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Introduction: Meat species fraud seriously harms the interests of consumers and 
causes food safety problems. Hyperspectral imaging is capable of integrating spectral 
and imaging technology to simultaneously obtain spectral and spatial information, 
and has been widely applied to detect adulteration and authenticity of meat.

Methods: This study aims to develop a portable hyperspectral imager (HSI) and a 
discrimination model for meat adulteration detection. The portable push broom 
HSI was designed with the spectral resolution of 5 nm and spatial resolution of 
0.1 mm, and controlled with the Raspberry Pi to meet the requirement of on situ 
rapid detection. To improve generalization, the model transfer method was also 
developed to achieve model sharing across instruments, providing a reliable 
solution for rapid assessment of meat species.

Results: The results demonstrate that the model transfer method can effectively 
correct the spectral differences due to instrument variation and improve the 
robustness of the model. The support vector machine (SVM) classifier combined 
with spectral space transformation (SST) achieved a best accuracy of 94.91%. 
Additionally, a visualization map was proposed to provide the distribution of 
meat adulteration, offering valuable insights for fraud detection.

Conclusion: The portable HSI enables on-site analysis, making it an invaluable 
tool for various industries, including food safety and quality control.
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1 Introduction

Meat and meat products are an important source of high-quality protein in the human 
diet, providing essential amino acids, fatty acids, vitamins, and other nutrients (1–3). However, 
the higher growth rate in meat consumption leads to fraud in processed meat products (4). 
Meat species fraud typically involves the substitution of one meat species for another, or the 
presence of animal species that are not labeled (5). Unlabeled meat may contain allergens or 
pathogens, increasing food safety risks. Additionally, meat adulteration may violate religious 
culture and harm the interests of consumers. Therefore, effective supervision is very important 
for ensuring the suitable development of the meat industry, and reliable detection technologies 
are fundamental technical support for this goal. The most commonly used methods for meat 
species detection include biochemical, immunological and molecular methods, such as liquid 
chromatography, polymerase chain reaction, electrophoretic separation and enzyme-linked 
immunosorbent assay (6–9). However, these methods often require complex sample 
preparation, such as tissue disruption, target analyte extraction, and purification, and these 
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pretreatment processes are invasive, cumbersome, and 
time-consuming.

Taking advantage of rapid, non-destructive and low-cost, the 
spectroscopic methods, including near-infrared (NIR), mid-infrared 
(MIR), ultraviolet–visible (UV–VIS), and Raman spectroscopy, have 
been widely used to detect adulteration and authenticity of meat 
(10–13). However, most spectral systems using fiber optic probes or 
integrating spheres only collect reflected or transmitted light in small 
areas of the sample, which can result in unrepresentative spectral 
sampling and low accuracy for detecting adulteration in meat with 
heterogeneous characteristics.

Hyperspectral imaging technology, which collects both 
spectral and spatial information from a sample, has become a 
powerful tool for meat authenticity (14). The hyperspectral data 
cube could be used to characterize complex and inhomogeneous 
meat samples, as well as identify surface and sub-surface 
components. Masithoh et al. (15) employed a short-wavelength 
HSI and partial least squares regression (PLSR) to predict pork 
content in ground beef, achieving a coefficient of determination 
( 2R ) of 0.97 and a root mean square error (RMSE) ranging from 
2.47 to 2.55%. Zhang et al. (16) combined hyperspectral images 
with recurrence plot transformation and convolutional neural 
network (RP-CNN) to detect adulterated mutton, achieving a 
classification accuracy of 100%. Jia et  al. (17) utilized near-
infrared HSI combined with genetic algorithm-backpropagation 
artificial neural network for identifying substitution fraud in 
ground beef. The sensitivity and specificity of the model were 
100%. The methods described above integrate spectroscopy with 
machine learning and deep learning techniques to achieve high-
precision classification and prediction of meat adulteration. 
Hyperspectral imaging not only provides rich spectral information 
but also captures surface features of meat, such as texture and 
color (18). Image analysis allows for the extraction of texture 
features, which can reveal subtle differences in meat structure 
related to species or quality. Wan et al. (19) fused spectral and 
textural features of hyperspectral images to predict myoglobin 
content in nitrite-cured mutton, and the optimal model achieved 
a prediction RMSE of 3% for oxymyoglobin (OxyMb) and 3.2% 
for methemoglobin (MetMb). Kucha et al. (20) obtained mean 
spectral features, gabor filter features, and wild line detector 
features from hyperspectral images of pork loin and developed a 
PLSR model to assess the intramuscular fat quality. These results 
indicate that the combination of spectral and texture features 
facilitates the rapid assessment of meat quality, offering a robust 
tool for adulteration detection and quality control.

With breakthroughs in micro-mechanical systems, micro-
dispersive optics and narrow-band filtering systems, portable and 
handheld spectrometers have become one of the most 
commercially available platforms for meat monitoring and quality 
detection (21). Sigernes et al. (22) designed a lightweight push 
broom HSI with a dispersive element housing printed by a 
thermoplastic 3D printer. The device is portable and weighs 200 g. 
The bandpass is in the range from 1.4–5 nm with a spectral range 
in the visible to the near-infrared. Henriksen et al. (23) developed 
a new optomechanical design based on the HSI using commercial 
off-the-shelf components, which has a spectral resolution of 
3.69 nm. The device is also compact, measuring 3220 65 65 mm× ×  
and weighing 650 g. Xue et al. (24) developed a highly compact 
HSI with automatic geometric rectification. The spectral range is 

from 400 nm to 1,000 nm with an excellent spectral resolution of 
2.5 nm. The use of portable HSI and spectrometers contributes to 
ease and convenient data acquisition for online or in-situ 
applications, due to the low cost, simplicity of analysis, reduced 
size, and portability.

Most of spectrometer work independently based on their own 
spectral range, resolution and experimental conditions (25). 
Additionally, due to the differences in system configuration, 
spectral response characteristics and other factors, the data 
collected on different devices may have systematic bias and error, 
which affects the generalization ability of the model (26). 
Repetitive model calibration work makes the application of 
portable instruments in practical production and market 
supervision a major obstacle. Model transfer refers to the 
application of calibration models built on one instrument to other 
instruments (27). This approach reduces redundant calibration 
work, improves the portability and robustness of the spectral 
device and model, and makes the HSI more suitable for in-situ 
applications. Therefore, systematic research on model transfer and 
optimization is crucial to improve the performance of meat 
adulteration detection (28).

In this study, a portable HSI controlled by a Raspberry Pi was 
designed and optimized for on-site meat quality detection. To 
address the problem of model incompatibility caused by spectral 
variations across different instruments, this study evaluated three 
model transfer methods to enable model sharing between the 
developed HSI and a commercial spectrometer. Additionally, 
partial least squares discriminant analysis (PLS-DA) and SVM 
classifiers were employed to build a meat adulteration 
discrimination model to visualize the distribution of meat 
adulteration. This study provides a powerful tool and 
methodological framework for real-time meat adulteration 
detection and food safety assurance.

2 Materials and methods

This study aims to develop a portable HSI and a discrimination 
model for in-situ meat adulteration detection. The workflow is 
illustrated in Figure 1.

The hand-held portable HSI is designed based on the push-scan 
principle, with Raspberry Pi 4b and custom software to acquire and 
process the HSI data. The PLS-DA and SVM were employed to establish 
meat adulteration discrimination model. To enhance model compatibility 
across different instruments, model transfer methods, including 
piecewise direct standardization (PDS), SST and alternating trilinear 
decomposition (ATLD) were evaluated. These model transfer methods 
were validated on the dataset including a commercial spectrometer and 
the home-built HSI. Model transfer helps to enable model and data 
sharing between instruments, improves detection efficiency, and 
provides a reliable solution for rapid and accurate detection.

2.1 Instrument

As shown in Figure 2A, the portable system consists of the push-
scan HSI, the Raspberry Pi for real-time image acquisition and 
processing, a touchscreen and gimbal for user-friendly operation. The 
HSI covers a spectral range from 400 nm to 800 nm with a center 
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wavelength of 600 nm. To reduce size and cost, the HSI was designed 
with compact transmission model, which comprises an imaging lens 
(Focal length, FL = 35 mm), slit (25 μm × 3 mm), collimating lens 
(FL = 50 mm), grating (600 lines/mm, 25 × 25 mm2), focusing lens 
(FL = 25 mm) and detector (acA2040–120 um, Basler, Germany) for 
spectrogram acquisition. The optimization in Zemax ray tracing 
software was performed, as shown in Figure 2B. According to the 
simulation results, the spectral resolution of the HSI was up to 5 nm 
with a spatial resolution of 0.1 mm.

2.2 HSI calibration

To evaluate the performance of the HSI, the spectral response and 
full width at half maxima (FWHM) were measured using a 
monochromator (CS260B-2-MC-A, Newport, America) and 
mercury-argon lamp (HG-1, Ocean Optics, America). The 
monochromator emitted monochromatic light in 1 nm increments 
across a wavelength range of 400 nm to 800 nm. The light was 
collected by the HSI, and the response of pixels to different 

FIGURE 1

The workflow of meat adulteration discrimination.
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wavelengths was obtained. The relationship between pixels and 
wavelengths was fitted using the least squares method, and the 
function is presented as follows (Equation 1):

 

6 2

6 2

7.44 0.201 796.19 0 944

3.39 0.208 799.5 944 1870
i

e i i i

e i i i
λ

−

−

− − + < ≤= 
− − + < ≤  

(1)

where i is the pixel values, iλ  is the central wavelength of i. The 
spectral resolution of the HSI was measured using the mercury-argon 
calibration light source. The FWHM derived from the spectral calibration 
data in Figure 3, was calculated to be 3.6 nm at 546.6 nm and 3.9 nm at 
436.6 nm, which meet the requirement of meat detection.

2.3 Sample preparation and experiment

Meat species adulteration is a prevalent issue in the food industry, 
with a common practice being the partial or complete substitution of 
expensive beef with cheaper chicken or duck. This substitution can 
significantly reduce costs while maintaining a similar appearance and 
flavor in processed meat products. Chicken and duck, with their 
relatively mild flavors, are particularly difficult to detect when mixed 
with beef. Meat is also perishable, requiring proper preservation 
methods to retain its optimum quality until used. Freezing is one of the 
most effective and efficient methods commonly used in the meat 
industry to extend the shelf life of meat products (29). However, freezing 
has also been found to cause a series of physical and biochemical 

changes in muscle foods, including the formation of ice crystals, solute 
concentration, changes in ionic strength and pH, freezer burn, 
discoloration, lipid oxidation and protein denaturation (30).

To investigate the adulteration of frozen meat, fresh beef 
tenderloin, chicken breast and duck breast were purchased from local 
supermarkets. One hundred forty-four samples were cut into uniform 

FIGURE 2

Schematic structure of the portable HSI. (A) The portable HSI. (B) Physical model of the Zemax simulation.

FIGURE 3

Hyperspectral imager (HSI) calibration data. Blue lines showed 
spectral calibration peaks from the mercury-argon lamp. The black 
line was the measured spectrum of the reference standard with 
Xenon light source.
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pieces measuring 3 cm × 3 cm × 0.5 cm and then frozen at −18°C for 
24 h. The spliced samples were made with beef, chicken and duck in 
the proportion of 0.5:1:2, 1:1:1 and 2:1:1, wrapped in cling film and 
also frozen at −18°C for 24 h, and then cut to uniform size. Since the 
meat is spliced, the actual proportions of each piece of meat differ 
from the spliced proportions. The spectral and hyperspectral data of 
the samples were detected simultaneously using the commercial 
spectrometer (BTC611E, B&W Tek, United States) and portable HSI, 
ensuring that each sample was detected within 5 min. The 
spectrometer was defined as the master instrument in the model 
transfer method. Its spectral range is 300 nm to 800 nm with the 
spectral resolution of 1.3 nm. The portable HSI was the slave, with the 
spectral range of 400 nm to 800 nm, and the spectral resolution 
of 5 nm.

2.4 Model transfer methods

Model transfer through standardization of spectral responses is 
the most commonly used strategy. These methods find a transfer 
matrix that standardizes the spectra measured on slave instrument 
into the feature space of the master spectra (31). It can be directly 
applied to the prediction model built on the master spectra without 
significantly reducing the prediction accuracy. Commonly used model 
transfer methods include direct standardization (DS) and piecewise 
direct standardization (PDS). The DS employs PLSR to model the 
multiple regression between the master and slave spectra, generating 
a transfer matrix for spectral normalization. However, DS performs 
poorly in handling non-linear differences between devices. To address 
this limitation, PDS introduces a moving window to estimate the 
transfer matrix locally, thereby correcting for the non-linear deviation 
(32). However, PDS is highly sensitive to the window size, and 
determining the optimal window size becomes challenging, 
particularly when the number of spectra from the slave instrument is 
limited. SST constructs the data matrix by aligning spectra measured 
from different instruments and estimates the transfer matrix based on 
principal component analysis (PCA) loadings (33). The SST features 
a relatively simple structure and maintains robust even with a small 
number of standard samples. In contrast, ATLD is a higher-order 
standardization method based on 3D data decomposition. ATLD is 
capable of combining spectral, spatial and sample dimensions in the 
standardization process and is suitable for modeling and alignment of 
complex data with high adaptability and robustness (34).

The PDS, SST and ATLD methods were selected in this study to 
achieve model transfer between the commercial spectrometer and 
HSI. PDS assumes that the response at a specific wavelength from the 
master spectra is correlated with the response from the slave within a 
predefined window. The transfer function is expressed as (Equation 2):

 1, 2,i i w i w iS S B− … +=  (2)

where the window width is 2 1w + , 1,iS  is the value of the i 
wavelength in the master spectra, 2,i w i wS − … +  is the value within the 
wavelength range from –i w to i w+  in the slave spectra, and iB  is the 
transfer coefficient of the i wavelength. The transfer coefficient B was 
calculated using PLSR, with the window size optimized based on the 
RMSE between the master and slave spectra. The performance of 
PLSR is influenced by the number of principal components. The 

optimal number was determined using leave-one-out cross-validation, 
yielding a window size of 25 and 6 principal components for the 
PDS calibration.

Spectral space transformation integrates the standard sets 
collected by the master mX  and slave sX  to create a spectral array 

[ ],comb m sX X X= . The PCA is then applied to combX  to obtain the 
load using the following formula (Equation 3):

 
,T T

comb m sX T P P E = +   
(3)

where T
mP  and T

sP  are the loads of the master and slave spectra, 
respectively. The loads are used to calculate the transformation matrix 
F  using the following formula (Equation 4):

 ( )T T T
s m sF I P P P= + + −

 
(4)

where I  is the unit matrix. Convert the slave spectra to master 
spectra using the following formula (Equation 5):

 
p
un unx x F=  (5)

Alternating trilinear decomposition is an algorithm for decomposing 
three-dimensional data arrays. The spectra of standard samples collected 
from different instruments can be represented as a three-dimensional 
matrix X  with dimensions I J K× × . This matrix can be decomposed 
using the ATLD algorithm shown as the following equation (Equation 6):

 1

N
ijk in jn kn ijk

n
x a b c e

=
= +∑

 
(6)

where , ,i j k  is the number of standard samples, wavelengths and 
instruments, respectively, N is the number of factors, ina  is the element 
( ),i n  of an I N× matrix A, jnb  is the element ( ),j n  of an J N× matrix B, 
and knc  is the element ( ),k n  of an K N×  matrix C. The transformation 
matrix F  can be obtained using the following formula (Equation 7):

 ( ) T
k kF diag c B=  (7)

where kc  is the kth row of matrix C. For the spectrum 1,k newx  taken 
from the 1K  instrument, it can be transformed into the spectrum 2,k transx  
from the 2K  instrument by the following equation (Equation 8):

 2, 1, 1, 2 1, 11 1ik trans ik new ik new k ik new kk kx x x F F x F F+ += + −  (8)

The performance of SST and ATLD is influenced by the number of 
principal components and factors, respectively. Optimal parameters 
were identified using five-fold cross-validation, where the RMSE 
between master and slave spectra was calculated as an evaluation 
criterion. Ultimately, the number of principal components and factors 
that minimized the RMSE were chosen to be 6 and 2, respectively.

2.5 Discrimination models

Combined with the model transfer method, the meat adulteration 
discrimination model was developed based on PLS-DA and 
SVM. The PLS-DA extracts the principal components between the 

https://doi.org/10.3389/fnut.2025.1577642
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yu et al. 10.3389/fnut.2025.1577642

Frontiers in Nutrition 06 frontiersin.org

spectral matrix and the categorical variables for linear discrimination, 
and can effectively deal with the multicollinearity in high-
dimensional data (35). The SVM maps data into a high-dimensional 
feature space for non-linear discrimination. It captures complex 
non-linear relationships in spectral responses, demonstrates high 
accuracy in small-sample learning, and exhibits strong generalization 
ability (36).

The PLS-DA maximizes the covariance between the spectral 
matrix X  and the predicted category Y  by selecting the principal 
components with the following formula (Equation 9):

 Y Xb e= +  (9)

where b is the matrix of regression coefficients and e is the 
matrix of residual information. Selecting the appropriate number 
of principal components is crucial when building the PLS-DA 
model. Using too many components can result in overfitting, while 
using too few may lead to the loss of important information. In this 
study, the optimal number is determined using the 10-fold cross-
validation method, with an error threshold of 0.5 for 
category discrimination.

Support vector machine is a non-linear method with high 
generalization ability. It maps the spectral vector ix  to the high-
dimensional feature space using a kernel function. This allows SVM 
to find the optimal linear separating hyperplane ( ),w b . The main 
objective is to optimize the following (Equations 10, 11):

 
( )( )

2

,

1min
2

. . 1, 1,2, ,φ + ≥ = …

w b

T
i i

w

s t y w x b i m
 

(10)

 ( ) ( ) ( ), T
i j i jK x x x xφ φ≡  (11)

where ( ),i jK x x  is the kernel function. The radial basis function 
is employed as the kernel function, and the optimal kernel parameters 
are determined through cross-validation.

2.6 Model evaluation

Model transfer method requires standard datasets to obtain the 
transformation matrix, while the discriminative model also requires 
training dataset. The sample set partitioning based on joint X-Y 
distances (SPXY) method was used to divide the dataset into training 
and prediction sets (37). Subsequently, a subset of samples from the 
training set was selected as the standard set. The number of samples 
in standard sets was determined by calculating the spectral angles θ  
(Equation (12)) and correlation coefficients r  (Equation (13)) (38).

 1

1 , 0,
2

m
i

jm
πθ θ θ

=
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∑
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∑ ∑  

(13)

where iθ  is the spectral angle between the master and slave spectra 
of the ith sample, and m is the number of samples in the standard set. 

ijM  and ijS  denote the spectral response of the master spectrum of the 
ith sample and the corresponding jth wavelength in the slave 
spectrum, respectively. n is the number of wavelengths in the spectral 
curve. The mean value of the spectral correlation coefficient can 
be expressed as (Equations 14, 15):

 
[ ]
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(15)

As the value of r  approaches 1 and θ  approaches 0, the difference 
between the master and slave spectra decreases, indicating a more 
effective model transfer method. The performance of discriminant 
models is typically evaluated using confusion matrix, in which four 
commonly used evaluation metrics can be  calculated: accuracy, 
sensitivity, and precision (39). The formulas for these metrics are as 
follows (Equations 16–18)):

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +  

(16)

 
TPSensitivity

TP FN
=

+  
(17)

 
TPPrecision

TP FP
=

+  
(18)

3 Results and discussion

3.1 Spectral analysis

As shown in Figure 4, the reflectance spectra of three types of 
meat shows different intensity and absorption features in the range 
of 400–800 nm. The absorption peaks at 420 nm, 540 nm and 
575 nm differ significantly, primarily due to variations in 
myoglobin content (40). The peak at 420 nm corresponds to 
deoxymyoglobin, while the peaks at 540 nm and 575 nm are 
associated with respiratory pigments, such as oxymyoglobin (41). 
The content and distribution of myoglobin influence both the 
spectral intensity and meat color. The spectra of beef and duck are 
similar, whereas chicken exhibits higher spectral reflectance, likely 
due to differences in respiratory pigment composition. 
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Furthermore, a minor absorption peak at 630 nm is observed in the 
beef spectrum, attributed to the presence of high-iron 
myoglobin (42).

The reflectance spectra of meat measured with the HSI and 
commercial spectrometer are compared in Figure  5. Differences 
between the master and slave spectra are attributed to instrument 
design, measurement conditions and other factors. The discrepancies 
are particularly pronounced in the spectral ranges of 400–425 nm and 
600–650 nm. Applying the discrimination model developed on the 
master to spectra measured from the slave could lead to significant 
prediction errors. Therefore, it is necessary to minimize the 
discrepancies between the master and slave and improve the 
discrimination accuracy through model transfer methods.

3.2 Comparison of model transfer methods

In order to maintain the prediction performance of the 
discrimination models, three model transfer methods (PDS, SST, 
and ATLD) were used to minimize the effects of instrumental 
variations, and their performance was evaluated and compared. The 
number of standard samples has a significant effect on the 
performance of model transfer methods. In general, the greater the 

number of standard samples, the higher the possibility of obtaining 
good results. However, in practice, model transfer methods that can 
obtain satisfactory results using fewer standard samples are 
preferred because fewer standard samples require less analysis time 
and lower costs. As shown in Figure 6, there is an overall decreasing 
trend in the spectral angle between the master and slave spectra as 
the number of standard samples increases. However, after reaching 
a certain threshold, further increases the number of standard 
samples have little increase in the spectral angle, as excessive 
samples tend to introduce redundant information and noise. 
Specifically, when the number of standard samples ranges from 1 
and 10, the SST method achieved the smallest spectral angle, 
indicating that SST can provide a better standardization at a lower 
number of standard samples. The spectral angle for the PDS method 
is minimized when the number of standard samples falls within the 
range of 15 to 30. In contrast, the ATLD method consistently 
exhibits a larger spectral angle, indicating a significant difference 
between the master and transformed slave spectra. Based on these 
results, 15, 10, and 20 standard samples were selected for the PDS, 
SST, and ATLD, respectively.

The spectral angles and correlation coefficients between the 
master and slave spectra before and after the model transfer are 
compared in Table 1. After model transfer, the spectral angles were 

FIGURE 4

The reflectance spectra of meat measured by the master and slave. (A) The commercial spectrometer. (B) The HSI.

FIGURE 5

Reflectance spectra of meat measured with the HSI and commercial spectrometer. (A) Chicken; (B) beef; (C) duck.
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significantly reduced. Specifically, the PDS method has the best 
performance with the spectral angle reduced to 27% of the value 
before transfer, while the SST method has the spectral angle 
reduced to 31% of the original one. As shown in Figure  7, the 
transformed slave spectra exhibit similar shape with the master 
spectra, further confirming the effectiveness of these methods in 
correcting spectral variations caused by changes in instrumental 
or experimental conditions.

3.3 Comparison of discrimination results 
before and after model transfer

The effects of different model transfer methods on 
discrimination accuracy are compared in Table 2. Before transfer, 
applying the discrimination model developed on the master to the 
slave lead to low accuracy, with PLS-DA and SVM achieving 82.63 
and 90.51%, respectively. Model transfer significantly improves 
accuracy of classifiers, with the SST method increasing accuracy 
by 9.73% for PLS-DA and 4.4% for SVM. The PDS method 
improves accuracy by 7.18% for PLS-DA and 1.62% for SVM. The 
ATLD method improves classification accuracy, with PLS-DA and 
SVM increasing by 6.72 and 1.08%, respectively. However, its 
improvement is limited compared to PDS and SST. The ATLD 
method employs trilinear decomposition to separate spectra into 
feature matrices related to category, spectrum and instrument. It 
iteratively minimizes the squared error between the original and 
reconstructed data, making the calculation complex (34). 
Additionally, the ATLD method calculates the transfer matrix 
using only the feature matrices associated with the spectra and 
instrument, potentially omitting critical information that can 
affect model transfer and classification accuracy (43).

In the task of multi-class classification, there inevitably exists 
differences among the classification abilities of a classifier to 
different classes (44). Such differences are hard to be reflected by 
any single performance index. Confusion matrices contain 
information about the actual and predicted classifications given 
by a classifier. Based on the data from the confusion matrix, 
accuracy, sensitivity, specificity, and precision can be calculated 
and used to evaluate the performance of the model (39). As shown 
in Figure  8, the PLS-DA and SVM classifiers had the best 
discrimination on chicken with a sensitivity of over 99% before 
model transfer. However, the sensitivities for beef and duck are 
lower. This is because chicken exhibits higher spectral reflectance 
due to its high deoxymyoglobin content, resulting in a light yellow 
or purplish red color. In contrast, beef and duck exhibit bright red 
colors with similar spectral characteristics, and spectral variation 
due to different instruments further increased their 
misclassification rates. The sensitivity for duck is significantly 
improved after the model transfer. Specifically, the sensitivity for 
duck in Figures  8C,G increases by 28 and 19%, respectively. 

FIGURE 7

Comparison of master and slave spectra before and after model transfer. (A) Chicken; (B) beef; (C) duck.

FIGURE 6

Impact of the number of standard samples on the performance of 
the model transfer approach.

TABLE 1 The spectral angles and correlation coefficients between master 
and slave spectra before and after model transfer.

Methods Number of 
standard 
samples

Spectral 
angle (°)

Correlation 
coefficient

No 0 14.53 0.90

PDS 15 3.87 0.99

SST 10 4.53 0.99

ATLD 20 9.50 0.97

SST, spectral space transformation; PDS, piecewise direct standardization; ATLD, alternating 
trilinear decomposition.
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However, Figures 8F–H shows that the sensitivity of SVM for beef 
discrimination decreases. This may be  due to partial overlap 
between categories in the feature space after model transfer, and 
improving the accuracy for one category may reduce performance 
of others.

3.4 Visualization of meat adulteration

Hyperspectral images contain abundant spatial information, 
and visualization clearly displays the spatial distribution of meat 
adulteration. This study employed the SVM classifier based on 
SST to discriminate the hyperspectral images with different 
proportions of spliced meat. The results are shown in Figure 9, 
where chicken, beef, and duck regions are represented in yellow, 
blue, and green, respectively. Since the sample preparation was 
done by slicing the meat after it was frozen and spliced, the actual 
proportion of each piece of meat differed from the spliced 

proportion. The comparison between the actual and predicted 
proportions of adulteration meat is presented in Table 3.

As shown in Figure 9, before model transfer, the proportion 
of beef differ from the ground truth by 21.0, 16.5, and 7.0%, 
respectively. This is primarily due to the misclassification of duck 
as beef in most of the region, with the proportion of duck differing 
from the ground truth by 17.6, 12.5 and 10.9%, respectively. After 
model transfer, the deviations were significantly reduced, with 
beef proportion differing by only 2.2, 3.2, and 4.4%, while duck 
proportion deviated by 0.2, 3.9, and 4.2%, respectively. These 
results demonstrate that the model transfer method can effectively 
correct the spectral variations caused by different instruments, 
improve the generalization ability and robustness of the model, 
and provide a reliable solution for the real-time detection.

In this study, the HSI was utilized to capture the spectral 
characteristics of different meat species, and a discrimination 
model was constructed to predict adulteration proportion in 
spliced meat. The SVM combined with SST method gave optimal 
results with an accuracy of 94.91% in the meat species 
discrimination. The discrimination sensitivities for chicken, duck 
and beef were 100, 86 and 99%, respectively. However, this study 
did not quantitatively predict the content of adulteration meat. 
Zhang et al. (16) used RP-CNN to discriminate pork adulteration 
in mutton, and the discrimination accuracy can reach 100%. The 
study also established a model for quantitative predicting the pork 
content in fresh and frozen–thawed meat. The 2R  on two datasets 
of fresh and frozen–thawed samples were 0.9762 and 0.9807, 
respectively. Jiang et al. (45) employed hyperspectral imaging to 
detect the offal adulteration in ground pork. The best performance 
of the PLSR model was achieved with the 2R  of 0.98 and the RMSE 
of 4.47%. However, the samples were all purchased from a 
supermarket in the same day, which may limit the applicability of 
the model to a wider range of scenarios. In many studies, samples 

TABLE 2 The discrimination accuracy of slave test set before and after 
model transfer.

Model 
transfer

Methods Discrimination accuracy 
(%)

PLS-DA SVM

No No 82.63 90.51

Yes

PDS 89.81 92.13

SST 92.36 94.91

ATLD 89.35 91.59

SST, spectral space transformation; PDS, piecewise direct standardization; ATLD, alternating 
trilinear decomposition; PLS-DA, partial least squares discriminant analysis; SVM, support 
vector machine.

FIGURE 8

Confusion matrix for the slave test set before and after model transfer. (A) PLS-DA model (before transfer); (B) PLS-DA model based on PDS; (C) PLS-
DA model based on SST; (D) PLS-DA model based on ATLD; (E) SVM model (before transfer); (F) SVM model based on PDS; (G) SVM model based on 
SST; (H) SVM model based on the ATLD.
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have been prepared by mixing different proportions of the 
adulteration meat. New samples and models have to be prepared 
to cope with complex forms of adulteration, making the process 
time-consuming, costly, and limiting the models’ applicability 
and generalization.

The portable HSI enables on-site analysis, making it an invaluable 
tool for various industries, including food safety and quality control. 
However, the application of portable HSI in practice still faces several 
challenges. Variations in ambient lighting conditions and surface 
contaminants on meat samples—such as moisture and grease—can 
modify the spectral and imaging characteristics, compromising the 
accuracy of instrument (14). Future research should focus on 
optimizing calibration algorithms and instrument design. 
Additionally, integrating deep learning with hyperspectral imaging 
to develop end-to-end models can streamline preprocessing, 
automate feature extraction, and enhance the efficiency of real-time 
detection (46).

4 Conclusion

In this study, a portable HSI and a discrimination model were 
proposed for detecting chicken and duck adulteration in beef. The 
HSI is controlled by the Raspberry Pi with the spectral resolution of 
5 nm and spatial resolution of 0.1 mm. With model transfer, the slave 
spectra were normalized to the feature space of the master spectra 
and used further as input of classifiers. The results demonstrated that 
the model transfer method effectively reduces the spectral differences 
due to instrumental variations, and the spectral angle reduced to 31% 
of the value before transfer with SST. The performance of the SVM 
classifier was greatly improved with SST, achieving a prediction 
accuracy of above 94.91%. The discrimination sensitivities for 
chicken, duck and beef were 100, 86 and 99%, respectively. The study 
indicating the great potential of the hyperspectral technology 
applying in the meat adulteration not only the duck and chicken 
adulteration in spliced beef. Recently, an increasing number of 

TABLE 3 Proportion of meat adulteration.

Image no. Calibration data Prediction data Model transfer Proportion of meat (%)

Beef Duck Chicken

A

Ground truth No No 12.5 54.3 33.2

Spectrometer HSI
No 33.5 36.7 29.8

Yes 10.3 54.1 35.6

B

Ground truth No No 33.6 36.8 29.6

Spectrometer HSI
No 50.1 24.3 25.6

Yes 36.8 32.9 30.3

C

Ground truth No No 45.7 29.7 24.6

Spectrometer HSI
No 52.7 18.8 28.5

Yes 41.3 33.9 24.8

FIGURE 9

Visualization maps of meat adulteration. Proportion of beef, chicken and duck in spliced meat is (A) 0.5:1:2; (B) 1:1:1; (C) 2:1:1. Chicken–yellow, beef– 
blue, and duck–green.
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portable instruments have been developed to meet the growing 
demand for rapid food analysis. This study attempts to apply models 
developed on commercial spectrometers to home-built HSI, offering 
the possibility of integrating portable spectrometers into digital 
supply chains in the future. This will help to achieve transparency and 
traceability of the food transport process to ensure life and 
health safety.
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