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Background: High red meat consumption has been implicated in breast cancer

development, yet comprehensive global burden assessments and health system

relationships remain limited.

Methods: We analyzed breast cancer mortality and disability-adjusted

life years (DALYs) using Global Burden of Disease 2021 data across 204

countries. Age-period-cohort analysis, decomposition analysis, health inequality

assessment, frontier analysis, and correlation analysis with healthcare workforce

density were employed. Machine learning models (ARIMA, Prophet) provided

projections to 2050.

Results: Despite declining global age-standardized mortality rates (APC:

−0.772%), absolute breast cancer deaths increased from 45,074 (1990) to

81,506 (2021), with DALYs rising from 1.4 to 2.5 million. Profound regional

disparities emerged: high-income regions showed declining trends (Western

Europe APC:−1.736%) while developing regions experienced increasing burdens

(North Africa/Middle East APC: +2.026%). Decomposition analysis revealed

population growth (100.266%) and aging (34.86%) as primary drivers, partially

o�set by epidemiological improvements (−35.127%). Turkey exhibited the

largest mortality increase (APC: +3.924%) vs. Denmark’s greatest decline (APC:

−2.379%). Healthcare workforce analysis demonstrated strong initial correlations

between nursing/midwifery density and disease burden (r = 0.68, 1990)

that weakened substantially over time (r = 0.24, 2019), suggesting evolving

detection-prevention dynamics. Health inequality analysis showed declining

relative disparities (Concentration Index: 0.461–0.297) despite increasing

absolute gaps. Machine learning projections forecast continued burden

increases, with female deaths reaching 99,749 by 2050.

Conclusions: The global breast cancer burden associated with red

meat consumption presents a complex paradox of declining

age-standardized rates alongside rising absolute burden, with

pronounced inequalities between developed and developing nations.

The evolving relationship between healthcare workforce and disease

burden highlights shifting dynamics from detection-driven increases

to prevention-focused reductions. Strategic policy interventions

should prioritize nursing and physical therapy workforce investment in
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developing regions, implement age-specific prevention strategies for younger

populations (25–34 years), and establish context-specific dietary guidelines

that consider socioeconomic factors to e�ectively reduce global breast

cancer burden.

KEYWORDS

breast cancer, red meat consumption, Global Burden of Disease, health disparities,

healthcare workforce density

Introduction

Breast cancer remains one of the most significant public health

challenges worldwide, accounting for a substantial proportion of

cancer-related morbidity and mortality (1). As of 2021, breast

cancer burden has increased substantially, with notable disparities

in disease outcomes across different regions, genders, and socio-

demographic groups (2). Among the various modifiable risk

factors, dietary habits, particularly high red meat consumption,

have been identified as significant contributors to the burden of

breast cancer. Studies have shown a positive association between

red meat intake and breast cancer risk, particularly among women,

due to factors such as the generation of carcinogenic compounds

during high-temperature cooking and the presence of heme iron in

red meat (3). Recent meta-analyses have consistently demonstrated

that high red meat consumption is associated with increased

breast cancer risk, with studies showing a 9–25% increased risk

among women with the highest vs. lowest red meat intake

(4, 5). Furthermore, the Global Burden of Disease study has

identified high red meat intake as accounting for the highest

proportion of breast cancer disability-adjusted life years among

dietary risk factors (6). These factors underline the importance

of understanding the spatiotemporal trends and the influence of

socio-demographic factors on breast cancer burden globally.

The global burden of breast cancer has shown an overall

increasing trend over the past three decades, driven by factors

such as population growth, aging, and changes in epidemiological

patterns (7). However, age-standardized mortality rates (ASMR)

and disability-adjusted life years (DALYs) have declined in some

regions, particularly high-SDI countries, due to advancements

in healthcare and early detection programs. By contrast, low-

and middle-SDI regions have experienced rising burden trends,

often due to limited healthcare resources, late-stage diagnoses,

and increasing prevalence of modifiable risk factors such as

high red meat consumption (8). Recent studies have specifically

highlighted that the burden of breast cancer attributable to high

red meat consumption has increased substantially in low- and

middle-SDI regions, with deaths rising from 44,492 in 1990 to

79,956 in 2021 globally, while high-SDI regions showed declining

age-standardized mortality rates (9, 10). These divergent trends

highlight the critical need for tailored interventions and predictive

tools to address breast cancer burden globally.

While breast cancer predominantly affects women, the burden

among men is also increasing, albeit at a slower rate. Gender-

specific differences in incidence, mortality, and DALYs emphasize

the need for targeted prevention and treatment strategies (11).

Young women aged 25–34 years have shown the most significant

increase in DALYs, raising concerns about early exposure to

modifiable risk factors, including dietary habits (12, 13). This

trend is particularly concerning given that recent evidence suggests

the rising global burden of breast cancer in adult women aged

25–45 years associated with high red meat consumption, with

pronounced impacts especially in low and middle SDI regions

(9). Moreover, the growing burden among younger populations

underscores the importance of developing age-specific strategies

for breast cancer prevention, particularly in regions with limited

healthcare infrastructure.

Predicting the future burden of breast cancer is critical for

guiding public health policies and resource allocation. Traditional

forecasting methods, while useful, may overlook complex patterns

and interactions between risk factors. Machine learning models,

such as Prophet (14), ARIMA (15), TBATS (16), Elastic Net

(17), ETS (18), VAR (19), Holt-Winters (20), and Theta (21)

offer advanced analytical capabilities to capture non-linear

relationships and generate more accurate projections. Recent

studies have demonstrated the efficacy of thesemodels in predicting

disease trends, providing a robust foundation for evidence-based

policymaking (22). The application of machine learning in breast

cancer burden projections offers a novel and comprehensive

approach to addressing global disparities in disease outcomes.

This study aims to provide a comprehensive evaluation of

the global breast cancer burden attributable to high red meat

consumption, with a focus on spatiotemporal trends, gender-

and age-specific differences, and socio-demographic disparities.

Using data from the Global Burden of Disease (GBD) study, we

assessed the trends in mortality and DALYs from 1990 to 2021

and employed eight machine learning algorithms to project the

burden from 2022 to 2050. The results provide critical insights

into the dynamics of breast cancer burden and offer a robust

evidence base for developing targeted interventions and policies

to address modifiable risk factors and reduce health inequities

worldwide (23).

Materials and methods

Data source

This study utilized two authoritative data sources to analyze

and predict the global burden of breast cancer attributable to

high red meat consumption. The Global Burden of Disease Study

2021 (GBD 2021) database provided data on age-standardized rates
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(ASR) for breast cancer mortality and disability-adjusted life years

(DALYs) from 1990 to 2021 across 204 countries and territories,

encompassing 371 diseases and injuries and 88 risk factors (https://

ghdx.healthdata.org/gbd-2021) (24). Population data spanning

from 1990 to 2050 were retrieved from published literature (25).

The data selected from the GBD database included “Diet high in red

meat” as the risk factor and “Breast cancer” as the outcome. Two

metrics were analyzed: “Number,” representing absolute counts,

and “Rate,” representing the measure per 100,000 population. The

analysis focused on individuals aged 25 years and above, based on

data availability and the relevance of this demographic to disease

burden trends.

Risk factor definition

High red meat consumption was defined according to the

GBD 2021 comparative risk assessment framework. In the GBD

methodology, “diet high in red meat” refers to consumption levels

exceeding the theoretical minimum risk exposure level (TMREL)

of 0–200 g/day. This definition encompasses unprocessed red

meat from mammals including beef, pork, lamb, and goat, but

excludes processed meat products. The risk estimates are based

on systematic reviews and meta-analyses of observational studies

that examine the relationship between red meat consumption

and breast cancer risk. The GBD framework uses a continuous

exposure-response relationship derived from epidemiological

evidence to estimate the population attributable fraction for breast

cancer cases and deaths attributable to high red meat consumption

levels above the TMREL range.

Disease definition

Breast cancer was defined according to the GBD 2021

framework and international classification systems. It is categorized

under the first-level grouping of non-communicable diseases, the

second-level grouping of neoplasms, and the third-level grouping

of specific cancer types. For standardization and reproducibility,

breast cancer was identified using the International Classification

of Diseases codes: C50 in ICD-10 and 2C60 in ICD-11 (26, 27).

Age-period-cohort analysis

Age-period-cohort (APC) analysis was conducted to

disentangle the effects of age, time period, and birth cohort

on breast cancer mortality and DALYs trends. The analysis

employed a Poisson regression model with appropriate constraints

to address the inherent identifiability problem in APC models.

Age effects were examined across 5-year age groups from 25–29

to 95–99 years. Period effects were analyzed in 5-year intervals

from 1990–1994 to 2017–2021. Birth cohort effects were calculated

based on the central birth year of each cohort, spanning from

1897–1901 to 1992–1996. Relative risks (RR) with 95% confidence

intervals were calculated for each component, with the middle

categories serving as reference groups.

Decomposition analysis

Decomposition analysis was performed to quantify the

relative contributions of population growth, population aging,

and epidemiological changes to the observed trends in breast

cancer burden. The analysis followed the Das Gupta method,

decomposing the total change in deaths and DALYs between 1990

and 2021 into three components:

• Population growth effect: Changes attributable to increases in

population size.

• Population aging effect: Changes due to shifts in

age structure.

• Epidemiological effect: Changes in age-specific rates

independent of demographic factors.

The decomposition was stratified by gender, Socio-

Demographic Index (SDI) quintiles, and 21 Global Burden of

Disease regions to identify differential patterns across demographic

and geographic strata.

Socio-demographic index (SDI) analysis

Countries and territories were categorized into five SDI

quintiles (low, low-middle, middle, high-middle, and high)

based on income per capita, educational attainment, and total

fertility rate. Trend analysis was conducted to examine burden

patterns across SDI levels, with annual percentage changes (APCs)

calculated using joinpoint regression analysis. The relationship

between SDI and disease burden was assessed using Pearson

correlation coefficients for both 1990 and 2021.

Health inequality analysis

Health inequalities were quantified using two

complementary measures:

• Slope Index (SI): Measuring absolute inequality by calculating

the difference in disease burden between the highest and

lowest SDI quintiles

• Concentration Index (CI): Measuring relative inequality

by assessing the degree of socioeconomic concentration in

disease burden.

Both indices were calculated annually from 1990 to 2021, with

95% confidence intervals estimated using bootstrap methods with

1,000 replications.

Frontier analysis

Frontier analysis was performed to identify countries with

disease burden levels that deviated significantly from expectations

based on their socio-demographic development. A stochastic

frontier model was fitted using SDI as the primary predictor
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of expected breast cancer burden. Countries were ranked based

on the deviation between observed and frontier-predicted values,

with larger positive deviations indicating worse-than-expected

performance relative to socio-demographic status.

Machine learning modeling

To forecast the global breast cancer burden from 2022 to 2050,

eight machine learning algorithms were employed in a systematic

three-phase framework: data preparation, model construction, and

model evaluation.

During the data preparation phase, extensive preprocessing

and feature engineering were conducted to enhance predictive

performance. Time-series data from 1990 to 2021 and population

data from 1990 to 2050 were standardized for unit consistency to

eliminate dimensional inconsistencies. Specifically, this involved:

(1) unit standardization—converting all mortality and DALY

rates to consistent units (per 100,000 population) and ensuring

temporal consistency in reporting periods; (2) scale alignment—

adjusting population figures to consistent demographic units

(total population counts) to match the rate calculations; and

(3) temporal alignment—ensuring all time-series data points

correspond to the same calendar years and age groups for accurate

trend analysis. No statistical normalization techniques (such as

z-score standardization or min-max scaling) were applied to

preserve the original scale and clinical interpretability of the

epidemiological measures.

In the model construction phase, eight advanced time-

series and machine learning models were applied: Prophet,

ARIMA, TBATS, Elastic Net, ETS, VAR, Holt-Winters, and Theta.

Each model was selected based on its specific strengths and

underlying assumptions (Supplementary Table S15). Prophet, a

modern time-series forecasting model, was chosen for its ability

to automatically detect changepoints and handle missing values

through its logistic growth framework. ARIMA (Autoregressive

Integrated Moving Average), a classical statistical model, was

selected for its solid theoretical foundation and effectiveness

in modeling stationary time-series data. TBATS (Trigonometric

seasonality, Box-Cox transformation, ARMA errors, Trend and

Seasonal components) was included for its capability to handle

complex seasonal patterns and multiple seasonalities. Elastic Net,

a regularization technique, was chosen to address multicollinearity

among predictors while performing automatic feature selection.

ETS (Error-Trend-Seasonal) was selected for its simplicity and

efficiency in business forecasting applications. VAR (Vector

Autoregression) was included to capture dynamic relationships

between multiple variables. Holt-Winters exponential smoothing

was chosen for its proven effectiveness in handling time-series

with trend and seasonality. Finally, Theta method was selected for

its simplicity and stable performance in forecasting applications.

Each model was carefully tuned to optimize performance. For

example, the Prophet model, designed for strong seasonal patterns,

utilized a logistic growth framework with changepoints, while

the ARIMA model was optimized using automated parameter

selection and external covariates, such as population data. Similarly,

TBATS captured complex seasonality, Elastic Net addressed

multicollinearity among predictors, and VAR modeled dynamic

relationships between variables. Holt-Winters and Theta models,

known for their robust performance in time-series forecasting,

were also enhanced by introducing additive components and

constrained periodic growth rates. All models were evaluated using

cross-validation to ensure generalizability and accuracy.

The final model evaluation phase involved rigorous

performance assessment usingmultiplemetrics to comprehensively

evaluate predictive accuracy. These metrics included mean squared

error (MSE), mean absolute percentage error (MAPE), root mean

squared error (RMSE), symmetric mean absolute percentage error

(SMAPE), R-squared (R²), and mean absolute scaled error (MASE).

MSE measures the average squared differences between predicted

and actual values, with lower values indicating better model

performance. MAPE represents the mean absolute percentage

difference between predicted and actual values, providing a

scale-independent measure of prediction accuracy. RMSE is the

square root of MSE, offering interpretability in the same units

as the original data. SMAPE addresses the asymmetry issues in

MAPE by using the average of predicted and actual values in

the denominator. R² indicates the proportion of variance in the

dependent variable explained by the model, with values closer to 1

indicating better model fit. MASE compares the forecast accuracy

against a naive seasonal forecast, with values <1 indicating better

performance than the baseline model. Cross-validation was

implemented using a time-series approach, where data from 1990

to 2010 served as the training set, 2011 to 2021 as the validation

set, and 2022 to 2050 as the test set. This approach ensured the

robustness of both short-term and long-term predictions.

Human resources for health data

Data on human resources for health (HRH) were retrieved

from the GBD 2019 Health Workforce Collaborators, providing

density metrics (workers per 10,000 population) for 22 distinct

workforce categories across 204 countries and territories for 1990

and 2019. These categories encompassed the full spectrum of

healthcare providers, from physicians and nursing professionals

to allied health workers and traditional practitioners, enabling

comprehensive analysis of associations between healthcare

workforce density and breast cancer burden metrics.

Statistical analysis

In addition to machine learning predictions, several advanced

statistical methods were employed to interpret trends in breast

cancer burden. Estimated annual percentage change (EAPC) was

calculated using a linear regression model fitted to the natural

logarithm of ASRs over time, providing insights into temporal

trends. An age-period-cohort (APC) model was constructed using

a generalized linear framework to disentangle the effects of age,

period, and cohort on breast cancer burden. Decomposition

analysis quantified the contributions of population growth, aging,

and epidemiological changes to variations in burden, while

socio-demographic index (SDI) analysis explored the relationship

Frontiers inNutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2025.1576043
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Cai and Qian 10.3389/fnut.2025.1576043

between SDI and disease burden using LOESS smoothing and

Spearman’s rank correlation. Frontier analysis was conducted

using data envelopment analysis (DEA) to assess countries’

relative performance in health improvement. Health inequality

was analyzed using the Slope Index of Inequality (SII) and

the Concentration Index (CI) to evaluate absolute and relative

disparities, respectively.

Results

Global burden of breast cancer attributable
to high red meat consumption among
adults aged 25 and above, 1990–2021

The global burden of breast cancer among individuals aged 25

years and above showed a significant upward trend between 1990

and 2021 (Figure 1). As detailed in Supplementary Table S1, breast

cancer-related deaths in this population increased from 45,073.853

in 1990 to 81,506.227 in 2021. Age-standardized mortality rates

(ASMR) decreased from 1.169 per 100,000 population (95% UI:

0 to 2.498) in 1990 to 0.956 per 100,000 (95% UI: 0 to 2.058) in

2021, with an annual percentage change (APC) of −0.772% (95%

confidence interval [CI]:−0.819% to−0.726%).

Gender differences in mortality trends were also observed.

Breast cancer-related deaths among males rose from 581.902 in

1990 to 1,549.268 in 2021, accompanied by a slight increase in

ASMR, with an APC of 0.628% (95% CI: 0.529% to 0.727%).

Conversely, among females, deaths increased from 44,491.951 in

1990 to 79,956.959 in 2021, while ASMR decreased, with an APC of

−0.73% (95% CI:−0.779% to−0.682%).

Similarly, as shown in Supplementary Table S2, disability-

adjusted life years (DALYs) due to breast cancer among individuals

aged 25 years and above increased from 1,396,840.461 in 1990

to 2,451,718.64 (95% UI: −790.88 to 5,232,217.293) in 2021. The

age-standardized DALY rate decreased from 33.313 per 100,000

(95% UI: −0.01 to 71.677) in 1990 to 28.367 per 100,000 (95%

UI: −0.009 to 60.536) in 2021, with an APC of −0.649% (95% CI:

−0.697% to −0.601%). Gender-specific trends showed that male

DALYs rose from 17,119.079 in 1990 to 44,626.38 in 2021, with

an APC of 0.844% (95% CI: 0.737%−0.951%). In contrast, female

DALYs increased from 1,379,721.382 in 1990 to 2,407,092.26 in

2021, while the age-standardized rate declined, with an APC of

−0.653% (95% CI:−0.705% to−0.602%).

Socio-demographic index stratification of
breast cancer mortality and DALYs
attributable to high red meat intake: global
trends, 1990–2021

The burden of breast cancer varied substantially across different

Socio-Demographic Index (SDI) quintiles (Figure 1). From 1990 to

2021, ASMR decreased significantly in high-SDI regions, dropping

from 1.834 per 100,000 to 1.141 per 100,000, with an APC of

−1.626 (95% CI: −1.67 to −1.581) (Supplementary Table S1).

In contrast, low-middle SDI regions experienced an increase

in ASMR, with an APC of 1.55 (95% CI: 1.519–1.581). For

DALYs, high-SDI regions also demonstrated a marked decline,

with age-standardized rates dropping from 52.817 per 100,000 in

1990 to 33.073 in 2021, yielding an APC of −1.594 (95% CI:

−1.632 to −1.556) (Supplementary Table S2). In contrast, middle-

SDI and low-middle SDI regions saw increasing DALY rates,

with APCs of 0.262 (95% CI: 0.208–0.316) and 1.558 (95% CI:

1.526–1.591), respectively.

Regional variation in breast cancer burden
attributable to high red meat consumption:
a comprehensive analysis of 21 GBD
regions

Regional disparities in the burden of breast cancer were

evident from 1990 to 2021 (Figure 1). High-income regions

such as Western Europe and North America showed significant

reductions in ASMR, with APCs of −1.736 (95% CI: −1.785 to

−1.686) and −1.855 (95% CI: −1.913 to −1.797), respectively

(Supplementary Table S1). In contrast, regions such as North

Africa and the Middle East exhibited increasing ASMR, with

an APC of 2.026 (95% CI: 1.804–2.248). Similarly, for DALYs,

age-standardized rates declined substantially in high-income

North America, from 65.486 per 100,000 in 1990 to 37.348 in

2021, with an APC of −1.938 (95% CI: −2.000 to −1.875)

(Supplementary Table S2). However, South Asia and Southeast Asia

experienced rising DALY rates, with APCs of 1.236 (95% CI: 1.096–

1.376) and 1.119 (95% CI: 1.062–1.175), respectively.

Age-specific patterns of breast cancer
mortality and DALYs attributable to high red
meat intake: a three-decade global analysis

The burden of breast cancer demonstrated distinct patterns

across age groups between 1990 and 2021 (Figure 2). Among

women aged 25 years and above, overall mortality declined,

but notable differences emerged between age groups. The most

significant reduction in mortality occurred in the 40–44 age

group, with an APC of −0.815 (95% CI: −0.939 to −0.692)

(Supplementary Table S3). Older age groups, such as 75–79 years,

also showed marked declines, with an APC of −0.931 (95% CI:

−1.015 to −0.847). However, mortality rates increased in the

younger 25–29 age group, with an APC of 0.449 (95% CI: 0.347–

0.550), warranting further investigation.

In terms of DALYs, most age groups exhibited declines, though

the extent varied. The 50–54 age group experienced the largest

decrease in DALYs, with an APC of −0.750 (95% CI: −0.821 to

−0.678) (Supplementary Table S4). Older groups, such as 75–79

years and 80–84 years, also showed significant declines, with APCs

of−0.868 (95%CI:−0.950 to−0.785) and−0.846 (95%CI:−0.911

to−0.781), respectively. However, DALYs increased in younger age

groups, particularly among women aged 25–34 years. The 30–34

age group showed a notable increase, with an APC of 1.479 (95%

CI: 1.371–1.587).
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FIGURE 1

Regional comparison of age-standardized rates for breast cancer attributable to high red meat diet consumption: 1990 vs. 2021. (A)

Age-standardized death rates (per 100,000 population) for breast cancer attributable to high red meat diet consumption among females across 27

regions (Global, 5 SDI regions, and 21 GBD regions) in 1990 and 2021. Connected lines with arrows indicate the direction and magnitude of change

from 1990 to 2021, with red arrows representing increases and green arrows representing decreases. Regions are dynamically ordered by 2021

age-standardized rates, with Global shown first, followed by SDI regions and then 21 specific regions in ascending order of 2021 rates. Yellow circles

represent 1990 rates, and teal circles represent 2021 rates, with exact values labeled. (B) Age-standardized death rates (per 100,000 population) for

(Continued)
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FIGURE 1 (Continued)

breast cancer attributable to high red meat diet consumption among males across 27 regions (Global, 5 SDI regions, and 21 GBD regions) in 1990

and 2021. Connected lines with arrows indicate the direction and magnitude of change from 1990 to 2021, with red arrows representing increases

and green arrows representing decreases. Regions are dynamically ordered by 2021 age-standardized rates, with Global shown first, followed by SDI

regions and then 21 specific regions in ascending order of 2021 rates. Yellow circles represent 1990 rates, and teal circles represent 2021 rates, with

exact values labeled. (C) Age-standardized disability-adjusted life years (DALYs) rates (per 100,000 population) for breast cancer attributable to high

red meat diet consumption among females across 27 regions (Global, 5 SDI regions, and 21 GBD regions) in 1990 and 2021. Connected lines with

arrows indicate the direction and magnitude of change from 1990 to 2021, with red arrows representing increases and green arrows representing

decreases. Regions are dynamically ordered by 2021 age-standardized rates, with Global shown first, followed by SDI regions and then 21 specific

regions in ascending order of 2021 rates. Yellow circles represent 1990 rates, and teal circles represent 2021 rates, with exact values labeled. (D)

Age-standardized disability-adjusted life years (DALYs) rates (per 100,000 population) for breast cancer attributable to high red meat diet

consumption among males across 27 regions (Global, 5 SDI regions, and 21 GBD regions) in 1990 and 2021. Connected lines with arrows indicate

the direction and magnitude of change from 1990 to 2021, with red arrows representing increases and green arrows representing decreases. Regions

are dynamically ordered by 2021 age-standardized rates, with Global shown first, followed by SDI regions and then 21 specific regions in ascending

order of 2021 rates. Yellow circles represent 1990 rates, and teal circles represent 2021 rates, with exact values labeled.

For males, while breast cancer remains relatively rare, certain

age groups showed increasing burdens. For example, men aged

60–64 years exhibited an APC of 0.832 (95% CI: 0.685–0.980) for

mortality and 0.947 (95% CI: 0.791–1.104) for DALYs, highlighting

the need to address male breast cancer prevention and treatment.

Country-level analysis of breast cancer
burden attributable to high red meat
consumption: disparities across 204
countries and territories

Country-level analysis revealed pronounced heterogeneity in

red meat-associated breast cancer mortality and disability burden

(Supplementary Tables S5, S6). Among 204 countries, 76 (37.3%)

experienced a decrease in age-standardized mortality rates, while

128 (62.7%) showed increasing trends from 1990 to 2021. The most

substantial declines in mortality were observed in Denmark (APC:

−2.379, 95% CI:−2.475 to−2.282), Greenland (APC:−2.493, 95%

CI: −2.653 to −2.332), and the United Kingdom (APC: −2.294,

95% CI: −2.379 to −2.209). Conversely, the most pronounced

increases occurred in Turkey (APC: 3.924, 95% CI: 3.186–4.667),

Egypt (APC: 2.961, 95% CI: 2.530–3.394), and Zimbabwe (APC:

2.959, 95% CI: 2.278–3.644).

Similar patterns were observed in disability-adjusted life years

attributed to red meat-associated breast cancer, with Denmark

showing the most significant improvement (APC: −2.765, 95% CI:

−2.878 to −2.651), followed by United Kingdom (APC: −2.390,

95% CI: −2.456 to −2.325) and Norway (APC: −2.338, 95%

CI: −2.518 to −2.158). However, Zimbabwe (APC: 3.326, 95%

CI: 2.546–4.111), Turkey (APC: 3.779, 95% CI: 3.051–4.513), and

Lesotho (APC: 3.035, 95% CI: 2.593–3.478) demonstrated the

most dramatic increases in DALY burden. In absolute terms,

age-standardized mortality rates for red meat-associated breast

cancer in 2021 were highest in South Africa (1.951 per 100,000),

Angola (1.397 per 100,000), and Georgia (2.222 per 100,000),

while the lowest rates were observed in Bangladesh (0.232 per

100,000), Mongolia (0.446 per 100,000), and Sri Lanka (0.313

per 100,000). For DALYs, the highest age-standardized rates in

2021 were found in Nauru (86.552 per 100,000), American Samoa

(82.734 per 100,000), and Fiji (81.052 per 100,000), illustrating the

disproportionate burden among Pacific Island nations (Figure 3).

Gender-specific trends in breast cancer
burden attributable to high red meat
consumption: a comparative analysis of
male and female populations

Significant differences in breast cancer burden were observed

among nations. For mortality (Supplementary Table S5), Turkey

showed the largest increase, with an APC of 3.924 (95% CI: 3.186–

4.667), followed by Malawi (APC: 3.060, 95% CI: 2.961–3.159) and

Lesotho (APC: 2.970, 95% CI: 2.554–3.387). Conversely, countries

such as Denmark, the United Kingdom, and Malta exhibited

significant declines, with APCs of −2.379 (95% CI: −2.475 to

−2.282), −2.294 (95% CI: −2.379 to −2.209), and −2.208 (95%

CI:−2.358 to−2.058), respectively. Greenland showed the steepest

decline, with an APC of −2.493 (95% CI: −2.653 to −2.332). In

terms of DALYs (Supplementary Table S6), Turkey also exhibited

the highest increase, with an APC of 3.779 (95% CI: 3.051–

4.513). Meanwhile, nations such as Denmark, the United Kingdom,

and Norway demonstrated significant reductions in DALYs, with

APCs of −2.765 (95% CI: −2.878 to −2.651), −2.390 (95% CI:

−2.456 to −2.325), and −2.338 (95% CI: −2.518 to −2.158),

respectively. These findings underscore the global inequality in

breast cancer burden, with developing nations, particularly in

Africa, experiencing rapid increases in disease burden, while

developed nations have achieved notable progress in reducing

breast cancer mortality and DALYs.

Age-period-cohort analysis of breast
cancer burden attributable to high red
meat consumption: decomposing temporal
e�ects, 1990–2021

An age-period-cohort (APC) analysis revealed complex

patterns in breast cancer mortality and DALYs (Figure 4). Overall,

the risk of breast cancer increased significantly with advancing age

(Supplementary Table S7). Compared to the 25–29 age group, the

relative risk (RR) of mortality reached 5.258 (95% CI: 5.112–5.409,

p < 0.001) and the RR of DALYs was 2.235 (95% CI: 2.214–2.256,

p < 0.001) for individuals aged 95–99 years. Gender differences

were also significant, with male breast cancer risks increasing more

steeply with age. For instance, the RR of mortality for males aged

Frontiers inNutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2025.1576043
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Cai and Qian 10.3389/fnut.2025.1576043

FIGURE 2

Age-specific trends in breast cancer attributable to high red meat diet consumption across 6 major regions: 1990–2021. (A) Age-specific percentage

changes in deaths from breast cancer attributable to high red meat diet consumption for both sexes combined across 6 major regions (Global and 5

SDI regions) from 1990 to 2021. The figure displays three metrics: percentage change in absolute numbers (left panel), percentage change in

age-specific rates (middle panel), and estimated annual percentage change (EAPC) in age-specific rates (right panel). Each point represents a specific

age group (25–29 years to 95+ years) and region, with di�erent colors and shapes distinguishing the six regions. Age groups are arranged from

oldest (top) to youngest (bottom). (B) Age-specific percentage changes in disability-adjusted life years (DALYs) from breast cancer attributable to high

red meat diet consumption for both sexes combined across 6 major regions (Global and 5 SDI regions) from 1990 to 2021. The figure displays three

metrics: percentage change in absolute numbers (left panel), percentage change in age-specific rates (middle panel), and estimated annual

percentage change (EAPC) in age-specific rates (right panel). Each point represents a specific age group (25–29 years to 95+ years) and region, with

di�erent colors and shapes distinguishing the six regions. Age groups are arranged from oldest (top) to youngest (bottom).
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FIGURE 3

Global Distribution of Breast Cancer Burden Attributable to High Red Meat Consumption. (A) Number of deaths in 204 countries, 1990. (B) Number

of DALYs in 204 countries, 1990. (C) Number of deaths in 204 countries, 2021. (D) Number of DALYs in 204 countries, 2021.

FIGURE 4

Age-period-cohort analysis of breast cancer burden attributable to high red meat consumption. (A) Age-period-cohort e�ects on mortality.

(B) Age-period-cohort e�ects on DALYs.
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90–94 years was 3.876 (95% CI: 3.191–4.708, p < 0.001), compared

to 3.464 (95% CI: 3.399–3.531, p < 0.001) in females of the same

age group (Supplementary Table S8).

Period effects showed an overall increase in the breast cancer

burden in recent years. During the 2017–2021 period, the RR of

mortality was 1.198 (95% CI: 1.189–1.207, p < 0.001) and the RR

of DALYs was 1.083 (95% CI: 1.081–1.084, p < 0.001), compared

to the baseline period of 1990–1991. Conversely, cohort effects

showed a clear downward trend. Compared to the 1942–1946 birth

cohort, the RR of mortality in the 1992–1996 cohort dropped to

0.462 (95% CI: 0.420–0.508, p < 0.001), and the RR of DALYs

declined to 0.693 (95% CI: 0.685–0.702, p < 0.001). This trend was

observed in both males and females, though the decline was more

pronounced in males (Supplementary Table S9).

Interestingly, age-specific risk patterns varied significantly by

gender. For women, the RR of mortality surpassed 1 in the 50–54

age group (RR = 1.119, 95% CI: 1.105–1.133, p < 0.001), whereas

in men, the RR of mortality only exceeded 1 in the 55–59 age

group (RR= 1.313, 95%CI: 1.188–1.452, p< 0.001). These findings

highlight both age- and gender-specific dynamics in breast cancer

risk and burden.

Decomposition analysis of breast cancer
burden attributable to high red meat
consumption: population growth, aging,
and epidemiological changes

Globally, the burden of breast cancer has grown significantly

between 1990 and 2021, though the patterns of change were

complex. Over this period, mortality showed an overall

increase of 83.838%, while DALYs rose by 3136.062%

(Supplementary Tables S10, S11). These changes were primarily

driven by population growth (mortality: 100.266%, DALYs:

105.438%) and aging (mortality: 34.86%, DALYs: 23.844%).

However, epidemiological changes contributed negatively to

these trends (mortality: −35.127%, DALYs: −29.282%), partially

offsetting the effects of demographic factors.

Gender differences in these trends were striking. For females,

the total change in mortality (83.39%) and DALYs (3121.955%)

was far greater than for males (mortality: 0.448%, DALYs:

14.107%), reflecting the predominance of breast cancer in women.

Notably, for males, epidemiological changes showed a positive

contribution (mortality: 16.363%, DALYs: 21.621%), potentially

indicating changes in risk factors or improvements in male breast

cancer detection.

Variations in breast cancer burden across SDI regions were

also apparent (Supplementary Tables S10, S11). High-SDI regions

demonstrated the largest overall change (mortality: 36,432.373%,

DALYs: 1,054,878.179%), driven by population growth (mortality:

204.836%, DALYs: 506.675%) and aging (mortality: 164.581%,

DALYs: 252.652%). However, negative contributions from

epidemiological changes (mortality: −269.417%, DALYs:

−659.328%) significantly mitigated these increases. In contrast,

low-SDI regions exhibited smaller overall changes (mortality:

147.947%, DALYs: 2,510.288%), primarily driven by population

growth (mortality: 78.437%, DALYs: 77.672%), with aging playing

a minor or negative role (mortality: −2.533%, DALYs: −1.791%).

Middle-SDI regions showed a more balanced contribution

pattern, with population growth (mortality: 64.317%, DALYs:

68.965%), aging (mortality: 24.982%, DALYs: 18.252%), and

epidemiological changes (mortality: 10.701%, DALYs: 12.783%)

all contributing positively. Low-middle SDI regions displayed a

unique pattern, with epidemiological changes making a significant

positive contribution (mortality: 36.617%, DALYs: 38.027%),

likely reflecting increased breast cancer risk factors or improved

diagnostic capacity in these regions (Supplementary Figure S1).

Among the 21 Global Burden of Disease (GBD) regions,

variation in change patterns was even more pronounced

(Supplementary Tables S10, S11). Western Europe experienced the

largest overall change in mortality (3,237.326%), driven primarily

by aging (1,354.249%) and population growth (1,146.892%),

but was significantly offset by negative contributions from

epidemiological changes (−2,401.142%). In terms of DALYs,

the largest change was observed in Western Sub-Saharan Africa

(437,195.83%), driven by population growth (69.828%) and

epidemiological changes (33.473%). Conversely, some regions,

such as Central Europe, exhibited negative overall changes in

DALYs (−39,441.415%), with positive contributions from aging

(100.1%) and population growth (68.237%) offset by large negative

epidemiological changes (−68.337%).

East Asia demonstrated notable progress in controlling

breast cancer, with relatively smaller negative contributions

from epidemiological changes (mortality: −4.557%, DALYs:

−1.449%) despite significant overall increases in burden

(mortality: 2,174.524%, DALYs: 64,809.332%). High-income

Asia Pacific regions exhibited a unique trend in DALYs, with

overall change reaching 106,872.673%, driven significantly by

epidemiological changes (33.651%), highlighting emerging

challenges in these areas. Similarly, South and Southeast Asia

demonstrated substantial increases in DALYs, with significant

contributions from epidemiological changes (South Asia:

34.785%, Southeast Asia: 28.632%), potentially reflecting lifestyle

changes and increased breast cancer risk factors in these regions

(Supplementary Figure S1).

Health inequality trends in breast cancer
burden attributable to high red meat
consumption: global slope index and
concentration index analysis

Analysis of health inequalities in breast cancer burden from

1990 to 2021 revealed significant changes in global disease

distribution (Figure 5 and Supplementary Table S12). The Slope

Index (SI) and Concentration Index (CI) reflected absolute and

relative inequalities, respectively. For mortality, the SI increased

from 1.849 (95% CI: 1.539–2.159) in 1990 to 2.187 (95% CI:

1.907–2.467) in 2021, indicating a rise in absolute inequality.

However, the CI declined from 0.461 (95% CI: 0.398–0.524)

in 1990 to 0.297 (95% CI: 0.254–0.341) in 2021, suggesting

a reduction in relative inequality. For DALYs, the SI peaked

in 2003 at 58.595 (95% CI: 51.657–65.533) before gradually

decreasing to 47.989 (95% CI: 40.747–55.232) in 2021. Similarly,
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FIGURE 5

Health inequality analysis of breast cancer burden attributable to high red meat consumption. (A) Slope index of inequality for mortality.

(B) Concentration Index for mortality. (C) Slope index of inequality for DALYs. (D) Concentration Index for DALYs.

the CI showed a consistent decline, from 0.412 (95% CI: 0.36–

0.465) in 1990 to 0.229 (95% CI: 0.194–0.264) in 2021. These

trends indicate that while absolute disparities in breast cancer

burden increased during some periods, relative inequalities are

progressively narrowing.

Comparative assessment of breast cancer
burden attributable to high red meat
consumption across socio-demographic
development levels

The relationship between high red meat consumption and

breast cancer burden among individuals aged 25 and above was

explored in the context of socio-demographic development. In

1990, disease burden across five SDI regions showed an initial

plateau followed by an upward trend, with ASMR (Figure 6A,

R= 0.544, p< 0.001) and age-standardized DALY rates (Figure 6B,

R = 0.534, p < 0.001) moderately positively correlated with

SDI. However, in 2021, a different pattern emerged. The burden

increased with rising SDI, peaking at an SDI of ∼0.75, and then

declined, with the correlation weakening (Figure 6C, R = 0.160,

p= 0.023; Figure 6D, R= 0.110, p= 0.117).

Further regional analysis of 21 GBD regions confirmed

these findings (Supplementary Figures S2A, B). High-income

regions, such as North America and Southern Latin America,

exhibited burdens significantly exceeding expectations based

on SDI. At the national level, in 1990, countries such as Saint

Kitts and Nevis and Palau had disease burdens markedly

higher than expected (Supplementary Figures S3A, B). By

2021, Fiji and Palau stood out in terms of mortality rates

(Supplementary Figure S3C), while Nauru and American Samoa

showed elevated DALY rates (Supplementary Figure S3D). These

results reveal the complex and dynamic relationship between high

red meat consumption, socio-economic development, and breast

cancer burden.

Frontier analysis of breast cancer mortality
and DALYs attributable to high red meat
consumption: performance assessment
across 204 countries

A frontier analysis of breast cancer mortality and disability-

adjusted life years (DALYs) in females aged 25 and above

across 204 countries and regions revealed significant global
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FIGURE 6

Correlation between SDI and age-standardized rates of breast cancer burden attributable to high red meat consumption across SDI quintiles. (A) SDI

vs. age-standardized mortality rates, 1990. (B) SDI vs. age-standardized DALY rates, 1990. (C) SDI vs. age-standardized mortality rates, 2021. (D) SDI

vs. age-standardized DALY rates, 2021.

disparities in disease burden, closely associated with socio-

economic development levels (Supplementary Figure S4

and Supplementary Tables S13, S14). In terms of mortality

(Supplementary Table S13), nations such as Palau, Nauru,

American Samoa, the Cook Islands, and the Bahamas exhibited

actual mortality rates that far exceeded the levels predicted by

their Socio-Demographic Index (SDI), with the largest deviation

reaching 2.801. Similarly, for DALYs (Supplementary Table S14),

Nauru, the Bahamas, Fiji, the Cook Islands, and Tonga showed the

largest deviations from the frontier DALY values, with differences

reaching as high as 81.473.

In contrast, countries such as Bangladesh, Oman, the Maldives,

Sri Lanka, and India demonstrated relatively better performance

in both mortality and DALY metrics. The actual values in these

countries were close to or aligned with their expected SDI-based

frontier values, indicating effective control of breast cancer disease

burden. Notably, China ranked 23rd in both mortality and DALY

deviations. The difference between actual and frontier values for

mortality was 0.468 (Supplementary Table S13), while for DALYs,

it was 14.808 (Supplementary Table S14). These findings suggest

that China’s breast cancer burden remains higher than expected

based on its SDI, highlighting significant room for improvement

in disease control and prevention.

This analysis underscores the global inequities in breast

cancer burden, with certain high-risk regions far exceeding their

expected burden relative to socio-economic development, while

other nations have achieved relatively better outcomes through

effective control measures.

Machine learning models for predicting
global breast cancer burden attributable to
high red meat intake, 2022–2050

To enhance the accuracy and robustness of global breast cancer

burden projections attributable to high red meat intake from 2022

to 2050, we utilized eight distinct machine learning algorithms:

Prophet, ARIMA, TBATS, ElasticNet, ETS, VAR,Holt-Winters, and

Theta (Supplementary Table S15). This comprehensive modeling

approach aimed to capture diverse patterns and trends in the

dataset, ensuring that projections account for both the total burden

(number of deaths and DALYs) and age-standardized rates (ASRs).

Our results revealed that different models performed optimally

depending on the gender and measure (deaths or DALYs) being

predicted, with detailed performance metrics comparison provided

in Supplementary Table S16.
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For male breast cancer attributable to high red meat intake,

the ARIMA model consistently outperformed other methods.

It exhibited the highest accuracy for predicting both the total

number of deaths (MSE: 17.35, MAPE: 0.25%, R²: 0.998) and

DALYs (MSE: 8,501.30, MAPE: 0.19%, R²: 0.999), as well as age-

standardized death rates (MSE: 1.07 × 10−8, MAPE: 0.21%, R²:

0.97) and age-standardized DALY rates (MSE: 5.78× 10−6, MAPE:

0.18%, R²: 0.98). By contrast, for female breast cancer attributable

to high red meat intake, the Prophet model demonstrated

superior performance in predicting the total number of deaths

(MSE: 21,935.21, MAPE: 0.16%, R²: 0.999) and DALYs (MSE:

16,297,399.72, MAPE: 0.15%, R²: 0.999), as well as age-standardized

death rates (MSE: 2.73 × 10−5, MAPE: 0.25%, R²: 0.92) and

age-standardized DALY rates (MSE: 0.018, MAPE: 0.21%, R²: 0.84).

Based on these results, ARIMA was selected for all male

projections and Prophet for all female projections. By 2050, the

ARIMA model forecasts that global male breast cancer deaths

attributable to high red meat intake will rise to 1,982 cases,

DALYs to 55,585, the age-standardized death rate (ASR) to 0.0344

deaths per 100,000, and the DALY ASR to 0.9876 per 100,000

(Figures 7A, B, E, F and Tables 1, 2). For females, the Prophet model

predicts 99,749 deaths, 2,965,835 DALYs, an ASR of 1.6655 deaths

per 100,000, and a DALY ASR of 53.1882 per 100,000 by 2050

(Figures 7C, D, G, H and Tables 1, 2).

These findings demonstrate the strong performance and

reliability of models such as ARIMA and Prophet in forecasting

both the total burden and age-standardized rates of global breast

cancer attributable to high red meat intake. The projections

generated by these models provide a robust evidence base for

guiding future health policies, optimizing resource allocation, and

developing targeted strategies to address the global breast cancer

burden associated with dietary risk factors.

Association between health workforce
density and red meat-induced breast
cancer burden: a global analysis

Our analysis revealed significant associations between health

workforce density and the burden of red meat-induced breast

cancer across 204 countries and territories. In 1990, strong positive

correlations were observed between all health worker categories

and both mortality and disability metrics, with particularly robust

associations found for Nursing and Midwifery Professionals

(Deaths: r = 0.68, p < 1.20E−28; DALYs: r = 0.67, p < 2.20E−27)

and Physical Therapists (Deaths: r = 0.63, p < 1.20E−23;

DALYs: r = 0.62, p < 1.40E−22) (Figures 8A, B). By 2019,

the strength of these correlations had substantially attenuated,

though significant positive associations persisted for select health

workforce categories, notably Physical Therapists (Deaths: r= 0.32,

p < 4.40E−06; DALYs: r = 0.28, p < 5.10E−05) and Nursing and

Midwifery Professionals (Deaths: r = 0.24, p = 0.00066; DALYs: r

= 0.17, p= 0.015).

Further examination of country-level data for these two

critical workforce categories revealed pronounced disparities in

breast cancer burden relative to healthcare workforce density

(Figures 8C, D). In 1990, high-income nations such as Saint Kitts

and Nevis, Denmark, and Palau exhibited both elevated healthcare

workforce density and breast cancer mortality rates, with death

rates exceeding 3.0 per 100,000 population, while countries with

minimal healthcare infrastructure such as Bangladesh (Nursing

density: 2.177 per 10,000; Deaths: 0.134 per 100,000) and Maldives

(Nursing density: 7.112 per 10,000; Deaths: 0.149 per 100,000)

reported substantially lower disease burden. By 2019, while the

correlation pattern persisted, several notable shifts emerged: Palau,

Fiji, and the Bahamas exhibited the highest mortality rates (>2.8

per 100,000) despite varying healthcare workforce densities, while

countries such as Oman demonstrated relatively robust healthcare

systems (Nursing density: 60.859 per 10,000) yet maintained

comparatively low mortality rates (0.323 per 100,000).

This temporal evolution in associations between health

workforce density and breast cancer burden suggests complex

interactions between healthcare system development, disease

detection capabilities, and population risk factors. The weakening

correlation from 1990 to 2019 indicates that while healthcare

workforce expansion may initially coincide with increased

documented disease burden through improved detection, long-

term investments in healthcare systems and preventive strategies

can ultimately contribute to disease mitigation, particularly in

regions that have implemented targeted public health interventions

addressing modifiable risk factors such as red meat consumption.

Discussion

Our analysis reveals a significant increase in the global burden

of breast cancer from 1990 to 2021, with notable gender disparities.

While overall age-standardized mortality rates decreased, the

absolute number of deaths and DALYs increased substantially,

primarily driven by population growth and aging. This trend

aligns with previous studies highlighting the growing global cancer

burden (7, 27). Interestingly, our findings show a slight increase in

male breast cancer mortality rates, contrasting with the decreasing

trend in females. This gender disparity may be attributed to

differences in awareness, screening practices, and biological factors

(28). The increasing male breast cancer burden, particularly in

certain age groups, underscores the need for targeted interventions

and increased awareness of this rare but significant condition (29).

The analysis across SDI quintiles reveals a complex relationship

between socio-economic development and breast cancer

burden. High-SDI regions demonstrated significant decreases

in mortality and DALY rates, while low-middle SDI regions

experienced increases. This pattern reflects the “cancer transition”

phenomenon, where cancer burden shifts from infection-related

cancers to those associated with westernized lifestyles as countries

develop (30). The regional disparities observed, with reductions

in high-income regions and increases in regions like North

Africa, Middle East, and South Asia, further support this concept.

These findings highlight the need for tailored prevention and

control strategies that consider a region’s stage of epidemiological

transition (31).

The age-specific analysis reveals concerning trends, particularly

the increase in mortality and DALYs for younger age groups

(25–34 years). This aligns with recent studies reporting a rising

incidence of early-onset breast cancer in many countries (32).
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FIGURE 7

Global breast cancer burden projections (2022–2050) using machine learning models. (A) Projected global disability-adjusted life years (DALYs) for

male breast cancer from 2022 to 2050, based on the ARIMA model. (B) Projected global deaths for male breast cancer from 2022 to 2050, based on

the ARIMA model. (C) Projected global disability-adjusted life years (DALYs) for female breast cancer from 2022 to 2050, based on the Prophet model.

(D) Projected global deaths for female breast cancer from 2022 to 2050, based on the Prophet model. (E) Projected global age-standardized

disability-adjusted life year (DALY) rates for male breast cancer from 2022 to 2050, based on the ARIMA model. (F) Projected global age-standardized

death rates for male breast cancer from 2022 to 2050, based on the ARIMA model. (G) Projected global age-standardized disability-adjusted life year

(DALY) rates for female breast cancer from 2022 to 2050, based on the Prophet model. (H) Projected global age-standardized death rates for female

breast cancer from 2022 to 2050, based on the Prophet model.
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TABLE 1 Projected trends in absolute numbers of DALYs and deaths from breast cancer attributable to high red meat intake for males and females from 2022 to 2050 using eight machine learning algorithms.
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Male Global 2022 1,583 1,572 1,559 1,561 1,563 1,555 1,596 1,557 45,475 45,192 44,894 44,948 44,986 44,787 45,965 44,850

Male Global 2023 1,637 1,598 1,569 1,573 1,575 1,560 1,644 1,566 46,848 45,865 45,137 45,245 45,286 44,919 47,344 45,100

Male Global 2024 1,584 1,623 1,577 1,583 1,586 1,564 1,693 1,567 45,495 46,505 45,357 45,519 45,563 45,027 48,764 45,135

Male Global 2025 1,655 1,647 1,585 1,593 1,596 1,568 1,740 1,574 47,291 47,114 45,555 45,772 45,821 45,115 50,227 45,350

Male Global 2026 1,707 1,670 1,591 1,602 1,605 1,571 1,782 1,580 48,607 47,693 45,735 46,006 46,061 45,187 51,418 45,511

Male Global 2027 1,655 1,692 1,598 1,610 1,614 1,573 1,808 1,585 47,309 48,243 45,898 46,222 46,286 45,247 52,153 45,649

Male Global 2028 1,714 1,713 1,603 1,617 1,622 1,575 1,834 1,589 48,870 48,767 46,045 46,421 46,497 45,295 52,857 45,762

Male Global 2029 1,764 1,732 1,608 1624 1,630 1,576 1,874 1,594 50,134 49,266 46,178 46,605 46,697 45,335 54,010 45,911

Male Global 2030 1,715 1,751 1,613 1,631 1,637 1,577 1,918 1,600 48,886 49,740 46,298 46,774 46,887 45,367 55,354 46,079

Male Global 2031 1,763 1,769 1,617 1,637 1,644 1,578 1,954 1,607 50,206 50,191 46,407 46,931 47,067 45,394 56,456 46,282

Male Global 2032 1,811 1,786 1,621 1,642 1,651 1,579 2,001 1,615 51,422 50,620 46,506 47,075 47,238 45,416 57,840 46,506

Male Global 2033 1,764 1,802 1,624 1,647 1,657 1,580 2,031 1,623 50,221 51,028 46,595 47,209 47,402 45,433 58,697 46,763

Male Global 2034 1,811 1,817 1,627 1,652 1,663 1,580 2,074 1,632 51,408 51,416 46,676 47,332 47,559 45,448 59,942 47,006

Male Global 2035 1,857 1,832 1,630 1,656 1,669 1,581 2,121 1,640 52,579 51,785 46,749 47,446 47,709 45,460 61,295 47,240

Male Global 2036 1,811 1,846 1,632 1,660 1,675 1,581 2,166 1,648 51,421 52,136 46,815 47,551 47,853 45,470 62,598 47,465

Male Global 2037 1,857 1,859 1,635 1,664 1,680 1,582 2,198 1,656 52,566 52,470 46,875 47,648 47,991 45,478 63,428 47,693

Male Global 2038 1,812 1,872 1,637 1,667 1,685 1,582 2,240 1,662 51,434 52,788 46,929 47,737 48,125 45,484 64,586 47,866

Male Global 2039 1,856 1,883 1,639 1,671 1,690 1,582 2,266 1,667 52,741 53,090 46,978 47,820 48,253 45,490 65,320 48,007

Male Global 2040 1,900 1,895 1,640 1,674 1,695 1,582 2,291 1,671 53,848 53,378 47,022 47,896 48,377 45,494 66,025 48,123

Male Global 2041 1,857 1,906 1,642 1,676 1,700 1,582 2,332 1,675 52,753 53,651 47,063 47,966 48,497 45,498 67,177 48,259

Male Global 2042 1,899 1,916 1,643 1,679 1,704 1,582 2,376 1,681 53,836 53,912 47,099 48,031 48,613 45,501 68,521 48,417

Male Global 2043 1,857 1,926 1,644 1,681 1,709 1,583 2,412 1,687 52,764 54,159 47,132 48,091 48,726 45,503 69,624 48,601

Male Global 2044 1,899 1,935 1,646 1,683 1,713 1,583 2,459 1,694 53,826 54,395 47,161 48,147 48,835 45,505 71,008 48,781

Male Global 2045 1,857 1,944 1,647 1,685 1,717 1,583 2,488 1,699 54,877 54,619 47,188 48,198 48,941 45,507 71,864 48,950
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TABLE 1 (Continued)

Sex location year Deaths DALYs

Number of cases Number of cases
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Male Global 2046 1,899 1,952 1,648 1,687 1,721 1,583 2,532 1,706 53,836 54,832 47,213 48,245 49,044 45,508 73,110 49,148

Male Global 2047 1,858 1,960 1,648 1,688 1,725 1,583 2,579 1,714 54,867 55,034 47,235 48,288 49,144 45,509 74,462 49,373

Male Global 2048 1,899 1,968 1,649 1,690 1,729 1,583 2,624 1,723 53,845 55,227 47,254 48,329 49,241 45,510 75,765 49,618

Male Global 2049 1,939 1,975 1,650 1,691 1,732 1,583 2,656 1,730 54,858 55,410 47,273 48,366 49,336 45,511 76,595 49,824

Male Global 2050 1,899 1,982 1,650 1,693 1,736 1,583 2,698 1,736 53,854 55,585 47,289 48,400 49,428 45,511 77,753 50,002

Female Global 2022 81,894 81,248 80,642 80,779 80,782 80,368 80,163 80,358 2,462,336 2,443,921 2,427,430 2,431,497 2,431,053 2,419,295 2,410,493 2,419,160

Female Global 2023 85,028 82,784 81,262 81,538 81469 80,705 81,687 80,806 2,551,728 2,487,713 2,445,832 2,454,026 2,451,020 2,429,285 2,453,386 2,432,659

Female Global 2024 81,939 84,244 81,823 82,239 82,104 80,980 82,981 80,881 2,463,617 2,529,368 2,462,483 2,474,823 2,469,451 2,437,465 2,489,576 2,434,983

Female Global 2025 85,407 85,634 82,330 82,885 82,693 81,206 84,343 81,269 2,561,137 2,568,992 2,477,550 2,494,021 2,486,565 2,444,162 2,528,896 2,446,674

Female Global 2026 88,411 86,955 82,790 83,482 83,243 81,390 86,024 81,558 2,646,797 2,606,683 2,491,182 2,511,742 2,502,539 2,449,645 2,578,224 2,455,361

Female Global 2027 85,449 88,212 83,205 84,033 83,759 81,542 87,378 81,801 2,562,308 2,642,537 2,503,518 2,528,102 2,517,514 2,454,134 2,619,954 2,462,661

Female Global 2028 88,730 89,408 83,581 84,542 84,244 81,665 88,374 81,998 2,658,096 2,676,641 2,514,679 2,543,203 2,531,609 2,457,809 2,651,174 2,468,555

Female Global 2029 91,614 90,546 83,921 85,012 84,703 81,767 89,505 82,258 2,740,346 2,709,083 2,524,779 2,557,144 2,544,920 2,460,818 2,685,221 2,476,375

Female Global 2030 88,768 91,628 84,229 85,445 85,137 81,850 90,457 82,555 2,659,166 2,739,942 2,533,917 2,570,012 2,557,531 2,463,282 2,711,417 2,485,290

Female Global 2031 91,578 92,657 84,508 85,845 85,549 81,918 91,610 82,917 2,739,307 2,769,296 2,542,186 2,581,891 2,569,511 2,465,299 2,742,781 2,496,157

Female Global 2032 94,353 93,636 84,760 86,215 85,942 81,973 93,548 83,319 2,818,440 2,797,218 2,549,667 2,592,857 2,580,921 2,466,951 2,797,447 2,508,256

Female Global 2033 91,612 94,567 84,988 86,556 86,317 82,019 94,502 83,780 2,740,285 2,823,779 2,556,437 2,602,980 2,591,812 2,468,303 2,825,270 2,522,174

Female Global 2034 94,319 95,453 85,194 86,870 86,676 82,056 95,502 84,220 2,817,491 2,849,045 2,562,563 2,612,325 2,602,229 2,469,410 2,851,839 2,535,436

Female Global 2035 91,645 96,296 85,381 87,161 87,020 82,087 97,025 84,644 2,893,776 2,873,078 2,568,105 2,620,951 2,612,213 2,470,316 2,894,732 2,548,225

Female Global 2036 94,709 97,097 85,550 87,429 87,350 82,112 98,320 85,050 2,818,385 2,895,939 2,573,121 2,628,914 2,621,797 2,471,058 2,930,922 2,560,465

Female Global 2037 97,322 97,860 85,703 87,677 87,667 82,132 99,681 85,458 2,892,908 2,917,685 2,577,658 2,636,265 2,631,012 2,471,666 2,970,242 2,572,733

Female Global 2038 94,738 98,585 85,841 87,905 87,973 82,149 101,363 85,766 2,819,227 2,938,370 2,581,765 2,643,050 2,639,887 2,472,163 3,019,570 2,581,992

Female Global 2039 97,293 99,275 85,966 88,116 88,267 82,163 102,717 86,013 2,892,091 2,958,047 2,585,480 2,649,314 2,648,444 2,472,570 3,061,299 2,589,407
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TABLE 1 (Continued)

Sex location year Deaths DALYs

Number of cases Number of cases
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Female Global 2040 94,766 99,931 86,079 88,311 88,552 82,174 103,713 86,216 2,964,162 2,976,764 2,588,842 2,655,096 2,656,706 2,472,904 3,092,520 2,595,494

Female Global 2041 97,266 100,556 86,182 88,491 88,827 82,183 104,844 86,455 2,892,860 2,994,568 2,591,884 2,660,434 2,664,693 2,473,177 3,126,567 2,602,641

Female Global 2042 94,792 101,150 86,275 88,657 89,093 82,191 105,796 86,733 2,963,416 3,011,504 2,594,636 2,665,361 2,672,422 2,473,400 3,152,762 2,610,990

Female Global 2043 97,391 101,714 86,358 88,810 89,351 82,197 106,949 87,062 2,893,585 3,027,614 2,597,126 2,669,910 2,679,910 2,473,583 3,184,126 2,620,914

Female Global 2044 99,814 102,252 86,434 88,952 89,601 82,202 108,887 87,388 2,962,712 3,042,938 2,599,380 2,674,108 2,687,170 2,473,733 3,238,793 2,630,742

Female Global 2045 97,415 102,763 86,503 89,082 89,843 82,206 109,841 87,696 2,894,268 3,057,515 2,601,419 2,677,984 2,694,218 2,473,856 3,266,616 2,640,030

Female Global 2046 99,791 103,249 86,565 89,203 90,079 82,209 110,841 88,058 2,962,050 3,071,381 2,603,264 2,681,562 2,701,063 2,473,956 3,293,185 2,650,972

Female Global 2047 97,437 103,712 86,621 89,314 90,308 82,212 112,364 88,468 2,894,910 3,084,570 2,604,933 2,684,865 2,707,719 2,474,038 3,336,077 2,663,365

Female Global 2048 99,769 104,151 86,672 89,417 90,531 82,214 113,659 88,913 2,961,426 3,097,117 2,606,444 2,687,914 2,714,195 2,474,106 3,372,268 2,676,786

Female Global 2049 97,458 104,570 86,718 89,511 90,748 82,216 115,020 89,285 2,895,516 3,109,051 2,607,811 2,690,729 2,720,500 2,474,161 3,411,587 2,687,991

Female Global 2050 99,749 104,968 86,760 89,599 90,960 82,218 116,702 89,603 2,965,835 3,120,404 2,609,047 2,693,327 2,726,644 2,474,206 3,460,916 2,697,565
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TABLE 2 Projected trends in age-standardized rates of DALYs and deaths from breast cancer attributable to high red meat intake for males and females from 2022 to 2050 using eight machine learning algorithms.

Sex location year Deaths DALYs

Number of ASR Number of ASR
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Male Global 2022 0.0387 0.0388 0.0388 0.0388 0.0388 0.0389 0.0402 0.0392 1.0620 1.0658 1.0658 1.0648 1.0661 1.0679 1.1031 1.0763

Male Global 2023 0.0393 0.0385 0.0386 0.0385 0.0387 0.0388 0.0413 0.0395 1.0765 1.0661 1.0612 1.0592 1.0621 1.0654 1.1362 1.0823

Male Global 2024 0.0385 0.0384 0.0384 0.0383 0.0385 0.0387 0.0418 0.0395 1.0576 1.0669 1.0570 1.0539 1.0583 1.0633 1.1559 1.0838

Male Global 2025 0.0379 0.0382 0.0383 0.0381 0.0384 0.0386 0.0418 0.0397 1.0436 1.0663 1.0533 1.0491 1.0549 1.0616 1.1552 1.0891

Male Global 2026 0.0385 0.0379 0.0381 0.0379 0.0382 0.0386 0.0419 0.0399 1.0574 1.0646 1.0498 1.0447 1.0517 1.0603 1.1588 1.0929

Male Global 2027 0.0377 0.0377 0.0380 0.0377 0.0381 0.0385 0.0418 0.0400 1.0390 1.0619 1.0467 1.0406 1.0486 1.0591 1.1571 1.0960

Male Global 2028 0.0371 0.0374 0.0379 0.0376 0.0380 0.0385 0.0416 0.0401 1.0256 1.0583 1.0439 1.0368 1.0458 1.0582 1.1534 1.0985

Male Global 2029 0.0377 0.0372 0.0378 0.0374 0.0378 0.0385 0.0420 0.0402 1.0388 1.0540 1.0414 1.0333 1.0431 1.0575 1.1667 1.1018

Male Global 2030 0.0369 0.0370 0.0377 0.0373 0.0377 0.0384 0.0425 0.0403 1.0205 1.0490 1.0391 1.0300 1.0405 1.0568 1.1845 1.1056

Male Global 2031 0.0364 0.0368 0.0376 0.0371 0.0376 0.0384 0.0426 0.0405 1.0075 1.0443 1.0370 1.0271 1.0381 1.0563 1.1930 1.1103

Male Global 2032 0.0369 0.0366 0.0375 0.0370 0.0375 0.0384 0.0430 0.0407 1.0203 1.0398 1.0351 1.0243 1.0358 1.0559 1.2064 1.1157

Male Global 2033 0.0361 0.0364 0.0374 0.0369 0.0374 0.0384 0.0428 0.0409 1.0021 1.0355 1.0334 1.0218 1.0336 1.0556 1.2046 1.1220

Male Global 2034 0.0356 0.0363 0.0374 0.0368 0.0373 0.0384 0.0433 0.0411 0.9896 1.0314 1.0319 1.0194 1.0315 1.0553 1.2196 1.1281

Male Global 2035 0.0361 0.0361 0.0373 0.0367 0.0372 0.0384 0.0440 0.0413 1.0019 1.0276 1.0305 1.0172 1.0295 1.0551 1.2390 1.1339

Male Global 2036 0.0354 0.0359 0.0372 0.0366 0.0372 0.0384 0.0445 0.0416 0.9840 1.0239 1.0293 1.0152 1.0276 1.0549 1.2561 1.1394

Male Global 2037 0.0349 0.0358 0.0372 0.0366 0.0371 0.0383 0.0445 0.0417 0.9720 1.0204 1.0281 1.0134 1.0257 1.0547 1.2554 1.1449

Male Global 2038 0.0354 0.0357 0.0371 0.0365 0.0370 0.0383 0.0446 0.0419 0.9839 1.0170 1.0271 1.0117 1.0239 1.0546 1.2590 1.1489

Male Global 2039 0.0347 0.0355 0.0371 0.0364 0.0369 0.0383 0.0445 0.0420 0.9663 1.0138 1.0262 1.0101 1.0222 1.0545 1.2573 1.1521

Male Global 2040 0.0342 0.0354 0.0371 0.0363 0.0369 0.0383 0.0443 0.0421 0.9547 1.0108 1.0253 1.0087 1.0205 1.0544 1.2536 1.1546

Male Global 2041 0.0347 0.0353 0.0370 0.0363 0.0368 0.0383 0.0447 0.0422 0.9662 1.0079 1.0245 1.0073 1.0189 1.0544 1.2669 1.1576

Male Global 2042 0.0341 0.0352 0.0370 0.0362 0.0367 0.0383 0.0452 0.0423 0.9492 1.0052 1.0239 1.0061 1.0173 1.0543 1.2847 1.1612

Male Global 2043 0.0336 0.0350 0.0370 0.0362 0.0367 0.0383 0.0453 0.0425 0.9379 1.0026 1.0232 1.0050 1.0158 1.0543 1.2932 1.1656

Male Global 2044 0.0340 0.0349 0.0370 0.0361 0.0366 0.0383 0.0457 0.0427 0.9491 1.0001 1.0227 1.0039 1.0143 1.0542 1.3066 1.1700

Male Global 2045 0.0334 0.0348 0.0369 0.0361 0.0365 0.0383 0.0455 0.0428 0.9327 0.9978 1.0222 1.0029 1.0129 1.0542 1.3048 1.1744
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TABLE 2 (Continued)

Sex location year Deaths DALYs

Number of ASR Number of ASR
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Male Global 2046 0.0330 0.0347 0.0369 0.0361 0.0365 0.0383 0.0460 0.0430 0.9218 0.9956 1.0217 1.0020 1.0115 1.0542 1.3198 1.1795

Male Global 2047 0.0334 0.0347 0.0369 0.0360 0.0364 0.0383 0.0467 0.0432 0.9326 0.9934 1.0213 1.0012 1.0102 1.0541 1.3392 1.1852

Male Global 2048 0.0329 0.0346 0.0369 0.0360 0.0364 0.0383 0.0472 0.0434 0.9170 0.9914 1.0209 1.0004 1.0089 1.0541 1.3563 1.1913

Male Global 2049 0.0324 0.0345 0.0369 0.0360 0.0363 0.0383 0.0472 0.0436 0.9063 0.9895 1.0205 0.9997 1.0076 1.0541 1.3556 1.1964

Male Global 2050 0.0329 0.0344 0.0368 0.0359 0.0362 0.0383 0.0473 0.0438 0.9169 0.9876 1.0202 0.9991 1.0064 1.0541 1.3592 1.2007

Female Global 2022 1.7491 1.7513 1.7511 1.7502 1.7511 1.7530 1.7059 1.7646 53.8968 53.9154 53.8860 53.8727 53.8907 53.9126 52.3340 54.2230

Female Global 2023 1.7599 1.7461 1.7470 1.7451 1.7473 1.7507 1.6993 1.7744 53.9870 53.8712 53.8258 53.7990 53.8392 53.8799 52.0905 54.5256

Female Global 2024 1.7483 1.7411 1.7432 1.7404 1.7437 1.7489 1.6845 1.7773 53.8872 53.8292 53.7713 53.7309 53.7916 53.8532 51.6698 54.6133

Female Global 2025 1.7378 1.7363 1.7398 1.7360 1.7404 1.7473 1.6714 1.7861 53.7995 53.7892 53.7220 53.6681 53.7474 53.8313 51.3264 54.8830

Female Global 2026 1.7481 1.7318 1.7367 1.7320 1.7373 1.7461 1.6514 1.7924 53.8860 53.7511 53.6774 53.6101 53.7062 53.8133 50.7887 55.0762

Female Global 2027 1.7370 1.7275 1.7339 1.7283 1.7344 1.7451 1.6427 1.7974 53.7984 53.7150 53.6370 53.5566 53.6675 53.7986 50.6501 55.2300

Female Global 2028 1.7270 1.7234 1.7313 1.7248 1.7316 1.7442 1.6194 1.8012 53.7143 53.6805 53.6005 53.5072 53.6312 53.7866 50.1087 55.3469

Female Global 2029 1.7368 1.7195 1.7290 1.7217 1.7291 1.7436 1.6011 1.8063 53.7973 53.6478 53.5675 53.4616 53.5968 53.7768 49.6601 55.5059

Female Global 2030 1.7259 1.7158 1.7270 1.7188 1.7266 1.7430 1.5759 1.8124 53.7100 53.6167 53.5376 53.4194 53.5642 53.7687 48.9279 55.6926

Female Global 2031 1.7163 1.7123 1.7251 1.7161 1.7243 1.7425 1.5572 1.8201 53.6291 53.5870 53.5105 53.3806 53.5333 53.7621 48.3676 55.9293

Female Global 2032 1.7258 1.7089 1.7234 1.7136 1.7221 1.7422 1.5682 1.8289 53.7090 53.5589 53.4860 53.3447 53.5039 53.7567 48.7274 56.2012

Female Global 2033 1.7151 1.7057 1.7218 1.7113 1.7200 1.7419 1.5396 1.8393 53.6220 53.5321 53.4639 53.3116 53.4758 53.7523 47.9576 56.5206

Female Global 2034 1.7059 1.7027 1.7204 1.7091 1.7180 1.7416 1.5141 1.8494 53.5441 53.5066 53.4438 53.2810 53.4489 53.7486 47.1589 56.8293

Female Global 2035 1.7150 1.6998 1.7192 1.7072 1.7160 1.7414 1.5076 1.8591 53.6211 53.4823 53.4257 53.2528 53.4231 53.7457 46.9724 57.1273

Female Global 2036 1.7046 1.6971 1.7180 1.7054 1.7142 1.7412 1.4927 1.8683 53.5346 53.4592 53.4093 53.2267 53.3984 53.7433 46.5516 57.4091

Female Global 2037 1.6957 1.6945 1.7170 1.7037 1.7124 1.7411 1.4796 1.8773 53.4593 53.4373 53.3944 53.2026 53.3746 53.7413 46.2083 57.6848

Female Global 2038 1.7045 1.6920 1.7161 1.7022 1.7107 1.7410 1.4597 1.8838 53.5337 53.4164 53.3810 53.1804 53.3517 53.7396 45.6706 57.8855

Female Global 2039 1.6944 1.6896 1.7152 1.7007 1.7090 1.7409 1.4509 1.8887 53.4474 53.3966 53.3688 53.1599 53.3296 53.7383 45.5320 58.0385

(Continued)
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TABLE 2 (Continued)

Sex location year Deaths DALYs

Number of ASR Number of ASR
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Female Global 2040 1.6857 1.6874 1.7145 1.6994 1.7074 1.7408 1.4276 1.8926 53.3747 53.3777 53.3578 53.1410 53.3082 53.7372 44.9905 58.1587

Female Global 2041 1.6943 1.6852 1.7138 1.6982 1.7059 1.7408 1.4094 1.8973 53.4466 53.3597 53.3479 53.1236 53.2876 53.7363 44.5420 58.3037

Female Global 2042 1.6845 1.6832 1.7132 1.6971 1.7044 1.7407 1.3841 1.9030 53.3607 53.3426 53.3389 53.1074 53.2677 53.7356 43.8097 58.4810

Female Global 2043 1.6761 1.6813 1.7126 1.6961 1.7029 1.7407 1.3655 1.9102 53.2902 53.3264 53.3307 53.0925 53.2483 53.7350 43.2494 58.7019

Female Global 2044 1.6844 1.6794 1.7121 1.6951 1.7015 1.7406 1.3765 1.9177 53.3600 53.3109 53.3233 53.0788 53.2296 53.7345 43.6093 58.9299

Female Global 2045 1.6748 1.6777 1.7116 1.6942 1.7002 1.7406 1.3479 1.9250 53.2745 53.2962 53.3167 53.0661 53.2114 53.7341 42.8395 59.1536

Female Global 2046 1.6667 1.6760 1.7112 1.6934 1.6988 1.7406 1.3223 1.9337 53.2061 53.2822 53.3106 53.0544 53.1937 53.7338 42.0408 59.4189

Female Global 2047 1.6748 1.6744 1.7108 1.6927 1.6975 1.7406 1.3158 1.9434 53.2738 53.2689 53.3052 53.0436 53.1766 53.7335 41.8542 59.7167

Female Global 2048 1.6655 1.6729 1.7105 1.6920 1.6963 1.7405 1.3010 1.9537 53.1887 53.2562 53.3002 53.0336 53.1598 53.7333 41.4335 60.0331

Female Global 2049 1.6576 1.6715 1.7102 1.6913 1.6951 1.7405 1.2878 1.9622 53.1222 53.2442 53.2958 53.0244 53.1436 53.7331 41.0902 60.2919

Female Global 2050 1.6655 1.6701 1.7099 1.6907 1.6939 1.7405 1.2679 1.9691 53.1882 53.2327 53.2917 53.0159 53.1277 53.7330 40.5525 60.5050
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FIGURE 8

Global correlations between health workforce density and red meat-induced breast cancer burden (1990 and 2019). (A) Correlations between health

workforce categories and disability-adjusted life years (DALYs) due to red meat-induced breast cancer in 1990 and 2019, with point size representing

correlation strength and color indicating significance level. (B) Correlations between health workforce categories and deaths due to red

meat-induced breast cancer in 1990 and 2019, with point size representing correlation strength and color indicating significance level. (C) Scatter

plots showing the relationship between the density of Nursing and Midwifery Professionals and Physical Therapists (per 10,000 population) and

DALYs due to red meat-induced breast cancer in 1990 and 2019, with labeled extreme values. (D) Scatter plots showing the relationship between the

density of Nursing and Midwifery Professionals and Physical Therapists (per 10,000 population) and deaths due to red meat-induced breast cancer in

1990 and 2019, with labeled extreme values.

The age-period-cohort analysis further elucidates these trends,

showing a downward cohort effect for younger birth cohorts.

This suggests that while overall risk is decreasing for more recent

generations, other factors may be contributing to the increased

burden in young adults. These findings emphasize the importance

of understanding risk factors specific to younger populations and

potentially reconsidering screening guidelines for high-risk groups

(33, 34).

While our study focused on the potential impact of high red

meat consumption on breast cancer burden, the relationship

appears complex and multifaceted. Recent comprehensive

meta-analyses have provided robust evidence supporting this
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relationship, with studies demonstrating that high red meat

intake is associated with a 9% increased risk of breast cancer,

while processed meat consumption shows an 18% increased risk

for colorectal cancer and a 6% increased risk for breast cancer

(4). However, emerging evidence from burden of proof studies

suggests that while there is some evidence of association between

unprocessed red meat consumption and breast cancer, the evidence

remains weak and insufficient for conclusive recommendations,

with 95% uncertainty intervals ranging from 0 to 200 g per day

for minimized risk (35). The observed trends across SDI regions

and the frontier analysis suggest that the association between

red meat consumption and breast cancer may be modulated by

socio-economic factors. Previous studies have reported mixed

results regarding red meat consumption and breast cancer risk

(36, 37). Our findings indicate that the impact of red meat

consumption on breast cancer burden may vary depending on the

broader dietary and lifestyle context, emphasizing the need for

more nuanced dietary recommendations that consider cultural and

socio-economic factors (4).

The analysis of health inequalities reveals a nuanced picture

of global breast cancer disparities. While absolute inequalities (as

measured by the Slope Index) increased for mortality, relative

inequalities (measured by the Concentration Index) decreased

for both mortality and DALYs. This suggests that while the gap

in absolute numbers may be widening, the relative distribution

of the disease burden is becoming more equitable. However,

the frontier analysis highlights significant disparities, with some

countries far exceeding their expected burden based on SDI. These

findings underscore the complex interplay between socio-economic

development, healthcare access, and cancer outcomes, emphasizing

the need for targeted interventions to address these disparities

(23, 27, 38).

The use of multiple machine learning algorithms for

projecting future breast cancer burden represents a methodological

advancement in epidemiological forecasting. The superior

performance of ARIMA for male projections and Prophet

for female projections highlights the importance of gender-

specific modeling approaches. These projections, indicating

continued increases in global breast cancer burden through

2050, provide valuable insights for long-term health planning

and resource allocation. However, it’s crucial to note that these

projections assume current trends and do not account for potential

breakthroughs in prevention or treatment. Future studies should

consider incorporating scenario analyses to account for potential

changes in risk factors or treatment efficacy (39–41).

The comparative analysis of eight machine learning

models revealed distinct performance patterns across different

demographic groups and outcome measures. Our comprehensive

evaluation (Supplementary Tables S15, S16) demonstrated that

no single model consistently outperformed all others across all

scenarios, highlighting the importance of model selection based

on specific population characteristics and outcome types. For

male breast cancer predictions, ARIMA consistently demonstrated

superior accuracy across all metrics, achieving the lowest mean

squared error (MSE) values for both deaths (17.35) and DALYs

(8,501.30), along with the highest R² values (>0.998), indicating

excellent model fit. This superior performance may be attributed to

ARIMA’s ability to capture the more stable, linear trends observed

in male breast cancer patterns, which are less influenced by

hormonal fluctuations and screening program changes compared

to females. Conversely, Prophet emerged as the optimal choice

for female breast cancer projections, particularly excelling in

handling the complex seasonal patterns and trend changes

characteristic of female breast cancer epidemiology. The model’s

built-in capability to detect and accommodate changepoints in

trends proved particularly valuable for capturing the impacts of

evolving screening programs, treatment advances, and lifestyle

changes on female breast cancer burden. The Prophet model’s

superior performance in female predictions (R² values >0.92 for all

measures) reflects its strength in modeling non-linear trends and

handling uncertainties in projection scenarios.

Notably, traditional time-series models (TBATS, ETS) and

more complex machine learning approaches (ElasticNet, VAR)

showed considerably poorer performance, often with negative R²

values, indicating that model complexity does not necessarily

translate to improved prediction accuracy. This finding supports

the principle of model parsimony in epidemiological forecasting,

where simpler, well-suited models often outperform more complex

alternatives. The poor performance of certain models (particularly

TBATS and ETS) may be attributed to their tendency to overfit

to noise in the data or their inability to appropriately handle

the specific characteristics of breast cancer time-series data. These

findings have important implications for future epidemiological

forecasting studies, suggesting that model selection should be

tailored to specific demographic groups and outcome measures

rather than applying a one-size-fits-all approach. The demonstrated

superiority of ARIMA for males and Prophet for females provides

evidence-based guidance for researchers conducting similar burden

projections and emphasizes the value of comparative model

evaluation in ensuring robust and reliable forecasts.

The findings of this study have significant implications for

public health policy and clinical practice. The persistent increase

in breast cancer burden, particularly in developing regions, calls

for strengthened cancer control programs that encompass primary

prevention, early detection, and improved treatment access (42).

The observed trends in younger age groups suggest a need to

reevaluate screening guidelines and risk assessment tools to better

capture early-onset cases (43). Additionally, the gender disparities

highlighted in this study underscore the importance of gender-

specific approaches in breast cancer awareness and management,

particularly for male breast cancer (44).

Current dietary guidelines and policy recommendations

emphasize the importance of limiting red meat consumption for

cancer prevention. The World Health Organization and various

national cancer prevention guidelines recommend reducing red

meat intake to decrease cancer risk, with some guidelines

suggesting limiting consumption to <500 g per week (4). Our

projections indicating continued increases in breast cancer

burden through 2050, particularly in low-SDI regions, underscore

the urgent need for targeted dietary interventions. For low-

SDI countries, policy recommendations should include: (1)

implementing population-level awareness campaigns about the

association between high red meat consumption and breast

cancer risk; (2) promoting dietary diversification with increased
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consumption of protective foods such as vegetables, fruits, and

legumes, which have been shown to reduce breast cancer risk

by 3–4% per 100 g daily intake (5); (3) developing culturally

appropriate dietary guidelines that consider local food systems and

economic constraints; and (4) integrating nutrition education into

existing healthcare infrastructure and cancer prevention programs.

The economic burden of breast cancer, combined with the

preventable nature of diet-related risk, makes these interventions

particularly cost-effective for resource-limited settings.

Limitation

While this study provides comprehensive insights into global

breast cancer trends, several limitations should be acknowledged.

The ecological nature of the study precludes causal inferences

about the relationship between red meat consumption and breast

cancer burden. Future research should incorporate individual-

level data to better elucidate this relationship. Additionally, the

projections, while robust, are based on historical trends and may

not fully capture future changes in risk factors or treatment

advancements. Further studies should aim to incorporate more

detailed risk factor data and explore the potential impact of

emerging prevention and treatment strategies on future breast

cancer burden (45, 46). Additionally, the Global Burden of

Disease study methodology, while robust and comprehensive,

introduces inherent uncertainties in disease burden estimates.

These uncertainties arise from variations in data quality and

availability across different countries and regions, differences in

case definitions and diagnostic practices, and the use of statistical

modeling to estimate burden in locations with limited data.

The comparative risk assessment framework used to attribute

breast cancer burden to high red meat consumption relies on

meta-analyses of observational studies, which may be subject

to confounding factors and measurement errors. Furthermore,

the disability weights used in DALY calculations are based on

population surveys that may not fully capture the lived experience

of breast cancer patients across different cultural contexts (6, 10).

Future studies should incorporate sensitivity analyses to better

quantify these uncertainties and their impact on burden estimates

and projections.

Conclusions

This comprehensive analysis of breast cancer burden

attributable to high red meat consumption from 1990 to 2021

reveals significant global disparities and concerning future

trends that demand urgent public health attention. While

age-standardized mortality and DALY rates have declined in

high-SDI regions, the absolute burden continues to rise globally,

with particularly pronounced increases in low- and middle-

SDI countries and among younger women aged 25–34 years.

Our machine learning projections indicate that by 2050, the

global burden will reach 99,749 deaths and 2,965,835 DALYs

among females, and 1,982 deaths and 55,585 DALYs among

males, representing substantial increases from current levels.

The persistent health inequalities demonstrated through our

slope index and concentration index analyses, combined with

the frontier analysis revealing significant disparities in disease

control effectiveness across countries, underscore the complex

interplay between dietary risk factors, socioeconomic development,

and healthcare access. These findings highlight the critical need

for targeted, culturally appropriate dietary interventions and

policy frameworks that address modifiable risk factors while

considering regional socioeconomic constraints, particularly in

lower-SDI regions where the burden is projected to increase most

dramatically, thereby providing essential evidence for informed

public health planning and resource allocation strategies tomitigate

the growing global impact of diet-related breast cancer burden.
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