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Spinal cord injury (SCI) leads to complex nutritional alterations, including energy 
imbalance, skewed macronutrient and micronutrient intake, and disrupted nutrient 
absorption and metabolism. These changes contribute to increased risks of obesity, 
cardiovascular disease, metabolic syndrome, and other comorbidities, profoundly 
affecting long-term recovery and quality of life. Despite the growing recognition of 
these challenges, nutritional assessment methods for SCI patients remain fragmented 
and insufficient. This review first outlines the major nutritional consequences 
and clinical implications of SCI, then focuses on current methods for assessing 
nutritional status in this population. Three major domains are discussed: body 
composition analysis, nutrient intake and absorption assessment, and energy 
metabolism monitoring. Traditional tools such as anthropometry, food diaries, 
and indirect calorimetry are discussed alongside advanced technologies including 
magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry (DXA), and 
metabolomics. By highlighting both current limitations and emerging solutions, 
this review underscores the importance of personalized, technology-assisted 
nutritional assessment strategies to guide clinical decision-making and optimize 
outcomes for individuals with SCI.
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1 Introduction

Spinal cord injury (SCI) refers to spinal cord dysfunction caused by trauma or disease, 
leading to partial or complete loss of motor, sensory, and autonomic functions. This injury is 
often irreversible and significantly reduces the quality of life for affected individuals (1–3). 
Recently published international guidelines and expert consensus statements consistently 
recognize that approximately 50% of SCI patients experience complex nutritional changes 
that profoundly affect metabolic function and significantly increase the risk of obesity and 
related complications (4–6). Research has shown that the imbalance between energy intake 
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and expenditure due to SCI differs across injury phases and types. For 
example, the acute phase presents high metabolic demands, which 
may shift to energy excess in the chronic phase, increasing the risk of 
body fat accumulation and metabolic disorders (2, 7–9).

Additionally, imbalances in macronutrient (such as 
carbohydrates, proteins, and fats) and micronutrient(including 
vitamins and minerals) intake complicate weight management and 
metabolic regulation. Specifically, diets high in carbohydrates and 
fats, low in protein, and deficient in micronutrients require urgent 
attention (2, 5, 7, 10). SCI is also associated with gut dysbiosis, a 
condition increasingly recognized in affected individuals (11). 
Although the exact mechanisms remain under investigation, 
current evidence suggests that impaired autonomic control and 
reduced gastrointestinal motility following SCI may contribute to 
alterations in gut microbiota composition (10, 12). These changes 
can disrupt nutrient absorption and metabolism, thereby further 
impacting both digestive and neurological function (11, 13, 14). 
Changes in body composition—such as increased body fat and 
decreased lean body mass(LBM)—exacerbate neurogenic obesity 
and bone loss (15, 16), while fatigue affects rehabilitation 
participation and outcomes (17, 18). Moreover, multiple 
comorbidities like malnutrition, infections, and stress injuries are 
linked to poor nutritional status, adding to the overall health 
burden (8, 19, 20).

Given the variability in injury characteristics, dietary habits, and 
compliance among SCI patients, managing nutritional needs becomes 
complex (8, 21). Therefore, accurate monitoring and assessment of 
nutritional status, including body composition, nutrient intake, 
absorption, and energy metabolism, is essential for optimal 
management of comorbidities and improving patients’ quality of life 
(8, 22–24). By combining advanced assessment tools with 
individualized interventions, SCI patients’ nutritional issues can 
be  more effectively managed, promoting recovery and long-
term health.

This narrative review aims to: (1) examine the impact of SCI on 
nutritional changes, summarizing imbalances in energy and nutrient 
intake at different stages and across injury types. It will focus on how 
these imbalances affect weight management and metabolic regulation, 
emphasizing the importance of dietary interventions. (2) Address the 
challenges posed by changes in body composition, neurogenic obesity, 
bone loss, and other comorbidities. (3) Evaluate methods for assessing 
nutritional status in SCI patients. Ultimately, this review seeks to 
provide a scientific foundation for managing comorbidities and 
improving the quality of life for SCI patients, offering strategies for 
better nutritional management, rehabilitation, and 
health maintenance.

2 Nutritional alterations after spinal 
cord injury

Patients with SCI often experience various nutritional changes 
that can negatively impact their body composition and increase the 
risk of metabolic disorders and other complications. The following 
discussion focuses on changes in energy intake, energy 
expenditure, macronutrient and micronutrient levels to provide a 
comprehensive overview of the nutritional alterations associated 
with SCI.

2.1 Energy imbalance after SCI

Patients with SCI typically face an imbalance between energy 
intake and expenditure, which varies in the acute and chronic phases 
of injury and is influenced by several factors. Understanding the 
dynamics of this imbalance is crucial for managing rehabilitation 
effectively. This section will explore energy intake and expenditure 
separately, as well as the long-term health implications of 
these imbalances.

2.1.1 Energy intake
Energy intake in SCI patients is influenced by factors such as 

age, gender, injury type, severity, and mobility. Studies show that the 
daily caloric intake for SCI patients is generally similar to or slightly 
lower than that of the general population (1,800 to 2,600 kcal/day) 
(7, 8). However, energy intake tends to be lower in older patients, 
females, and those with longer-term injuries (25, 26). During the 
acute phase, SCI patients typically have a higher energy intake 
compared to the recovery phase and to patients with other 
neurological injuries, such as traumatic brain injury (27). In the first 
4 weeks after injury, energy intake may increase by more than 
400 kcal/day, likely due to increased metabolic stress, inflammation, 
and protein breakdown. Moreover, the thermic effect of respiration 
for patients off the ventilator also raises energy requirements. The 
degree of injury further influences energy intake, with paraplegic 
patients generally consuming more calories than tetraplegic patients, 
although differences in research methodology can impact these 
findings (22, 25, 26).

2.1.2 Energy expenditure
Total daily energy expenditure (TDEE) in SCI patients is 

primarily determined by basal metabolic rate (BMR), thermic effect 
of food (TEF), and thermic effect of physical activity (TEPA), with 
BMR being the most significant component. TEPA, which varies 
depending on LBM and activity levels, is the most volatile aspect of 
energy expenditure (28). SCI patients with quadriplegia or complete 
injuries typically have lower TEPA and BMR compared to those 
with paraplegia or incomplete injuries (29–32). During the acute 
phase, metabolic stress and tissue repair demands cause a substantial 
increase in TDEE (33, 34). However, in the chronic phase, energy 
expenditure decreases significantly—up to 54% in quadriplegic 
patients and 20% in paraplegic patients (5). This suggests that 
dietary intake must be adjusted throughout the injury phases to 
prevent energy imbalances. Despite exercise interventions 
increasing TDEE and BMR, the high percentage of body fat in these 
patients remains, indicating that exercise alone is insufficient to 
improve body composition and must be  paired with dietary 
adjustments (34).

2.1.3 Energy imbalance
The imbalance between energy intake and expenditure can have 

significant long-term health consequences. During the acute phase, 
SCI patients may experience negative nitrogen balance due to the 
increased metabolic demands of injury (8, 9). However, in the chronic 
phase, daily energy intake (1,516–2,150 kcal/day) typically exceeds 
energy expenditure (1,414–1,569 kcal/day) (2, 7), leading to energy 
surplus. Over time, this surplus contributes to weight gain, fat 
accumulation, and an elevated risk of secondary health conditions, 
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including cardiovascular disease, insulin resistance, and 
metabolic syndrome.

Measurement methods for energy intake and expenditure in SCI 
patients have limitations, particularly due to reliance on recall 
questionnaires and self-reports, which can introduce inaccuracies. 
The heterogeneity of patient populations—such as differences in 
injury severity and duration—further complicates comparisons across 
studies. Future research should employ more standardized quantitative 
tools and multicenter designs to improve the accuracy and 
comparability of results.

In conclusion, energy intake and expenditure in SCI patients vary 
significantly across injury stages and types. While acute-phase energy 
demands are high, these eventually shift to a risk of energy surplus in 
the chronic phase, promoting fat accumulation and metabolic 
disturbances. Existing studies on energy balance are hindered by 
measurement challenges and patient variability, highlighting the need 
for standardized methodologies. Effective management of energy 
balance is crucial for preventing complications and optimizing 
rehabilitation, with the quality of macronutrient intake—beyond just 
total calorie consumption—playing a key role in maintaining health. 
This aspect will be explored further in the following sections.

2.2 Imbalanced nutrient intake after SCI

Patients with SCI often exhibit significant imbalances in their 
nutrient intake, characterized by both inadequate and excessive 
consumption of macronutrients and micronutrients (Figure 1). These 
dietary imbalances not only increase the risk of metabolic syndrome 
and cardiovascular disease but also adversely affect weight 
management, metabolic regulation, bone health, and overall quality 
of life (8).

2.2.1 Macronutrient intake imbalances

2.2.1.1 Carbohydrates
Carbohydrate intake in SCI patients is typically high, averaging 

969 kcal/day (95% CI: 851–1,087) in chronic SCI cases (7), far exceeding 
the USDA 2020–2025 Dietary Guidelines, which recommend 
carbohydrate intake contributing 45–65% of total daily energy 
(approximately 225–325 g/day based on a 2,000 kcal diet). This high 
carbohydrate intake is inconsistent with the decreased energy expenditure 
observed in SCI patients, exacerbating challenges in weight management. 
Patients tend to consume an excessive amount of simple carbohydrates 

FIGURE 1

Nutritional changes after spinal cord injury and their impact on health status and nutrition-related complications. The left section details nutritional 
imbalances in SCI, such as altered energy balance, macronutrient changes, and micronutrient deficits, alongside the gut microbiota’s role. The middle 
section highlights body composition changes (lean body mass, body fat) and associated fatigue, affecting 40–60% of SCI patients. The right section 
outlines nutrition-related complications, including neurological impairments, immune dysfunction, pressure injuries, osteoporosis, and 
cardiometabolic syndrome. Arrows indicate trends: “↑” for increases and “↓” for decreases. Part of the figure was created using FigDraw.com.
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while under-consuming complex carbohydrates and dietary fiber. As a 
result, their dietary fiber intake averages only 17 g/day, significantly lower 
than the recommended 25–34 g/day for adults. This fiber deficiency 
contributes to metabolic imbalances and worsens symptoms of 
neurogenic bowel dysfunction, such as constipation and prolonged 
intestinal transit time. A gradual increase in dietary fiber to 30 g/day is 
recommended for chronic SCI patients, but this should be accompanied 
by adequate fluid intake to avoid worsening bowel symptoms (10, 35).

2.2.1.2 Protein
Daily protein intake in chronic SCI patients averages 319 kcal 

(95% CI: 294–345) (7), exceeding the USDA recommendation that 
protein should account for 10%–35% of total daily calories 
(approximately 50–175 g/day for a 2,000 kcal diet). While protein 
intake generally meets or exceeds recommendations, it may 
decline with weight gain during the chronic phase, particularly in 
obese patients (36). One study found that protein and fat intake 
were higher in quadriplegic patients compared to paraplegic 
patients (33). However, this higher intake does not prevent the risk 
of neurogenic obesity, which is more common in patients with 
lower activity levels. Interestingly, despite higher protein intake, 
some obese SCI patients still suffer from insufficient protein 
consumption relative to their caloric intake, suggesting a complex 
relationship between obesity, protein intake, and dietary structure. 
Excessive protein intake may also negatively affect bone mineral 
density (BMD) in the lumbar spine, though no significant effects 
have been noted for the femur or hip. Therefore, a balanced 
approach considering both body composition and bone health is 
essential when managing protein intake.

2.2.1.3 Fat
Fat intake in chronic SCI patients averages 663 kcal/day (95% CI: 

590–736), representing 34–40% of total energy intake (7), which 
exceeds the USDA recommended range of 20–35%. More concerning 
is the source of fat intake, particularly the high consumption of 
saturated fatty acids (SFAs). The USDA recommends replacing SFAs 
with monounsaturated (MUFA) and polyunsaturated fatty acids 
(PUFA) to promote cardiovascular health. However, SCI patients, 
particularly those with paraplegia and quadriplegia, tend to exceed 
recommended levels of SFA intake (8). High SFA consumption is 
linked to increased risks of cardiovascular disease and all-cause 
mortality (37, 38). The Paralyzed Veterans of America recommends 
limiting SFA intake to 5–6% of total energy in SCI patients to reduce 
the risk of cardiovascular disease. Additionally, MUFA intake tends to 
be higher in patients with incomplete injuries compared to those with 
complete injuries, and PUFA metabolism is disrupted in the spinal cord 
following SCI, leading to omega-6 fatty acid imbalance and omega-3 
(specifically docosahexaenoic acid (DHA)) deficiency. This imbalance 
contributes to neurological dysfunction, including pain and motor 
issues, and may be alleviated by a diet rich in omega-3 PUFA (39–41).

2.2.2 Micronutrient intake imbalances
Micronutrient deficiencies are common in chronic SCI patients, 

with many suffering from insufficient levels of vitamins A, B5, B7, B9, 
D, E, and minerals such as potassium and calcium. Conversely, 
excessive intake of vitamins B1, B2, B3, B12, C, K, sodium, phosphorus, 
copper, and zinc has been noted (7). Vitamin D deficiency, in 

particular, is widespread, especially in the winter months, and even 
elite SCI athletes face this issue due to reduced outdoor activity. 
Prolonged vitamin D deficiency often results in sublesional bone loss, 
increasing the risk of osteoporosis and fractures (42, 43). Additionally, 
the majority of SCI patients have inadequate calcium intake, which, 
combined with reduced dairy consumption, exacerbates bone health 
issues (44–46). To mitigate these risks, adequate intake of vitamin D 
and calcium should be a nutritional priority in SCI management.

Beyond vitamin D, the homeostatic balance of other vitamins 
plays an equally crucial role in the rehabilitation of individuals with 
SCI, influencing a range of physiological processes such as immune 
regulation, oxidative stress control, and neural repair. For example, 
vitamin A has been shown to promote neural regeneration and exerts 
neuroprotective effects in SCI animal models (47). B-complex 
vitamins have been found to inhibit apoptosis, enhance remyelination, 
and improve lipid metabolism (48, 49). Vitamin C contributes to 
regulate inflammation and oxidative stress (50), while vitamin E exerts 
neuroprotective effects by modulating immune responses (51). 
Although emerging clinical evidence supports the potential benefits 
of systemic vitamin supplementation (52), the optimal dosage and 
administration regimens remain to be established through large-scale 
randomized controlled trials.

Mineral imbalances may likewise hinder functional recovery after 
SCI. Trace elements such as zinc and selenium are vital for the 
regulation of oxidative stress and neural remodeling via modulation of 
peroxidase activity (53, 54). Major electrolytes—sodium, potassium, 
magnesium, and calcium—function synergistically to maintain nerve 
conduction, muscle contraction, and bone metabolism. These 
multisystem regulatory functions are particularly relevant to SCI, which 
affects neural, motor, and autonomic systems (7, 21, 44). It is important 
to emphasize that mineral supplementation must follow individualized 
dosing principles, as both deficiencies and excesses can disrupt internal 
homeostasis and increase the risk of secondary complications.

Given the complexity of micronutrient imbalances and their wide-
ranging impacts post-injury, personalized monitoring and targeted 
dietary planning should be integrated into routine SCI management. 
Such strategies are essential for supporting metabolic, musculoskeletal, 
and neurological recovery throughout the rehabilitation process.

In summary, SCI patients typically have diets high in 
carbohydrates and fats but low in protein, fiber, and essential 
micronutrients. These imbalances contribute to difficulties in weight 
management, metabolic regulation, cardiovascular health, bone 
density, and neurological function. Given these challenges, 
understanding the nutritional implications and complications of SCI 
is crucial for effective management and rehabilitation.

3 Nutritional implications and 
complications in SCI patients

3.1 Physical and mental status after SCI

Nutritional changes following SCI lead to significant alterations 
in body composition, particularly an increase in body fat and a 
decrease in lean body mass (LBM). Studies show that neurogenic 
obesity affects between 22 and 97% of adult SCI patients, contributing 
to dysfunctional energy metabolism, reduced physical adaptation, 

https://doi.org/10.3389/fnut.2025.1576976
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2025.1576976

Frontiers in Nutrition 05 frontiersin.org

sympathetic nervous system dysfunction, hormonal abnormalities, 
altered satiety, and loss of LBM (5, 55). Bone loss is another rapid 
consequence of SCI, with bone mineral density at the knee and hip 
decreasing by 2 to 4% per month (56, 57), totaling approximately 20% 
within the first year of injury (15, 58). Skeletal muscle mass below the 
injury site also diminishes significantly, with cross-sectional area 
decreasing by as much as 48% within the first 6 weeks (59). Skeletal 
muscle atrophy contributes to 30 to 60% of total LBM loss in SCI 
patients (16). Given these reductions in LBM, many SCI patients are 
classified as overweight or obese based on body fat percentage (55).

In individuals with SCI, the coexistence of obesity and 
malnutrition—two seemingly contradictory conditions—has emerged 
as a significant clinical concern. This dual risk, often referred to as 
“obesity–malnutrition,” arises from a complex interplay of 
physiological, psychological, and social factors. On the one hand, 
imbalanced dietary intake can lead to excess caloric consumption, 
particularly when increased protein intake is not offset by a reduction 
in other macronutrients, thereby increasing the risk of neurogenic 
obesity (60). On the other hand, neurogenic obesity itself can further 
disrupt metabolic processes, exacerbating nutritional deficiencies (35).

Beyond metabolic dysregulation and reduced physical activity 
inherent to SCI, psychosocial and functional limitations also play a 
critical role in the development of this dual nutritional burden. 
Psychological disorders are highly prevalent among individuals with 
SCI (61), and may reduce engagement in outdoor activities and 
rehabilitation programs (62), thus lowering overall energy 
expenditure. Functional impairments—such as wheelchair 
dependence and compromised hand function—can limit the ability to 
shop for, prepare, and store nutritious foods, fostering reliance on 
low-quality, energy-dense convenience foods (63). Additionally, 
changes in food-related social dynamics, feelings of loneliness and 
shame, and a diminished sense of autonomy during assisted feeding 
may not only affect nutritional intake but also negatively alter the 
overall eating experience (64).

Compounding these issues, approximately 40 to 60% of 
individuals with SCI report moderate to severe fatigue, which further 
interferes with daily functional activities and hinders participation in 
rehabilitation (17). Fatigue in this population has been linked to 
reduced motor performance, psychological distress, and nutritional 
imbalances (18, 65), reinforcing a vicious cycle in which physical and 
mental decline contribute to poor dietary outcomes, which in turn 
perpetuate both malnutrition and obesity.

3.2 SCI comorbidities from a nutritional 
perspective

Autonomic dysfunction following SCI disrupts the sympathetic, 
parasympathetic, and enteric nervous systems, leading to impaired 
gastrointestinal motility, digestion, and nutrient absorption (12). 
These effects vary based on injury severity and may persist for years, 
significantly compromising nutritional status (12, 66). The resulting 
nutritional alterations are closely associated with a range of 
comorbidities that directly affect recovery and quality of life.

Malnutrition is common, with studies showing that 62% of SCI 
patients are at risk of malnutrition 3 months post-injury, with this risk 
remaining as high as 40% at discharge (67). Malnutrition is strongly 

correlated with poor neurological recovery and increased mortality, 
particularly among older patients (3). It weakens immune function, 
increasing susceptibility to infections and prolonging recovery time. 
SCI patients, especially those at risk for malnutrition, also face a high 
incidence of urinary tract infections, which affect up to 50% of these 
patients (68).

Stress injuries, such as decubitus ulcers, are common in SCI 
patients and are often exacerbated by poor nutritional status. Inadequate 
protein and energy intake contribute to impaired skin healing, while 
static postures due to reduced mobility further increase the risk of 
pressure ulcers. Studies show that appropriate nutritional interventions 
can improve wound healing and reduce the risk of pressure injuries 
(69). Additionally, SCI patients often experience reduced physical 
activity, further increasing the risk of obesity and metabolic syndrome. 
The presence of metabolic syndrome, along with chronic systemic 
inflammation caused by excessive body fat, may heighten the risk of 
neuropathic pain (70). Furthermore, the combination of increased body 
fat and decreased muscle mass may predispose SCI patients to chronic 
diseases such as type 2 diabetes and cardiovascular disease (6, 71).

An emerging issue in SCI patients is the gut microbiota dysbiosis. 
SCI can impair autonomic control of the gastrointestinal system, 
leading to slower transit time and increased intestinal permeability—
both of which are known contributors to microbial imbalance (10, 12). 
Additionally, factors such as reduced mobility, altered diet, and frequent 
antibiotic use further promote dysbiosis in this population (65). Such 
dysbiosis of the gut microbiota has been linked to systemic 
inflammation and metabolic disturbances, potentially contributing to 
the aggravation of other SCI-related complications (11, 13, 14). 
Nutritional changes after SCI are closely linked to alterations in gut 
microbiota composition and metabolism, which affect the intake and 
metabolism of nutrients. Dysbiosis can also impact the host through 
the gut–brain axis, exacerbating neurogenic bowel dysfunction and 
other related problems. These changes in gut function, including 
altered digestion, absorption, and appetite, indirectly worsen 
nutritional problems after SCI (72–74). The interaction between dietary 
changes and gut dysbiosis is complex and under-researched, warranting 
further investigation into the mechanisms at play (13, 66). This 
relationship could help develop more effective strategies for addressing 
the nutritional challenges faced by SCI patients.

In summary, SCI patients face a range of nutritional complications, 
including imbalances in body composition, malnutrition, and 
comorbidities such as infections, stress injuries, and metabolic 
syndrome (Figure 1). These complications not only hinder recovery 
but also pose long-term health risks. Addressing nutritional 
imbalances through tailored interventions is essential for improving 
the overall health and rehabilitation outcomes of SCI patients. 
Furthermore, the connection between gut microbiota dysbiosis and 
nutritional changes highlights the need for a holistic approach to 
managing SCI patients’ nutritional needs, incorporating both dietary 
adjustments and gut health interventions.

4 Nutritional systems assessment 
methods for spinal cord injury

Nutritional assessment in patients with SCI is a comprehensive 
and systematic process designed to identify nutritional issues and 
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their underlying causes and severity. This assessment involves the 
collection and analysis of relevant data to guide individualized 
interventions. Continuous monitoring ensures that these interventions 
remain effective and aligned with the patient’s evolving needs. A 
thorough nutritional assessment typically includes evaluations of body 
composition, nutrient intake and absorption, and energy metabolism 
(Table  1). Given the unique physiological changes and metabolic 
disturbances resulting from SCI, conventional assessment methods 
may not fully capture the specific needs of these patients. Therefore, 
these methods must be complemented by specialized clinical tools and 
technologies to provide a more accurate and detailed picture of a 
patient’s nutritional status. This integrated approach enables the 
development of more effective health management strategies tailored 
to the individual.

4.1 Body composition assessment: from 
macroscopic characterization to precise 
measurement

Body mass index (BMI) serves as a widely used tool for assessing 
the body composition of SCI patients, particularly for screening and 
research purposes (75). While BMI is useful for grouping patients and 
predicting mortality risk, its limitations in accurately reflecting body 
composition in SCI patients have been recognized. Studies have linked 
BMI to mortality risk, with both low (<18.5) and high (≥35.0) BMI 
associated with increased mortality in SCI patients (76), although 
higher BMI may offer a slight protective effect over a longer duration 
(77). BMI’s utility varies depending on the type and extent of spinal 
cord injury; for example, it is more accurate in paraplegic patients 
than in those with tetraplegia (78). The substantial reduction in LBM 
seen post-SCI limits the usefulness of BMI as a sole indicator of 
obesity and body composition. While adjusting the BMI threshold to 
22 kg/m2 partially improves obesity screening, it still fails to provide a 
precise assessment of muscle and fat distribution. To improve 
accuracy, BMI should be  used in combination with other body 
composition metrics.

Waist circumference, hip circumference, and related measures 
(e.g., waist-to-hip ratio and waist-to-height ratio) are valuable for 
assessing body composition, especially for monitoring localized fat 
(79). Waist circumference, in particular, has been linked to abdominal 
adiposity, metabolic risk, and the Framingham Risk Score. Studies 
suggest that a waist circumference cutoff of 94 cm offers 100% 
sensitivity and 79% specificity in identifying cardiovascular risk in SCI 
patients, with some refining this cutoff to 86.5 cm (23, 80). These 
measurements help identify obesity levels and assess the associated 
risks of cardiovascular disease.

More specific body composition assessments in SCI patients focus 
on three key areas: muscle, fat, and bone. Macroscopic indicators such 
as arm and thigh circumference can provide preliminary estimates of 
muscle mass. When combined with skinfold thickness measurements, 
they can be used to approximate limb muscle cross-sectional area and 
body fat percentage in a non-invasive manner (81). However, limb 
atrophy, especially in quadriplegic and hemiplegic patients, 
complicates the predictive value of these measurements, necessitating 
further validation (82). For more precise assessments, imaging 
techniques such as MRI and ultrasound are increasingly used to 
measure muscle mass accurately.

The assessment of visceral fat is another important aspect of body 
composition in SCI patients, as increased visceral fat is closely linked 
to metabolic diseases such as insulin resistance and type 2 diabetes 
(83, 84). Visceral fat can be measured using imaging techniques like 
MRI and CT, which provide precise data on fat distribution, enabling 
the identification of high-risk individuals and informing 
personalized interventions.

BMD monitoring is particularly important in the first year 
following SCI, as this is when bone loss tends to be  most severe, 
especially in weight-bearing regions such as the distal femur and 
proximal tibia (85). Early monitoring of BMD changes is essential for 
preventing fractures (85). Body composition monitoring not only 
helps assess a patient’s physical status and health risks but also guides 
adjustments in nutritional intake and rehabilitation regimens, 
supporting the evaluation of interventions such as functional electrical 
stimulation (86, 87).

Due to the disease-specific nature of SCI, body composition in 
SCI patients varies over time, depending on the injury type and 
extent. Monitoring these changes is crucial for developing 
individualized treatment regimens. Advanced MRI techniques, with 
their superior soft tissue resolution, allow for accurate quantification 
of ectopic fat deposition (e.g., hepatic steatosis) and muscle 
distribution patterns. In SCI populations, such imaging modalities 
offer distinct advantages by enabling precise characterization of 
neurogenic obesity and disuse muscle atrophy (24). MRI-derived 
metrics have already been applied in genome-wide association 
studies to link body composition traits with metabolic risk (88), and 
could be similarly valuable in SCI for identifying phenotype-specific 
metabolic alterations and informing targeted interventions. 
Ultrasound technology, with its real-time capability, is an effective 
tool for dynamically assessing muscle mass, particularly in a clinical 
or rehabilitation setting (89). While dual-energy X-ray 
absorptiometry (DXA) is considered the ‘gold standard’ for body 
composition assessment due to its high reproducibility and ability to 
provide detailed data on fat, muscle, and bone mineral, its use is 
limited by radiation exposure (79). Bioelectrical impedance analysis 
(BIA), a non-invasive and easy-to-perform method, is particularly 
useful for assessing fat mass, offering high accuracy, especially in 
women and SCI patients with incomplete motor function (90). 
However, the use of generic BIA prediction equations can lead to 
inaccurate fat-free mass (FFM) assessments, particularly in male 
patients with complete cervical cord injury (91). Thus, developing 
specific BIA equations for the SCI population remains an important 
area of ongoing research.

4.2 Nutritional intake and absorption 
assessment: from dietary records to 
metabolomics

Accurate assessment of nutritional intake and absorption is 
critical for optimizing the health status of patients with SCI. Common 
methods used to assess nutrient intake include the 24-h dietary recall 
and the food frequency questionnaire (FFQ). The 24-h dietary recall 
provides a detailed snapshot of a patient’s food consumption over a 
short period, offering valuable insights into energy intake and nutrient 
distribution in SCI patients. It helps reveal dietary patterns and 
nutrient requirements (92, 93). The FFQ, on the other hand, offers a 

https://doi.org/10.3389/fnut.2025.1576976
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 
10

.3
3

8
9

/fn
u

t.2
0

2
5.1576

9
76

Fro
n

tie
rs in

 N
u

tritio
n

0
7

fro
n

tie
rsin

.o
rg

TABLE 1 Comparison of systematic nutritional assessment methods for patients with spinal cord injury.

Evaluation 
dimension

Method/tool Key indicators Advantages Limitations References

Body composition 

assessment

Basic Anthropometric 

Tools

Height, weight, skinfold thickness, body and limb 

circumferences (waist, arm circumference, etc.) 

and derived indices (BMI, WHtR, WHR)

Non-invasive; low cost; easy to operate; rapid 

screening; widely used in clinical practice

Primarily for initial assessment, not suitable for detailed 

evaluation; measurement methods need to be adjusted 

for SCI patients; controversial screening and predictive 

effectiveness for some indicators

(23, 75, 76, 77, 79, 82)

Ultrasound Muscle length, thickness, CSA, and other muscle 

morphology data; blood flow parameters, 

vascular morphology data

Non-invasive, easy to operate, real-time dynamic 

observation, high portability, multi-parameter 

evaluation

High operator dependence; limited depth and field of 

view; low image resolution; cannot provide 

comprehensive assessment

(89)

MRI Fat distribution, more accurate measurements of 

waist, arm circumference, etc.; especially the 

length, CSA of individual muscles

Non-invasive; high soft tissue resolution; 

quantifiable

Limited by space, cannot be performed at the bedside; 

high cost

(88)

Dual-Energy X-ray 

Absorptiometry (DXA)

Data on fat, muscle, and bone density Gold standard, high repeatability Radiation exposure limits frequent use; expensive 

equipment; high cost

(79)

Bioelectrical Impedance 

Analysis

Fat content, body fat percentage, LBM, water 

content

Non-invasive, convenient, suitable for fat mass 

assessment (especially in women and individuals 

with impaired mobility)

Prediction errors in body fat percentage for SCI patients 

need calibration; general equations for male cervical 

SCI patients’ FFM assessment may be biased, specific 

equations needed

(90, 91)

Nutritional intake and 

absorption assessment

24-h Dietary Recall and 

Food Frequency 

Questionnaire (FFQ)

Dietary intake and types, dietary habits Simple and convenient; comprehensive 

assessment; low cost; short-term intake 

evaluation, reveals dietary patterns and 

nutritional needs

High subjectivity, dependent on patient memory; 

difficult to describe special diets; inaccurate 

quantification; FFQ categories limited; poor SCI 

specificity

(92, 93, 94)

SCI-specific Nutritional 

Screening Tool (SNST)

Weight changes, dietary intake, gastrointestinal 

function, SCI condition

Simple and convenient; highly applicable; 

optimizes muscle wasting and resting energy 

expenditure assessment; more accurate in 

identifying high-risk malnutrition patients; 

higher sensitivity and negative predictive value 

than traditional screening tools

High subjectivity; lack of standardization; low adoption 

rate

(96, 97)

Simplified Nutritional 

Appetite Questionnaire 

(SNAQ)

Appetite status, meal frequency, satiety Simple and convenient; rapid screening; assesses 

appetite characteristics, complements nutritional 

status assessment

High subjectivity; lacks specificity (99, 100)

Stable Isotope Labeling 

Techniques (e.g., 
13C-Leucine)

Nutrient absorption efficiency (e.g., fat 

absorption), tissue utilization efficiency

Accurate quantification of nutrient absorption 

efficiency, reveals metabolic disruption 

mechanisms

Complex operation, high cost (101, 102)

Intestinal Permeability 

Testing (e.g., Lactulose/

Mannitol permeability 

test, tight junction 

biomarkers)

Monitoring of substance intake and absorption 

(e.g., lactulose, mannitol)

Simple; non-invasive; reflects changes in intestinal 

permeability, assesses nutrient absorption

High technical requirements; complex result 

interpretation; significant individual variability

(103)

Metabolomics 

Techniques (LC–MS/

MS, 1H NMR)

Metabolic profile changes of SCI-specific 

metabolites, indirectly assesses breakdown and 

absorption efficiency

Analyzes nutritional metabolism pathways, 

identifies SCI-specific metabolites (e.g., 

acetylphosphate)

Exploratory tool, clinical translation requires validation (105, 106, 107)

(Continued)
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broader overview of long-term eating habits, helping to assess the 
overall nutritional status of SCI patients over time (94, 95).

To bridge this gap, the Spinal Nutritional Screening Tool (SNST) 
was developed. The SNST assesses nutritional status based on eight 
domains, incorporating SCI-specific indicators such as injury level, 
pressure ulcer risk, and ventilatory support requirements (96). A total 
score exceeding 15 suggests high nutritional risk, whereas a score of 
10 or below indicates low risk (96). It demonstrates higher sensitivity 
and negative predictive value in detecting malnutrition risk compared 
to NST and MUST, particularly among high-risk groups such as 
tetraplegic patients (96, 97). The tool is suitable for nutritional 
screening and for use by both clinical dietitians and rehabilitation 
teams in planning nutritional interventions tailored to 
SCI-specific challenges.

The Simplified Nutritional Appetite Questionnaire (SNAQ) is 
a validated instrument that offers a valuable supplement to 
comprehensive nutritional assessments in individuals with SCI. It 
consists of several core items targeting appetite, satiety, taste 
alterations, and eating frequency (98). Due to its brevity and ease 
of use, the SNAQ is well-suited for both clinical practice and 
research contexts. Prior studies have shown its utility in effectively 
evaluating appetite and predicting unintentional weight loss, 
thereby facilitating the early identification of patients who may 
benefit from targeted nutritional interventions (99, 100). 
Combining general and SCI-specific tools such as FFQ, SNST, and 
SNAQ provides a comprehensive approach to assessing dietary 
intake and nutritional risk in SCI patients, facilitating timely and 
individualized interventions.

SCI also causes neurogenic bowel dysfunction and disrupts 
autonomic regulation, leading to altered nutrient absorption and 
metabolism. Therefore, it is essential not only to assess nutrient 
intake but also to monitor nutrient absorption and utilization. 
Stable isotope labeling techniques, such as 13C-leucine, 15N-glycine, 
and 13C-glucose, can accurately quantify nutrient absorption 
efficiency and tissue utilization, offering valuable insights into the 
metabolic disruptions caused by SCI (101, 102). Furthermore, 
lactulose/mannitol permeability assays and biomarkers like 
lipopolysaccharide-binding protein and zonulin can be used to 
assess intestinal function, providing additional data to understand 
nutrient absorption and the integrity of the intestinal barrier 
(103). These methods not only validate dietary self-reports but 
also incorporate biomarkers to help establish early warning 
models for nutritional risk in SCI patients (104).

Metabolomics is emerging as a powerful tool for assessing 
nutrient absorption at the molecular level. By analyzing metabolic 
profiles, researchers can trace the metabolic fate of nutrients in 
the body, offering a more detailed understanding of the body’s 
response to food intake. For example, plasma short-chain fatty 
acids profiles, analyzed via liquid chromatography–tandem mass 
spectrometry (LC–MS/MS), can reflect the colonic catabolic 
efficiency of dietary fiber (105). Additionally, 1H nuclear magnetic 
resonance (NMR) spectroscopy can track changes in serum 
metabolic profiles over time, helping to observe metabolic shifts 
during different stages of SCI (106, 107). Studies have identified 
SCI-specific metabolites, such as acetyl phosphate (linked to 
delayed carbohydrate uptake) and 1,3,7-trimethyluric acid 
(reflecting purine metabolism disorders), which not only elucidate 
the underlying mechanisms of nutrient uptake and metabolism T
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disruptions but, when combined with machine learning, can guide 
precision nutritional interventions (e.g., macronutrient 
supplementation, micronutrient fortification, and gut microbiota 
modulation) for SCI patients (106, 107).

4.3 Energy metabolism assessment: static 
demand and dynamic consumption

SCI patients often experience significant physical dysfunction 
and metabolic disturbances, leading to energy intake exceeding 
energy expenditure, which can result in obesity and cardiovascular 
metabolic disorders. Accurate measurement of energy metabolism 
is essential to avoid excessive caloric intake and help prevent 
obesity-related complications. However, predicting energy 
demands for SCI patients remain challenging due to the large 
individual variations in this population. Current prediction 
equations often lead to significant biases (108). Indirect 
calorimetry (IC), the gold standard for measuring resting energy 
expenditure (REE), remains the most reliable method for assessing 
energy needs in SCI patients, but its use is limited by availability 
and cost (109, 110). Notably, clinical guidelines, including a 2018 
consensus on cardiometabolic risk in SCI, recommend the use of 
IC to estimate energy expenditure and guide nutritional 
assessment (6).

The doubly labeled water (DLW) technique offers a precise 
method for evaluating TDEE by tracking the metabolic kinetics of 
water (111). It is particularly useful in determining changes in 
physical activity levels but is also complex and costly, which limits 
its use in large-scale clinical settings (49, 112).

Dynamic energy expenditure monitoring is becoming more 
feasible through wearable technologies. For patients with 
incomplete spinal cord injuries, wearable sensors have been 
developed to estimate energy expenditure, especially for those 
capable of walking (113, 114). For wheelchair users, accelerometers 
and demographic data can be used to predict energy expenditure 
during various activities, such as resting, wheelchair propulsion, 
and arm movements, offering more accurate predictions of energy 
needs (29, 114). Smartphone accelerometers have also proven to 
be a cost-effective alternative for estimating energy expenditure 
in full-time manual wheelchair users (115). Although 
commercially available wearable sensors designed for individuals 
with SCI (e.g., wearable electromyography sensors by Shirley Ryan 
AbilityLab) are already on the market, their applicability remains 
limited due to the heterogeneity of the SCI population (116). 
Challenges persist regarding sensor types, measurement accuracy, 
adaptability, and cost-effectiveness. Integrating energy 
expenditure sensors with wearable technologies such as 
exoskeletons specifically designed for SCI patients may represent 
a promising direction for future development.

Additionally, heart rate variability (HRV) is gaining attention 
as a tool for activity recognition and energy expenditure 
estimation. Studies have shown that HRV parameters can improve 
the performance of energy expenditure prediction models, 
suggesting that HRV, combined with wearable technology, has 
great potential for dynamic energy monitoring in SCI patients 
(117). However, due to the diversity and complexity of the SCI 
population, further refinement of algorithms and methods is 

necessary to enhance the accuracy of energy expenditure 
predictions for complex activities.

In summary, accurate assessment of energy metabolism is 
crucial for individuals with SCI, as it directly informs nutritional 
strategies to prevent obesity and related complications. Despite 
promising advances in wearable technologies, several challenges 
persist, including variability in injury characteristics, metabolic 
heterogeneity, sensor misalignment, and discrepancies between 
commercial and clinical-grade devices. These factors contribute 
to inaccuracies in energy expenditure estimation and underscore 
the need for further algorithm refinement, clinical validation, and 
device standardization.

Looking ahead, future developments are expected to focus on 
integrated systems that combine real-time energy monitoring with 
individualized nutritional feedback. The incorporation of machine 
learning algorithms and multimodal sensor data—such as 
accelerometry, heart rate variability, and skin temperature—may 
enable more precise, personalized metabolic assessments. Cutting-
edge innovations include sensor-embedded garments, AI-driven 
prediction models, and closed-loop systems that automatically 
adjust dietary plans based on energy outputs (118–120). These 
technologies not only enhance usability and reduce patient burden 
but also provide actionable data for clinicians. By supporting 
dynamic, personalized nutritional management, such wearable 
systems could play a pivotal role in improving the nutrition-
oriented quality of life in SCI patients.

5 Conclusion

SCI induces substantial changes in energy balance and nutrient 
metabolism, which can elevate the risk of obesity, metabolic 
disorders, and various other complications. Effective management of 
these alterations requires robust monitoring of body composition, 
nutrient intake and absorption, and energy metabolism. Integrating 
advanced assessment tools with personalized interventions is 
essential for addressing the complex nutritional needs of SCI patients 
and improving their overall outcomes. Moreover, emerging 
technologies such as metabolomics and wearable sensors offer 
promising opportunities to refine clinical practices, enhance the 
accuracy of nutritional assessments, and support individualized 
rehabilitation strategies. These innovations have the potential to 
significantly improve the quality of care for SCI patients and optimize 
their long-term health and recovery.
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