 488 (18.8) 680 (26.2)

Added salt Always 1,152 (31.5) 789 (21.6) 829 (22.7) 888 (24.3)

292.1**Sometimes 453 (21.1) 616 (28.7) 601 (28) 479 (22.3)

Rarely 168 (13.1) 368 (28.6) 343 (26.7) 406 (31.6)

Added sugar Always 520 (24.1) 509 (23.6) 570 (26.5) 555 (25.8)

9.5*Sometimes 826 (25.9) 796 (24.9) 764 (23.9) 808 (25.3)

Rarely 427 (24.5) 468 (26.8) 439 (25.2) 410 (23.5)

Added oil Always 514 (22.2) 449 (19.4) 702 (30.3) 655 (28.2)

348.4**Sometimes 638 (21.1) 831 (27.5) 750 (24.8) 805 (26.6)

Rarely 621 (35.5) 493 (28.2) 321 (18.4) 313 (17.9)

*Statistically significant: *p ≤ 0.05 and **p ≤ 0.001.
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with higher obesity rates (Χ2 = 5.8, p = 0.016 for lunch; Χ2 = 42.2, 
p = 0.001 for dinner). This highlights the role of consistent eating 
patterns in weight management. Water consumption habits and 
eating speed further contribute to the observed trends in weight 
status. Quick eating is also correlated with a higher likelihood of 
obesity (Χ2 = 17.3, p = 0.001), suggesting the importance of eating 
pace as a factor of weight control.

3.2 Machine learning analysis

The results in Table 4 demonstrate the effectiveness of various 
algorithms across the following three weight categories: underweight, 
overweight, and obese. The primary metrics for evaluation are 
accuracy, F1 score, and Matthews correlation coefficient (MCC), 
which provides a balanced view of each model’s performance.

Within the underweight category, the RF model demonstrates 
superior performance with the highest accuracy (94.6%), F1 score 
(0.92), and MCC (0.89). The SVM model also shows positive results, 
achieving an accuracy of 92.8%, an F1 score of 0.91, and an MCC of 
0.88, though it does not live up to the RF model. The GB, LR, and DT 
models exhibit varying levels of effectiveness, with LR performing the 
least effectively in comparison to RF and SVM. The Voting and 
Stacking models perform closely to RF, with Voting achieving an 

accuracy of 93.1% and an MCC of 0.90, while Stacking achieves an 
accuracy of 92.4% and an MCC of 0.88.

In the overweight category, the RF model maintains strong 
performance, leading in accuracy (90.3%) and MCC (0.87). However, 
the performance in the overweight category is lower than in the 
underweight and obese categories, where the RF model achieves 
higher accuracy. The performance gap between the RF and SVM 
models, which achieve an accuracy of 88.9% and an MCC of 0.85, is 
smaller compared to the underweight category. GB (accuracy of 
85.2%, MCC of 0.82) also performs well, though LR and DT remain 
less effective in this group. The Voting model performs well in the 
overweight category, achieving an accuracy of 89.4%, an F1 score of 
0.90, and an MCC of 0.86.

For the obese category, RF again performs best, achieving an 
accuracy of 96.8%, an F1 score of 0.96, and an MCC of 0.93. SVM 
shows strong performance with an accuracy of 95.3% and an MCC 
of 0.92, while GB also performs well with an accuracy of 92.7% 
and an MCC of 0.89. While LR and DT perform better in this 
category compared to the overweight group, they still fall short of 
the top models. LR achieves an accuracy of 79.2% with an MCC 
of 0.77, while DT scores an accuracy of 83.4% and an MCC 
of 0.80.

The RF model consistently exhibits the highest performance 
across all three groups for accuracy, F1 score, and MCC, 

TABLE 4 Machine learning performance analysis for the holistic personalized weight status prediction.

Model AUC Accuracy F1 Precision Recall MCC

Underweight

RF 0.950 94.6 0.92 0.93 0.91 0.89

SVM 0.931 92.8 0.91 0.9 0.92 0.88

GB 0.892 89.5 0.88 0.87 0.89 0.85

LR 0.761 76.5 0.76 0.75 0.78 0.72

DT 0.803 80.7 0.8 0.81 0.79 0.76

Voting 0.935 93.1 0.93 0.92 0.94 0.9

Stacking 0.928 92.4 0.91 0.9 0.92 0.88

Overweight

RF 0.945 90.3 0.9 0.89 0.91 0.87

SVM 0.922 88.9 0.89 0.88 0.9 0.85

GB 0.877 85.2 0.85 0.84 0.86 0.82

LR 0.743 74.1 0.74 0.73 0.75 0.7

DT 0.797 78.9 0.79 0.78 0.8 0.76

Voting 0.925 90.1 0.92 0.91 0.93 0.88

Stacking 0.913 89.4 0.9 0.89 0.91 0.86

Obesity

RF 0.971 96.8 0.96 0.97 0.95 0.93

SVM 0.957 95.3 0.95 0.94 0.96 0.92

GB 0.928 92.7 0.92 0.91 0.93 0.89

LR 0.799 79.2 0.8 0.79 0.81 0.77

DT 0.831 83.4 0.83 0.82 0.84 0.8

Voting 0.962 95.7 0.95 0.96 0.94 0.91

Stacking 0.959 95.4 0.94 0.93 0.95 0.9

https://doi.org/10.3389/fnut.2025.1574063
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Qasrawi et al. 10.3389/fnut.2025.1574063

Frontiers in Nutrition 08 frontiersin.org

demonstrating its robustness and suitability for weight status 
prediction across different categories. However, RF’s superiority 
varies among weight groups. While it is significantly ahead in the 
underweight group, in the overweight and obese categories, other 
models such as Stacking, Voting, and GB perform better. This 
highlights the importance of model selection based on specific 
application needs in predictive analytics.

3.3 AUC comparison

The AUC results, shown in Figures 1a–c, illustrate how well the 
models perform across different weight categories. In the underweight 
group (Figure  1a), the RF model leads with an AUC of 0.95, 
demonstrating strong classification ability. The SVM follows closely 
with an AUC of 0.931, also showing good performance, though 
slightly behind RF. Other models, such as GB and the ensemble 

methods (Voting and Stacking), perform reasonably well but fall 
behind RF and SVM. Logistic regression (LR) and decision tree (DT) 
models show the weakest performance in this category.

In the overweight group (Figure 1b), the RF model continues to 
perform best, with an AUC of 0.945. However, the difference between 
RF and SVM (AUC = 0.922) is smaller than in the underweight group. 
The GB model, while still behind RF and SVM, performs moderately 
well with an AUC of 0.877. Voting (AUC = 0.925) also performs better 
than GB, while DT and LR remain less effective in classifying 
overweight cases.

For the obese group (Figure 1c), RF once again leads with an AUC 
of 0.971, the highest among all categories. The SVM and GB models 
show solid performance, with AUCs of 0.957 and 0.928, respectively. 
Ensemble models such as Voting (AUC = 0.962) and Stacking 
(AUC = 0.959) show competitive results, closely following SVM. DT 
and LR improve their performance in this group, but still lag behind 
the top models.

FIGURE 1

ML algorithms AUC performance analysis of: (a) underweight, (b) overweight models, and (c) obesity.
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The RF model consistently shows the highest AUC across all 
categories, indicating its strong classification performance. Other 
models, such as SVM and ensemble methods, show more competitive 
results in the overweight and obese categories, suggesting that the best 
model can vary depending on the weight group being analyzed. These 
findings highlight the importance of selecting the appropriate model 
based on the specific context of the data.

3.4 Features importance

The results in Figure 2 illustrate RF feature importance ranking 
for the underweight, overweight, and obesity categories. Dietary 
preferences such as sweet snacks, juice consumption, and yogurt 
preference are top drivers of underweight status, alongside food smell 
and a tendency toward added salt. Milk consumption and preferences 
for salty snacks, soft drinks, and white bread also play a significant role 
in this category. Food appearance and preferences, unprocessed 
poultry preference, and Sawani preference are important. Additionally, 
water consumption, energy drinks, Arabian sweet preference, burger 
consumption, fries consumption, noodles preference, and dairy 
product preference are also significant factors.

In the overweight group, the quantity of food is the most crucial 
feature, highlighting the impact of portion sizes on weight. This is 
closely followed by added oil, which highlights the significance of 
cooking habits. Other important factors include food smell and 
physical activity, reflecting lifestyle influences. Preferences for salty 
snacks, sweet snacks, non-sugary food, noodles, legumes, vegetables, 
and breakfast on weekdays indicate specific eating patterns that are 
significant for predicting overweight status. Food appearance, 
shawarma preference, yogurt preference, burger consumption, food 
allergies, tomato preference, rice-based food preference, chronic 
illness, and food texture contribute to understanding dietary choices 
and their effects on weight.

On the other hand, personal life circumstances, such as the 
consumption of energy drinks and soft drinks, are also significant 
contributors to obesity. These are followed by food smell and energy 
drink preferences, reflecting dietary habits. The consumption of 
fried chicken, chips, milk, and coffee also emerges as significant, 
with yogurt preference, physical activity, vegetable preference, and 
added oil indicating specific dietary influences. Other important 
factors include juice consumption, breakfast habits and frequency, 
eating quantity, legume preference, fruit preference, and 
food allergies.

FIGURE 2

ML algorithms features importance analysis of: (a) underweight, (b) overweight, and (c) obesity, and the average importance of the top 20 variables 
ranked according to their level of causality in weight status.
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4 Discussion

This research aimed to develop an understanding of how different 
lifestyles and dietary behaviors impact weight status, utilizing machine 
learning to explore the complex non-linear relationships between 
these factors and weight. Traditional statistical analysis methods are 
effective but often rely on assumptions of linearity and predefined 
relationships. In contrast, machine learning can detect intricate, 
non-linear patterns and interactions, offering a more insightful 
understanding of the combined effects of multiple predictors on 
weight status and stability.

The findings in Table  3 highlight the intricate interplay of 
sociodemographic factors, lifestyle choices, and eating habits with 
weight status. For example, the study reveals that low-income families 
tend to have higher obesity rates, while high-income families are more 
likely to be underweight. These results are consistent with research by 
Drewnowski and Specter (36), which identifies socio-economic status 
as a key determinant of dietary choices and health outcomes. 
Sociodemographic factors such as family structure and living 
arrangements significantly influence weight status, aligning with 
studies by Moore et al. that emphasize the role of social dynamics in 
health behaviors (1). These insights suggest that personalized 
interventions considering such factors could improve weight 
management strategies and overall health outcomes.

A key contribution of this study is addressing the multifactorial 
nature of weight status. While conventional analyses can highlight 
individual predictors, they fail to capture the interactions and 
cumulative effects of multiple variables. Our machine learning 
models, incorporating algorithms such as gradient boosting (GB), 
Random Forest (RF), logistic regression (LR), and ensemble methods 
(Voting, Stacking), overcome this limitation. It allows for a deeper, 
more accurate prediction of weight status by analyzing how different 
factors interact to influence weight.

The superior performance of the RF model across all weight 
categories, as demonstrated by accuracy, F1 score, and Matthew’s 
correlation coefficient (MCC), highlights its robustness and reliability. 
RF’s ability to consistently outperform other models makes it a strong 
candidate for weight status prediction in diverse populations. The 
relatively excellent performance of models such as GB and support 
vector machines (SVM) suggests that different algorithms may 
be better suited for specific weight groups. For example, while RF 
generally provides the most accurate results, GB and SVM show 
competitive performance in the overweight and obese groups, 
suggesting that model selection should consider the specific context 
of the analysis.

This study aligns with the broader trend toward personalized 
health solutions, emphasizing the need for individualized healthcare. 
The ability to choose the most appropriate model for a given 
population or condition ensures that interventions are more effective 
and tailored to specific needs. This personalized approach not only 
improves treatment outcomes but also enhances the overall efficiency 
of healthcare systems.

Comparing our findings with previous studies, it can be seen that 
RF consistently outperforms other algorithms in weight status 
prediction, aligning with the results of research by Elias et al. (37) and 
Rahman et al. (38), where RF demonstrated strong predictive power 
in obesity-related studies. While other models, such as SVM and GB, 
offer strong predictive capabilities, RF’s superior interpretability and 

consistency in performance make it particularly valuable for 
developing healthcare interventions. By capturing the interactions 
among various lifestyle, dietary, and sociodemographic factors, 
machine learning models provide a deeper understanding of the 
factors contributing to health outcomes, an essential step in advancing 
personalized medicine.

The Random Forest (RF) model demonstrated consistently 
high classification performance, as evidenced by area under the 
curve (AUC) metrics that were particularly strong in the 
underweight category, nearing values close to 1.0. This finding 
reaffirms the suitability of ensemble learning models such as RF for 
imbalanced classification tasks, where class-specific optimization 
is critical. Similar observations have been reported by Pérez-
Cruzado et  al., who showed that ensemble approaches 
outperformed traditional models in identifying obesity risk factors, 
especially when AUC was used as the primary performance metric 
(39). This emphasizes the need to tailor model selection based on 
the weight category being analyzed, as no single model uniformly 
excels across all categories.

Feature importance analysis within the RF model offered valuable 
insights into the varying determinants of weight status among 
students. These determinants were not only quantitatively distinct but 
also contextually shaped by socio-demographic, psychological, and 
dietary variables.

For underweight students, the model identified high consumption 
of specific dietary items, such as white bread, diet foods, and added 
salt, as a significant factor. More importantly, non-nutritional factors 
such as depressive symptoms, larger family size, and milk consumption 
habits at home also emerged as strong predictors. These findings are 
consistent with the study of Güvenç and Bulut, who highlighted how 
emotional wellbeing and family dynamics significantly impact 
adolescent nutritional status (40). Similarly, Blaine established that 
depression can lead to weight loss due to appetite suppression, 
demonstrating that mental health plays a crucial role at both ends of 
the weight spectrum (41).

In the overweight group, different variables took precedence. 
Cooking habits, particularly the use of added oils, as well as meal 
volume, income level, and hydration (water consumption), were 
influential. These results align with Alakaam et al., who found that 
cultural food preparation methods, such as frying and excessive oil 
use, contributed to increased body weight in diverse populations (42). 
Moreover, the association between low water intake and increased 
caloric density has been documented as a contributing factor in 
weight gain, supporting our model’s outputs (43).

Among students classified as obese, the strongest predictors were 
frequent consumption of energy drinks and sweetened beverages, 
along with sensitivity to the sensory appeal of food, such as smell, 
appearance, and taste. This aligns with studies by Puhl et al., who 
showed that obese individuals exhibit heightened neural responses to 
food-related cues, especially those with strong sensory attributes (44). 
Similarly, Azagba et al. found a positive correlation between high 
school students’ BMI and their frequency of energy drink 
consumption, emphasizing the obesogenic potential of these 
beverages (45).

Furthermore, our findings on income and food choices showed 
that the “food insecurity-obesity paradox” is consistent with the 
findings by Dinour et al. (46), where limited resources lead to the 
selection of inexpensive, calorie-dense foods, increasing obesity risk. 
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This reinforces the idea that economic context plays a pivotal role in 
shaping dietary behavior and weight outcomes.

The RF model’s superior performance in this study, reflected in its 
higher accuracy and feature importance rankings, solidifies its role as 
a powerful tool for predicting weight status, as shown in Figure 2b. Its 
ability to handle a diverse range of predictors, along with its clear 
feature importance rankings, makes it especially suitable for 
this analysis.

While other models, such as support vector machines (SVM), 
gradient boosting, and ensemble methods, performed well, the RF 
model consistently outperformed them in terms of accuracy and 
interpretability. For instance, although SVM and gradient boosting 
showed competitive performance in terms of accuracy, they lacked the 
intuitive feature importance insights offered by RF. This interpretability 
is crucial for understanding the impact of dietary habits and 
consumption patterns on weight status. The RF model, due to its 
balance of accuracy and interpretability, was the most appropriate 
choice for this study. Regardless, each model has its place depending 
on the context, and other models may provide valuable predictive 
capabilities in different applications.

5 Study limitations

This study explored how diet, lifestyle, and background factors 
relate to weight status among female university students in Palestine 
and the UAE. Using machine learning, we identified unique patterns 
for underweight, overweight, and obesity that traditional methods 
might miss. While tools such as SMOTE improved model balance, 
they may have introduced data that does not fully reflect real life. Self-
reported answers also carry the risk of recall bias. Since the study is 
cross-sectional, we  cannot say what causes what. Future research 
should include things such as hormones, menstrual health, and 
genetics to better understand what drives weight differences and help 
create more personalized support for young women.

6 Conclusion

This study showcased the prowess of machine learning models as 
statistical tools in identifying the interaction between the complex, 
interconnected variables of weight status. Factors, including 
depression severity and family income, were prominent components 
of the overweight variable set. Marital status and food allergies were 
key for the obese group, and bread and diet food preferences were the 
most notable for the underweight. Eating quantity had an impact that 
varied by weight group. Moreover, factors including food smell and 
milk consumption were important all across, while others, including 
energy drink consumption and added oil, varied more. Psychological 
elements such as depression and family-related details, such as the 
number of people in the household, were not only part of our data but 
also significantly associated with being underweight.

Based on our findings, it is clear that universities can play a 
stronger role in supporting students’ health. Providing practical 
education on eating habits, physical activity, and sleep can make a 
significant difference. Creating a campus environment where healthy 
food is both available and affordable is also key. Personalized support 
through counseling, along with tools to help spot students who may 

be  at risk, can ensure timely help and promote healthier 
lifestyles overall.

The findings of this study indicate the need for future research that 
focuses on developing healthier weight management strategies, with 
a particular emphasis on obesity management, reversibility, 
and prevention.
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