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D-Psicose (DPS) serves as an optimal sucrose substitute, providing only 0.3% 
of sucrose’s energy content, while exhibiting anti-inflammatory properties and 
inhibiting lipid synthesis. However, its efficacy in managing non-alcoholic fatty liver 
disease (NAFLD) remains unclear. This study employed network pharmacology 
and molecular docking to identify potential DPS targets for NAFLD treatment. A 
high-fat diet was used to induce a NAFLD mouse model, with DPS administered in 
drinking water at 5% (high dose DPS group, DPSH group) and 2.5% (low dose DPS 
group, DPSL group) concentrations. After 12 weeks, blood lipid levels, liver lipid 
deposition, and inflammation were evaluated to assess the therapeutic effects of 
DPS. To explore its underlying mechanisms, colon contents 16S rRNA sequencing 
and serum untargeted metabolomics were performed. Results indicated that DPS 
significantly reduced lipid accumulation and inflammatory damage in the livers 
of NAFLD mice, improving both blood lipid profiles and oxidative stress. Network 
pharmacology analysis revealed that DPS primarily targets pathways associated with 
inflammation and oxidative stress, while molecular docking suggested its potential 
to inhibit the NF-κB pathway activation and the expression of the receptor for 
advanced glycation end-products (RAGE), findings corroborated by Western blotting. 
Additionally, gut microbiota and serum metabolomics analyses demonstrated that 
DPS improved microbiota composition by increasing the abundance of beneficial 
bacteria, such as Akkermansia, and restored serum metabolomic balance, enhancing 
anti-inflammatory and antioxidant metabolites like Tretinoin and Pyridoxamine. The 
non-targeted metabolomics results suggest that DPS is mediated by glutathione 
metabolism, arginine and proline metabolism, unsaturated fatty acid biosynthesis, 
and linoleic acid metabolism interferes with NAFLD progression. In conclusion, DPS 
may alleviate oxidative stress and lipid accumulation in NAFLD mice through the 
AGEs/RAGE/NF-κB pathway, while also ameliorating gut microbiota dysbiosis and 
serum metabolomic disturbances, fostering the production of anti-inflammatory 
and antioxidant metabolites.
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1 Introduction

D-Psicose (DPS), a ketohexose monosaccharide and epimer of 
D-fructose at the C-3 position, is found in trace amounts in wheat, itea 
plants, and processed cane and beet molasses, and can 
be bioengineered from fruit and vegetable waste (1, 2). With 70% of 
the sweetness of sucrose but only 0.3% of its caloric content, DPS 
presents an ideal sucrose alternative (3–5). It offers several health 
benefits, including anti-inflammatory, antioxidant, glucose and lipid 
metabolism regulation, and neuroprotective effects (6–8). Animal 
studies suggest DPS can inhibit liver fat-producing enzymes and 
intestinal α-glucosidase, potentially reducing body fat accumulation 
(9, 10). However, its therapeutic potential for non-alcoholic fatty liver 
disease (NAFLD) remains underexplored.

NAFLD affects approximately 25% of the global population and 
is a major contributor to cirrhosis and hepatocellular carcinoma (11, 
12). The disease progresses from steatosis, with or without mild 
inflammation, to non-alcoholic steatohepatitis (NASH), leading to 
significant necroinflammation and accelerated fibrosis compared to 
simple fatty liver (13–15). NAFLD is closely associated with metabolic 
syndrome, with type 2 diabetes significantly increasing the risk of 
cirrhosis and its complications (16–18). Currently, no specific 
treatments for NAFLD have been approved (13, 19–21). The recent 
FDA approval of Resmetirom (Rezdiffra™) in March 2024 marked a 
milestone as the first drug specifically indicated for non-cirrhotic 
NASH with moderate-to-advanced fibrosis (22). However, its clinical 
adoption faces notable limitations including diarrhea, nausea, and 
transient elevations in LDL cholesterol, posing risks for long-term use 
in metabolically compromised populations (23). Existing strategies 
emphasize the importance of lifestyle modifications and weight loss 
for both prevention and management (24–26). Leveraging DPS’s 
low-calorie and anti-inflammatory properties, network pharmacology, 
molecular docking, and an NAFLD mouse model were employed to 
investigate its therapeutic effects. Additionally, gut microbiota 16S 
rRNA sequencing and serum untargeted metabolomics were utilized 
to uncover the underlying mechanisms of DPS in NAFLD treatment, 
presenting a novel therapeutic approach.

2 Materials and methods

2.1 Network pharmacology and molecular 
docking analysis of DPS in the treatment of 
NAFLD

The DPS structure, obtained from the PubChem database, was 
imported into the SwissTarget Prediction and Superpred databases to 
predict potential targets. Searches were conducted in the OMIM1 and 
GeneCards2 databases using the keyword “Nonalcoholic fatty liver 
disease.” A Venn diagram was generated using the VennDiagram 
package in R Studio3 to display the overlapping potential targets of 
DPS for NAFLD treatment. The identified targets were imported into 
the STRING database, with “Homo sapiens” specified as the species. 

1 http://omim.org/

2 https://www.genecards.org/

3 https://www.rstudio.com/

The results were saved and imported into Cytoscape 3.10.0 for 
visualization, where the CytoHubba plugin was employed to rank the 
top 10 key targets by “Degree.”

The potential targets were uploaded to the DAVID database4 for 
GO functional enrichment and KEGG pathway analyses, applying a 
significance threshold of p < 0.05 to identify relevant signaling 
pathways associated with DPS treatment of NAFLD. The ggplot2 
package in R Studio was used to generate bar charts for the top 10 
signaling pathways in the biological process (BP), cellular component 
(CC), and molecular function (MF) GO enrichment categories. 
Additionally, the top 15 KEGG pathway results were visualized as a 
bubble chart.

The 3D structures of DPS active components were retrieved from 
the PubChem database as small molecule ligands. Core target proteins 
with high degree values in the PPI network were selected as receptor 
proteins, and their 3D structures were obtained from the PDB 
database.5 PyMOL software was utilized to prepare receptor proteins 
by adding hydrogen atoms, removing water molecules, and 
eliminating small molecule ligands. AutoDockTools was used to 
validate the molecular docking of key active components with core 
target proteins, and PyMOL was used for visualizing the results with 
enhanced activity.

2.2 Experimental animals and grouping

Eight-week-old male institute of cancer research (ICR) mice, 
purchased from Wukong Biotechnology (Nanjing, China), were 
housed at Jiangsu University’s Experimental Animal Center. The mice 
were maintained under controlled conditions (25°C, 50% relative 
humidity, 12 h light/dark cycle). They were randomly assigned to four 
groups: normal control (NC, n = 6), non-alcoholic fatty liver disease 
(NAFLD, n = 6), low-dose DPS (DPSL, n = 6), and high-dose DPS 
(DPSH, n = 6). The NC group received a standard diet, while the 
NAFLD, DPSL, and DPSH groups were fed a high-fat diet to induce 
NAFLD, following the method outlined by Sun et al. (27). The DPSL 
and DPSH groups received DPS in drinking water at concentrations 
of 2.5 and 5%, respectively, for 12 weeks. At the end of the treatment 
period, the mice were euthanized with an intraperitoneal injection of 
urethane (700 mg/kg; Sigma-Aldrich, St. Louis, MO, United States), 
and serum, liver, and colonic content were collected.

2.3 Analysis of serum biochemical markers

According to He  et  al. (28), kits from Nanjing Jiancheng 
Bioengineering Institute (Nanjing, China) were used to measure the 
concentrations and activities of alanine aminotransferase (ALT, C009-
2-1), aspartate aminotransferase (AST, C010-2-1), triglycerides (TG, 
A110-1-1), total cholesterol (TC, A111-1-1), low-density lipoprotein 
cholesterol (LDL-C, A113-1-1), high-density lipoprotein cholesterol 
(HDL-C, A112-1-1), malondialdehyde (MDA, A003-1-2), and 

4 https://david.ncifcrf.gov/

5 http://www.resb.org/
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superoxide dismutase (SOD, A001-3-2) in mouse serum. Testing 
procedures followed the kit manuals’ instructions.

2.4 Analysis of hepatic inflammatory factor 
expression

The expression levels of inflammatory factors in mouse liver, 
including TNF-α, IL-1β, IL-10, NLRP3, and Caspase-1 mRNA, were 
measured using the qRT-PCR assay, as outlined by He et al. (28). 
Reagents for the qRT-PCR assay were provided by Vazyme Biotech 
Co., Ltd. (Nanjing, China). Primer sequences are listed in 
Supplementary Table S1.

2.5 Western blotting assay

The expression of the inflammation-related factor RAGE and the 
phosphorylation level of NF-κB p65  in the mouse liver were 
determined via Western blotting, with experimental procedures 
detailed in Supplement S2.

2.6 Histological analysis of mouse liver 
tissue using HE and Oil Red O staining

Liver damage was assessed using H&E staining, while lipid 
deposition in the liver was evaluated with Oil Red O staining. The 
staining procedures are described in Supplement S3.

2.7 Analysis of gut microbiota 16S rRNA 
sequencing

The procedure for microbial 16S rRNA analysis of mouse colon 
contents can be found in Supplement S4. Genomic DNA was extracted 
from mouse colon microbiota using a genomic DNA extraction kit 
(TIANGEN, Beijing, China) for subsequent gut microbiota analysis, 
conducted by Wekemo Tech Group Co., Ltd. (Shenzhen, China). 
Bioinformatics analysis facilitated sequencing and species 
identification. The α-diversity (shannon) and β-diversity (unweighted 
unifrac and bray curtis) of the gut microbiota in mice were applied to 
evaluate microbial composition similarity or dissimilarity between 
groups. A clustering heatmap was used to investigate the impact of 
DPS on the gut microbiota.

2.8 Analysis of untargeted serum 
metabolomics

The untargeted metabolomics analysis of mouse serum was 
performed as follows: 120 μL of precooled 50% methanol was 
mixed with 20 μL of serum, incubated at room temperature for 
10 min, and stored overnight at −20°C. After centrifugation at 
4000 × g for 20 min, the supernatant was collected for untargeted 
metabolomics analysis. This analysis was conducted by Wekemo 
Tech Group Co., Ltd. (Shenzhen, China). PCA was used to 
illustrate the differences in serum metabolites across groups, while 

OPLS-DA provided the variable importance in projection (VIP) 
and significance values (p-value) for metabolite differences 
between groups. Metabolites were considered significant if 
VIP > 1.0 and p < 0.05 and were uploaded to the MetaboAnalyst 
6.0 platform for pathway analysis.

2.9 Statistical analysis

Data analysis was performed using SPSS 20.0 (SPSS, Chicago, IL, 
United States), with results presented as mean ± SD. One-way ANOVA 
and Tukey’s post hoc method was used to assess significant differences 
across groups, with p < 0.05 considered statistically significant. Graphs 
were generated using GraphPad Prism, the Bioincloud platform6, and 
R Studio.

3 Results

3.1 Network pharmacology analysis results 
of DPS in the treatment of NAFLD

The SwissTargetPrediction and Targets SUPPERD databases were 
utilized to identify 212 potential targets related to DPS, while 1929 
NAFLD-related targets were obtained from the GeneCards and 
OMIM databases (Figure 1A). Forty-one overlapping targets between 
DPS and NAFLD were identified as candidate genes for DPS treatment 
of NAFLD. These target genes were subsequently input into the 
STRING database to generate the protein–protein interaction (PPI) 
network (Figure  1B). A PPI network comprising 40 nodes 
(representing functional proteins) and 146 edges (depicting protein–
protein interactions) was constructed using Cytoscape software. The 
top 10 hub genes, ranked by degree, were HSP90AA1, HSP90AB1, 
STAT3, CASP3, and NFKB1 (Figure 1C). These hub genes are likely 
key targets for DPS in the treatment of NAFLD. GO enrichment 
analysis was performed using the DAVID database, revealing 145 
statistically significant GO terms. The analysis indicated that the DPS 
treatment targets were predominantly enriched in biological processes 
such as the inflammatory response, RNA polymerase II-mediated 
transcription regulation, gene expression enhancement, and 
lipopolysaccharide response. CCs were primarily enriched in the 
cytoplasm, nucleoplasm, cell surface, and plasma membrane. MFs of 
DPS targets were enriched in processes like identical protein binding, 
cannabinoid receptor activity, protein binding, and ubiquitin protein 
ligase binding (Figure 1D).

To further explore the mechanisms underlying DPS’s effects on 
NAFLD, KEGG pathway analysis of the DPS targets was performed 
using the DAVID database, identifying 56 statistically significant 
pathways. The top five pathways were Th17 cell differentiation, 
NOD-like receptor signaling, chemical carcinogenesis via receptor 
activation, lipid metabolism and atherosclerosis, and alcoholic liver 
disease (Figure  1E). These results suggest that DPS may exert its 
therapeutic effects by inhibiting inflammation and alleviating NAFLD 
symptoms through multiple pathways.

6 https://bioincloud.tech/
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3.2 The molecular docking results of DPS 
with key therapeutic targets for NAFLD

RAGE was selected as the receptor for molecular docking, based on 
its role as a hub target gene in the NF-κB pathway and its involvement in 

the AGE-RAGE signaling pathway, which is critical in diabetic 
complications. DPS was used as the ligand for molecular docking, with 
binding stability assessed by binding energy. A binding energy below 
−20.0 kJ/mol indicates strong molecular affinity with the protein. 
Molecular docking results showed that DPS forms three hydrogen bonds 

FIGURE 1

Using network pharmacology analysis to identify the targets of DPS in treating NAFLD. There were 41 target genes for DPS in treating NAFLD (A). These 
41 targets were input into the STRING database to obtain the PPI network (B). A PPI network consisting of 40 nodes (representing functional proteins) 
and 146 edges (representing interactions between proteins) was constructed using Cytoscape software, and the top 10 hub genes in the PPI network 
were identified based on “Degree” (C). Further, GO enrichment analysis of DPS treatment targets was performed using the DAVID database (D), and the 
KEGG signaling pathways of DPS treatment targets for NAFLD were predicted (E).
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with RAGE (GLY-48, VAL-58, and ARG-57) and the lowest binding 
energy of −20.50 kJ/mol (Figure 2A). Additionally, DPS and NF-κB 
formed five hydrogen bonds (ARG-174, THR-164, VAL-163, ARG-95, 

and GLN-162), with a binding energy of −23.01 kJ/mol (Figure 2B). 
These results suggest that DPS exhibits strong binding affinity with both 
NF-κB and RAGE.

FIGURE 2

Diagram of the docking model between DPS and key targets. The minimum binding energy between DPS and RAGE was less than −20.50 kJ/mol (A), 
and the minimum binding energy between DPS and NF-κB was less than −23.01 kJ/mol (B). These results indicate that DPS has a good binding ability 
with both NF-κB and RAGE.
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3.3 DPS reduced liver lipid accumulation 
and liver lesions in NAFLD mice

From week 6 onwards, the NAFLD group exhibited a significant 
increase in body weight compared to the NC group. No significant 
differences in body weight were observed between the NAFLD, DPSL, 
and DPSH groups during the experiment (p > 0.05) (Figure  3A). 
HE staining revealed a marked reduction in hepatocyte ballooning 
degeneration and necrosis in the DPSL and DPSH groups relative to 

the NAFLD group (Figures  3B–E). Oil Red O staining showed a 
significant reduction in hepatocyte fat deposition in the DPSL and 
DPSH groups (Figures 3F–I).

Compared to the NAFLD group, the DPSL and DPSH groups 
exhibited significantly lower serum levels of TC, TG, and LDL-C, 
while the DPSH group demonstrated a significant increase in HDL-C 
levels (p < 0.05) (Figures  4A–D). Oxidative stress in serum was 
notably diminished, as indicated by a significant increase in SOD 
activity and a marked decrease in MDA levels (p < 0.05) (Figures 4E,F).

FIGURE 3

Body weight of mice in the experiment (A). Liver damage in mice was observed using HE staining (B–E), and lipid deposition in the liver was assessed 
using Oil Red O staining (F–I). (B,F) The NC group; (C,G) The NAFLD group; (D,H) The DPSL group; (E,I) The DPSH group.
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qPCR analysis of liver tissue showed that DPS significantly 
reduced hepatic expression of inflammatory factors. The DPSL 
and DPSH groups exhibited lower mRNA levels of NLRP3, 
Caspase-1, and TNF-α compared to the NAFLD group, with IL-1β 

also significantly reduced in the DPSH group (p < 0.05). 
Furthermore, the DPSH group demonstrated a significant 
increase in hepatic IL-10 mRNA expression (p < 0.05) 
(Figures 4G–K).

FIGURE 4

Levels of lipid-related indicators in mouse serum: TC (A), TC (B), LDL (C), and HDL (D); levels of oxidative stress-related indicators in serum: SOD 
(E) and MDA (F); inflammatory factors in mouse liver: NLRP3 (G), Caspase-1 (H), IL-1β (I), TNF-α (J), and IL-10 (K). n = 6. *: p < 0.05; **: p < 0.01; ***: 
p < 0.001.
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3.4 DPS reduced RAGE expression and 
NF-κB p65 protein phosphorylation in the 
liver

RAGE, a receptor for advanced glycation end products (AGEs) 
and a novel pattern recognition receptor, plays a pivotal role in the 
pathogenesis of diseases such as diabetes, Alzheimer’s, and cancer. 
Western blotting results showed that the high-dose DPS (DPSH 
group) significantly reduced RAGE expression and NF-κB p65 protein 
phosphorylation in the liver of NAFLD mice (p < 0.05) (Figure 5).

3.5 DPS improves gut microbiota dysbiosis 
in NAFLD mice

A high dose of DPS significantly inhibited liver inflammation and 
oxidative stress in NAFLD mice. This study further investigates the 
underlying mechanism of high-dose DPS treatment for NAFLD using 
gut microbiota analysis (via 16S rRNA sequencing) and serum 
non-targeted metabolomics. α-diversity analysis (Shannon index) 
showed no significant differences in microbial diversity among the 
three groups of mice (Figure 6A). β-diversity analysis (PCoA scatter 
plot) revealed distinct separation and clustering of the three groups, 
with DPS samples more closely resembling the NC group than the 
NAFLD group, suggesting that DPS ameliorates gut microbiota 
dysbiosis in NAFLD mice (Figure 6B).

Further analysis at the phylum and genus levels assessed the 
effects of oral DPS on the gut microbiota in NAFLD mice. At the 
phylum level, the NAFLD group exhibited a significant increase in the 
abundance of Patescibacteria, Firmicutes, and Actinobacteria, coupled 
with a notable decrease in Bacteroidetes, Verrucomicrobia, and 
Deferribacteres compared to the NC group (p < 0.05). Following DPS 

treatment, the DPS group showed a marked reduction in 
Patescibacteria, Deferribacteres, Firmicutes, and Actinobacteria, 
alongside a significant increase in Bacteroidetes, Verrucomicrobia, 
and Proteobacteria, relative to the NAFLD group (p < 0.05) 
(Figure 6C).

At the genus level, the NAFLD group exhibited a significant 
increase in the abundance of Odoribacter and Mailhella, while 
Ligilactobacillus, Akkermansia, and Alistipes were significantly reduced 
compared to the NC group (p < 0.05). After DPS intervention, the 
DPS group showed a significant decrease in Odoribacter and Mailhella, 
with a significant increase in the abundance of Ligilactobacillus, 
Duncaniella, and Akkermansia compared to the NAFLD group 
(p < 0.05) (Figure 6D).

3.6 DPS significantly improved serum 
metabolomics disorders in NAFLD mice

The PCA plot revealed distinct differences in serum metabolomics 
among the three groups of mice. In both ESI + and ESI- modes, the 
NAFLD group samples formed distinct clusters, significantly separated 
from those of the NC and DPS groups. The DPS group samples closely 
resembled those of the NC group, indicating a significant restorative 
effect of DPS on serum metabolomic alterations in NAFLD mice 
(Figures 7A,B).

To identify differential metabolites, the OPLS-DA model was 
applied with criteria of VIP > 1 and p < 0.05 (Figures 7C,D). In the 
ESI + mode, 301 differential metabolites were identified between 
the NAFLD and DPS groups. Of these, 174 were highly expressed, 
and 127 were downregulated in the DPS group compared to the 
NAFLD group. In the ESI- mode, 255 differential metabolites were 
identified, with 93 highly expressed and 162 downregulated 

FIGURE 5

The expression of receptor for advanced glycation end products (RAGE) and the phosphorylation level of NF-κB P65 protein in mouse liver were 
detected using the Western blotting assay. n = 3. *: p < 0.05; **: p < 0.01.
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FIGURE 6

The gut microbiota of mice was analyzed using 16S rRNA amplicon sequencing. The α-diversity of shannon index (A), β-diversity with unweighted 
unifrac (B) and bray curtis (C) of the gut microbiota in mice are shown, respectively. (D,E) Displayed the differences in the gut microbiota at the species 
level and genus level among the three groups of mice using heat maps. n = 6.
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FIGURE 7 (CONTINUED)
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FIGURE 7

Untargeted metabolomics analysis of mouse serum. The PCA plot showed that samples from each group were significantly separated and clustered 
individually (A,B). Through OPLS-DA model analysis (C,D), differential metabolites were identified based on the screening criteria of VIP > 1 & p < 0.05 
(E,F). These metabolites were then input into the MetaboAnalyst 6.0 platform for enrichment analysis to obtain metabolic pathways (G,H). n = 6.
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(Figures 7E,F). Metabolic pathway enrichment analysis, performed 
using the MetaboAnalyst 6.0 platform, revealed involvement in 
pathways such as arginine biosynthesis, glutathione metabolism, 
arginine and proline metabolism, unsaturated fatty acid 
biosynthesis, propionate metabolism, alanine, aspartate and 
glutamate metabolism, and linoleic acid metabolism 
(Figures 7G,H).

3.7 Relationship between gut microbiota 
and serum metabolites

Pearson correlation analysis was conducted to explore the 
relationship between gut microbiota and serum metabolites in mice 
following DPS treatment, to further investigate the underlying 
mechanism of DPS in NAFLD. The results showed that serum levels 
of unsaturated fatty acids, specifically linoleic acid and eicosapentaenoic 
acid, were positively correlated with gut microbiota species such as 
UBA3263, Prevotella, Rikenella, and COE1 while showing a negative 
correlation with Schaedlerella and Acetatifactor. Additionally, serum 
uridine levels were positively associated with gut microbiota CAG_873 
and Paramuribaculum but negatively correlated with Merdisoma, 
Enterenecus, Dysosmobacter, and Lawsonibacter (Figure 8).

4 Discussion

NAFLD, a metabolic disorder characterized by excessive hepatic 
fat accumulation, is a major contributor to liver fibrosis and cancer 
(29–31). The accumulation of lipids in the liver plays a pivotal role in 
disease progression through oxidative stress and inflammation (32–
34). Furthermore, chronic inflammation resulting from endotoxins 
released into the bloodstream, due to the excessive proliferation of 
Gram-negative bacteria in the intestines, is a key factor in NAFLD 
progression (35, 36). Endotoxin levels in the blood can also serve as 
an indicator of NAFLD severity (37–39). The supplementation of anti-
inflammatory and antioxidant agents, including α-lipoic acid, vitamin 
E, and various plant-derived antioxidants, represents an effective 
therapeutic approach for treating NAFLD (40–42).

Network pharmacology analysis identified the novel pattern 
recognition receptor RAGE and the inflammation-related NF-κB 
signaling pathway as key players in NAFLD pathogenesis. Initially, 
RAGE was regarded primarily as a receptor for AGEs (43, 44), which 
are formed through the non-enzymatic glycation of free sugars such 
as glucose and galactose (45, 46). Elevated blood glucose in diabetic 
patients leads to a marked increase in AGEs, which are pivotal in the 
development of diabetic complications (44, 47, 48). Recent studies 
have expanded the role of RAGE as a novel pattern recognition 
receptor, capable of binding not only with AGEs but also with ligands 
such as HMGB1, S100, and Aβ (49–52). RAGE’s functions are 
implicated in diseases related to homeostasis, development, and 
inflammation, including diabetes, atherosclerosis, and Alzheimer’s 
disease (49, 53, 54). Moreover, RAGE signaling in tumor and immune 
cells can drive tumor progression, migration, and immune evasion, 
promoting cancer development (55–58).

DPS is a rare sugar found in fruits such as figs and raisins, and it 
has been approved as a safe food additive by the U.S. FDA and the 
European Union (59). Acute/subchronic toxicity tests show that even 

with high doses (4 g/kg body weight/day) consumed over a long 
period (90 days), no significant organ damage or blood biochemical 
abnormalities were observed (60). Additionally, only about 30% of 
DPS is absorbed in the intestines, with the rest being fermented by 
intestinal flora (61). Its low-calorie characteristic (0.4 kcal/g) helps 
prevent exacerbation of NAFLD due to excess calorie intake (62). 
Compared to other sugar alcohols like erythritol, DPS has better 
gastrointestinal tolerance, and even daily intake of high doses of DPS 
(≤30 g/day) does not cause noticeable bloating or diarrhea, making it 
an ideal sugar substitute for individuals with obesity and diabetes (7).

Our study reveals that DPS significantly improves serum lipid 
profiles in HFD-induced NAFLD mice. These findings suggest that 
DPS exerts systemic metabolic benefits beyond its direct hepatic 
effects, potentially through multi-target modulation of cholesterol 
homeostasis. The AGEs/RAGE/NF-κB axis inhibition by DPS may 
restore hepatic LDL receptor (LDLR) functionality. However, the 
mechanism of DPS regulation of blood lipid metabolism still needs to 
be further studied.

In NAFLD, excessive lipid peroxides in the liver not only induce 
inflammation but also foster the formation of AGEs (63). Upon 
binding to RAGE, AGEs initiate intracellular signaling that generates 
reactive oxygen species, which can damage hepatocytes (44, 64–66). 
Recent studies suggest that activation of the AGEs/RAGE/NF-κB 
pathway plays a significant role in the complications of type 2 diabetes 
(50, 67–69). Inhibiting the RAGE and NF-κB signaling pathways may 
provide therapeutic benefits in preventing and treating diabetes 
complications (67, 70, 71).

Molecular docking analysis demonstrated that DPS effectively 
binds to both NF-κB p65 and RAGE proteins, significantly inhibiting 
the activation of both the NF-κB and AGEs/RAGE pathways. Western 
blot assays confirmed that DPS significantly reduces RAGE expression 
and NF-κB p65 protein phosphorylation in the livers of NAFLD mice. 
These findings suggest that DPS may alleviate inflammation and liver 
damage in NAFLD by modulating the AGEs/RAGE/NF-κB pathway.

Notably, our data reveal that DPS administration significantly 
attenuated hepatic MDA accumulation while enhancing SOD activity, 
suggesting its potent capacity to counteract the redox imbalance 
characteristic of NAFLD progression. Mounting evidence implicates 
AGEs as critical mediators in NAFLD pathogenesis, where their 
interaction with RAGE not only perpetuates inflammatory cascades 
via NF-κB activation but also directly amplifies oxidative damage 
through NADPH oxidase-driven ROS generation (72, 73). Our 
findings align with these mechanisms, as DPS treatment effectively 
suppressed RAGE overexpression and downstream NF-κB 
phosphorylation. This dual modulation likely disrupts the self-
reinforcing cycle between AGEs accumulation and oxidative stress – a 
phenomenon particularly relevant in lipid-laden hepatocytes where 
β-oxidation overload exacerbates mitochondrial ROS production.

Furthermore, the antioxidant effects of DPS may synergize with 
its anti-inflammatory actions. NF-κB activation stimulates pro-oxidant 
enzymes while suppressing antioxidant genes, creating a pathogenic 
feedback loop. DPS-mediated NF-κB inhibition could therefore break 
this cycle. Such coordinated modulation of oxidative-inflammatory 
crosstalk positions DPS as a promising multi-target agent for 
NAFLD management.

Han et al. (74) demonstrated that DPS modulates gut microbiota 
and promotes the production of beneficial metabolites, such as 
short-chain fatty acids (SCFAs), while also alleviating diabetes and 
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obesity in experimental animals (75). Through 16S rRNA 
sequencing, oral DPS administration was found to notably increase 
the abundance of beneficial gut bacteria, including Akkermansia 
and Duncaniella, in NAFLD mice, which are associated with SCFA 
production (76, 77). Furthermore, DPS enhanced the abundance of 
Ligilactobacillus, which plays a role in inhibiting liver fat 
accumulation and hyperlipidemia (78, 79). Significant 
improvements were also observed in oxidative stress and blood 

lipid levels in NAFLD mice. These findings suggest that DPS exerts 
therapeutic effects on NAFLD by reshaping gut microbiota and 
elevating beneficial metabolites like SCFAs.

Addressing gut dysbiosis represents an innovative approach to 
NAFLD management (80, 81). Both Akkermansia and Duncaniella 
contribute to NAFLD modulation by influencing gut and liver 
functions. Akkermansia reduces TLR2 expression and macrophage 
activation (82), while Duncaniella regulates the production of 

FIGURE 8

Pearson correlation analysis of the relationship between gut microbiota and serum metabolites. (A) ESI+ mode; (B) ESI− mode. n = 6.
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3,7-dihydroxy-12-oxocholanoic acid, inhibiting hepatic 
gluconeogenesis and lipid metabolism (83).

Untargeted metabolomics analysis further revealed that DPS 
significantly alters the serum metabolome in NAFLD mice, boosting 
the levels of anti-inflammatory and antioxidant metabolites. Notably, 
tretinoin, a bioactive metabolite of vitamin A, is found at markedly 
lower concentrations in the serum of patients with NAFLD compared 
to healthy controls (84). Tretinoin promotes the reduction of fat 
deposition and ameliorates NAFLD symptoms by enhancing fatty acid 
β-oxidation in the liver (85). Additionally, it may enhance liver 
antioxidant capacity via the Sirt1 pathway, thereby mitigating high-fat 
diet-induced liver steatosis (86). These findings suggest that DPS 
treatment elevates serum tretinoin levels in NAFLD mice, providing a 
potential mechanism for its therapeutic action in NAFLD. Pyridoxamine, 
a derivative of vitamin B6, is critical for preventing multiple diseases 
when deficient, although its role in metabolic syndrome remains 
underexplored. Patients with NAFLD exhibit significantly lower serum 
pyridoxamine levels than healthy individuals (87). Pyridoxamine 
prevents AGE formation (88), improves lipid metabolism in NAFLD 
rats (89), and reduces hepatic lipid peroxidation and inflammation (90). 
Our data indicate that oral DPS administration significantly increases 
serum pyridoxamine concentrations in NAFLD mice, suggesting that 
this elevation may suppress AGEs-RAGE pathway activation, thereby 
mitigating inflammation and oxidative stress in NAFLD.

Statins regulate blood lipids and exert anti-inflammatory effects 
by inhibiting mevalonic acid synthesis in the liver and activating 
hepatic stellate cells, thereby preventing the progression of liver 
fibrosis (91–93). In this study, DPS also significantly reduced serum 
mevalonic acid levels in NAFLD mice, suggesting that DPS may 
regulate blood lipids and mitigate inflammatory liver damage via the 
mevalonic acid synthesis pathway.

The study further identified increased levels of eicosapentaenoic acid 
(EPA) and linoleic acid in DPS-treated mice, with a significant positive 
correlation between these unsaturated fatty acids and the relative 
abundance of Duncaniella. Clinical studies have shown that elevated EPA 
concentrations in the serum of patients with cirrhosis are associated with 
a reduced risk of progression to liver cancer (94). EPA exhibits potent 
anti-inflammatory and antioxidant properties, which can significantly 
prevent liver cell degeneration and fibrosis in patients with NAFLD (95). 
Linoleic acid, a gut microbial metabolite, inhibits the activation of the 
TGF-β signaling pathway in hepatic stellate cells, thus preventing liver 
fibrosis progression (18). These findings suggest that DPS significantly 
increases serum linoleic acid levels in NAFLD mice, pointing to a 
potential mechanism underlying DPS’s therapeutic effects on NAFLD.

5 Conclusion

Our results indicate that oral DPS administration effectively 
regulates blood lipids in NAFLD mice and ameliorates inflammation 
and oxidative stress in the liver. The therapeutic action of DPS in 
NAFLD likely involves the modulation of gut microbiota and the 
enhancement of anti-inflammatory and antioxidant metabolites in 
the serum.

However, we believe that the biggest obstacle for DPS from the 
laboratory to the market is its high production cost, which is more 
than 2–3 times the cost of alternative sweeteners such as erythritol and 
steviol glycosides. We think that DPS therapy might be more suitable 

for prioritization in high-risk populations for NAFLD (such as 
pre-diabetic patients) rather than the general healthy population, in 
order to reduce medical costs. This is because the cost of using DPS 
therapy to prevent the progression of NAFLD is lower compared to 
the treatment expenses after NAFLD progresses to NASH.
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