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Background: While pesticide exposure has become a global public health

concern, its impact on cardiovascular health among non-cardiovascular

mortality populations remains understudied.

Methods: Based on NHANES 2007–2018 data (n = 12,432), we examined

associations between five pesticide biomarkers (2,4-D herbicides, atrazine

metabolites, organophosphate dimethyl and diethyl metabolites, glyphosate)

and cardiovascular health, assessed by Life’s Essential 8 (LE8) scores and

Cardiometabolic Index (CMI). The associations were explored through multiple

regression analyses, weighted quantile sum (WQS) regression, restricted cubic

spline (RCS) analysis, and mediation analysis.

Results: 2,4-D herbicides showed significant negative correlations with multiple

LE8 components, particularly in BMI scores (β = −1.441, 95% CI: −2.158,

−0.725) and diet scores (β =−1.241, 95%CI:−1.825,−0.658). Organophosphate

metabolites demonstrated positive associations with smoking and diet scores.

Dose-response analysis revealed an inverted U-shaped relationship between

2,4-D and LE8 scores, while organophosphates showed consistent positive

correlations. WQS regression indicated that glyphosate contributed most

significantly to LE8 scores (58%), while organophosphate diethyl metabolites

dominated CMI e�ects (62%). Inflammatory markers (CRP and SII) played crucial

roles in mediating pesticide exposure’s e�ects on cardiovascular health.

Conclusion: This study provides the first systematic evidence of association

patterns between pesticide exposure and cardiovascular health in the general

population, revealing di�erential impacts across pesticide types. These findings

provide important scientific basis for understanding pesticide exposure’s health

e�ects and developing targeted prevention strategies.
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1 Introduction

Pesticide exposure has emerged as a global public health

concern. In developing countries, health issues related to pesticides

are particularly severe due to inadequate protective measures and

regulatory systems, with estimated annual pesticide-related deaths

exceeding 160,000. Epidemiological studies have linked pesticide

exposure to various chronic conditions, including neurological

disorders, endocrine disruption, and cardiovascular diseases (1, 2).

Numerous epidemiological studies have examined the

relationship between pesticide exposure and cardiovascular

mortality. A systematic review encompassing 24 articles

demonstrated an association between pesticide exposure and

cardiovascular disease (3). Additionally, a cohort analysis of 7,557

Japanese-American males revealed that high-level occupational

pesticide exposure correlated with cardiovascular disease incidence

over a 10-year period (Hazard Ratio = 1.46, 95% CI = 1.10–

1.95, P = 0.009) (4). Animal studies have provided crucial

evidence for understanding the underlying biological mechanisms.

In zebrafish models, permethrin was found to cause cardiac

enlargement, accelerated heart rate, significantly increased blood

flow velocity, and elevated metabolic rates; furthermore, it was

discovered to interact with several ion channels, inducing changes

in cardiovascular-related markers (5). Rodent studies further

confirmed that pesticide exposure can increase oxidative stress

and oxidative modifications of genomic DNA content in rabbit

cardiac tissue (6). These findings provide mechanistic explanations

for the association between pesticide exposure and cardiovascular

disease. However, the potential associations between pesticide

exposure and non-cardiovascular mortality, and their impact on

cardiovascular health in this population, remain systematically

understudied, representing a critical knowledge gap.

Life’s Essential 8 (LE8) and the Cardiometabolic Index (CMI)

are vital tools for assessing cardiovascular health. Introduced

by the American Heart Association in 2022, LE8 is a novel

assessment system encompassing eight dimensions: diet, physical

activity, nicotine exposure, sleep health, body weight, blood

lipids, blood glucose, and blood pressure (7, 8). CMI provides

a comprehensive perspective on metabolic health status by

combining the triglyceride to high-density lipoprotein cholesterol

ratio (TG/HDL-C) with the waist-to-height ratio (WHtR). A

longitudinal cohort study confirmed CMI’s significant association

with cardiovascular disease mortality risk (9). Both indicators have

demonstrated significant value in predicting cardiovascular events

and assessing overall health outcomes.

This study utilizes the National Health and Nutrition

Examination Survey (NHANES) database to explore, for the

first time, the relationship between pesticide exposure and non-

cardiovascular mortality. Through analysis of multiple pesticide

biomarkers (2,4-D, Atrazine, OP-Dimethyl, OP-Diethyl, and

Glyphosate), we comprehensively evaluate the associations between

pesticide exposure and non-cardiovascular mortality risk in the

general population. NHANES’s detailed pesticide metabolite data

and long-term cause-of-death follow-up information (average

follow-up exceeding 10 years) provide unique advantages for

revealing the relationship between pesticide exposure and health

outcomes. The findings of this study will not only offer new

perspectives on understanding the health impacts of pesticide

exposure but also provide crucial scientific evidence for developing

targeted public health intervention strategies.

2 Materials and methods

2.1 Data source

This study conducted a cross-sectional analysis using the

NHANES database (https://www.cdc.gov/nchs/nhanes/index.

html), which contains comprehensive information about the

health and nutritional status of U. S. citizens, along with data

from studies tracking diseases and risk factors (10). The database

encompasses basic information, dietary and nutritional details,

physical examination results, laboratory findings, survey data, and

other confidential information. The study examined data from six

NHANES cycles: 2007–2008, 2009–2010, 2011–2012, 2013–2014,

2015–2016, and 2017–2018, initially comprising 59,842 individuals.

During the data screening phase, individuals under 20 years of age

(n = 25,072), cases with missing LE8-related information (n =

962), individuals lacking pesticide exposure data (n = 16,866), and

cases with incomplete data (n = 4,510) were excluded. Following

these exclusion criteria, the final study population consisted of

12,432 adult participants (Supplementary Figure S1).

2.2 Pesticide assessment

This study analyzed pesticide biomarker data from the

NHANES database. Initially, 95 pesticide biomarkers across eight

major categories were included (11):

1. Atrazine class: Atrazine and its 6 metabolites (e.g., Atrazine

mercapturate, Desethyl atrazine),

2. DEET class: DEET and its 3 metabolites,

3. Organochlorine class: 14 compounds (including β-

hexachlorocyclohexane, aldrin, dieldrin, chlordane, DDT,

and their metabolites),

4. Organophosphate class: 6 phosphate ester metabolites (dimethyl

and diethyl series) and 4 parent compounds,

5. Herbicides: 2,4-D and its 5 metabolites,

6. Neonicotinoid class: 6 compounds (including imidacloprid,

thiamethoxam, and their metabolites),

7. Sulfonylurea class: 16 compounds (including metsulfuron,

bensulfuron, etc.),

8. Other pesticide metabolites: 34 compounds (including

phenoxybenzoic acids, trichloropyridinol, etc.).

The detectability percentage for target chemicals was calculated

by dividing the total number of measurements above LOD (Limit

of Detection) by the total number of measurements for that

chemical in NHANES. To ensure inclusion of chemicals above

detection limits for most study participants, we maintained a

detection frequency percentage of 50% or higher across the entire

population. Ten pesticide biomarkers were ultimately included

in the analysis: herbicide 2,4-D and its metabolites (URX14D,

URXDCB), atrazine metabolite (URXDEA), organophosphate
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pesticide metabolites (including dimethyl series URXOP1-3 and

diethyl series URXOP4-6), and glyphosate metabolite (URXDHD).

All biomarker concentrations were corrected for urinary creatinine.

The selection of these five specific pesticide biomarkers was

based on several important criteria. First, these pesticides had

consistently measurable levels across multiple NHANES cycles

(2007–2018), with detection rates exceeding our 50% threshold,

ensuring sufficient statistical power for analysis. Second, these

pesticides represent the most commonly used agricultural and

residential pesticides in the United States, with widespread human

exposure documented in multiple NHANES cycles. Third, these

compounds have distinct chemical structures and mechanisms of

action, allowing us to evaluate potentially different pathways of

cardiovascular impact. Fourth, extensive toxicological literature

exists for these compounds, providing biological plausibility for

potential cardiovascular effects. Finally, these selected pesticides

represent different use patterns and exposure routes, providing a

comprehensive assessment of the overall pesticide burden in the

general population.

2.3 Covariates

The following variables were included in the analysis as

confounding factors: age (20–39, 40–59, ≥60 years), sex (male

and female), race/ethnicity (Mexican American, Other Hispanic,

Non-Hispanic White, Non-Hispanic Black, Other), education

level (less than high school, high school or equivalent, above

high school), and family income-to-poverty ratio (<1, 1–3, >3).

Life’s Essential 8 scores were categorized into low (<50 points),

moderate (50–79 points), and high (≥80 points) levels. Self-

reported diseases primarily included cardiovascular diseases (heart

failure, coronary heart disease, angina, heart attack, or stroke). All

variables were derived from NHANES questionnaires and physical

examination data.

2.4 LE8 calculation

This study quantitatively assessed CVH based on

AHA’s updated standardized algorithm (12). As shown in

Supplementary Table S1, both health behavior metrics (diet,

physical activity, smoking, sleep) and health factor metrics (BMI,

non-HDL cholesterol, blood glucose, and blood pressure) were

quantified on a 0–100 scale. For health behavior scores, diet was

scored using the HEI-2015 scale based on population percentiles,

physical activity was based on weekly exercise duration, smoking

was evaluated according to smoking status and household

exposure, and sleep was scored based on sleep duration (13).

For health factor scores, BMI was based on weight classification,

non-HDL cholesterol and blood pressure scores considered

relevant medication use, and blood glucose scores incorporated

diabetes history and HbA1c levels. The overall CVH score (0–100

points) was calculated by averaging all metric scores, enabling

standardized CVH assessment.

2.5 Statistical analysis

2.5.1 Statistical analysis models
All statistical analyses incorporated weighting, stratification,

and clustering methods to account for NHANES’ complex

sampling design. Continuous variables are presented as mean ±

standard deviation (SD), and categorical variables as frequencies

and percentages. Statistical significance was set at P < 0.05.

Pesticide biomarker concentrations underwent natural logarithmic

transformation to improve normality due to their skewed

distribution. Each pesticide biomarker concentration was

categorized into quartiles (Q1–Q4), with Q1 serving as the

reference group. Three progressive multivariate regression models

were constructed to analyze associations between pesticide

exposure and cardiovascular health: Model 1 (unadjusted); Model

2 (adjusted for age, sex, and race); and Model 3 (further adjusted

for education level, income-to-poverty ratio, and cardiovascular

disease history including heart failure, coronary heart disease,

angina, myocardial infarction, and stroke). To ensure model

validity, we conducted residual diagnostics for each regression

model, examining assumptions of normality and homoscedasticity;

assessed multicollinearity using Variance Inflation Factors (VIF);

and evaluated model goodness-of-fit by comparing Bayesian

Information Criterion (BIC) values.

2.5.2 Dose-response relationship analysis
To explore potential non-linear relationships between pesticide

exposure levels and cardiovascular health indicators, Restricted

Cubic Spline (RCS) modeling was employed with five knots,

using median exposure levels as reference values. The exposure-

response relationship’s non-linear characteristics were evaluated

by comparing linear models with RCS models, calculating

overall effect P-values and non-linearity test P-values for

statistical significance assessment (14, 15). Following Harrell’s

recommendations, the RCS model established 5 knots at the 5th,

25th, 50th, 75th, and 95th percentiles. Model validation included:

comparing linear vs. non-linear models using likelihood ratio tests;

calculating AIC and BIC to assess fit quality; and evaluating curve

estimation stability through Bootstrap methods (1,000 repetitions).

To test robustness, we also examined model performance with

varying knot numbers (3, 4, and 5 knots).

2.5.3 Weighted quantile sum (WQS) regression
analysis

Weighted Quantile Sum (WQS) regression analysis was

used to evaluate the composite effect of pesticide mixture

exposure on cardiovascular health and the relative contribution

of each component (16). Missing data were handled through

multiple imputation, and the dataset was randomly divided

into training (40%) and validation (60%) sets. In WQS

modeling, five pesticide biomarkers (2,4-D herbicides, atrazine

metabolites, organophosphate dimethyl and diethyl metabolites,

and glyphosate) were included as continuous variables, with

weights for each pesticide in the mixture estimated through

1,000 Bootstrap repetitions. Three progressive models (Models

1–3) were constructed. Model significance was evaluated on
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the validation dataset, analyzing mixture associations under

both positive and negative constraints. WQS regression model

validation included: ensuring similar population characteristic

distributions between training (40%) and validation (60%) sets;

assessing weight estimation stability by comparing coefficients of

variation in the Bootstrap sampling distributions; and calculating

calibration metrics on the validation set to evaluate predictive

performance. We also conducted sensitivity analyses by excluding

highly correlated pesticide variables to evaluate the impact of

inter-pesticide correlations on WQS weights.

2.5.4 Subgroup analysis
Stratified analyses assessed effect heterogeneity across

population subgroups, examining age (20–39, 40–59, ≥60 years),

sex (male, female), and race/ethnicity. Survey-weighted logistic

regression models calculated associations (OR and 95% CI)

within subgroups, with interaction term testing (likelihood ratio

test) evaluating effect differences (P-interaction) (17, 18). In

subgroup analyses, we first ensured adequate sample sizes within

each subgroup (at least 10% of the total sample per group);

visually assessed effect size differences between subgroups using

forest plots; and evaluated the importance of interaction effects

by comparing AIC values between models with and without

interaction terms.

2.5.5 Mediation analysis
Mediation analysis evaluated the mediating roles of

inflammatory markers (NLR, SII, CRP) in pesticide exposure’s

effects on cardiovascular health. Bootstrap methods (1,000

repetitions) estimated direct effects (ADE), indirect effects

(ACME), and their 95% confidence intervals, calculating the

proportion of mediation effects (19). All models adjusted for

confounding factors including age, sex, race, education level,

and income-to-poverty ratio. Validation steps for mediation

analysis included: verifying Baron and Kenny mediation

conditions to ensure necessary associations between exposure,

mediator, and outcome variables; conducting sensitivity analyses

to assess potential influences of unmeasured confounders;

and testing the robustness of mediation effect estimates by

transforming the measurement scale of mediator variables (e.g.,

logarithmic transformation).

2.5.6 Sensitivity analysis
Sensitivity analyses assessed result robustness through

unweighted analysis methods. Using identical model specifications

as the main analysis but without NHANES sampling weights,

weighted and unweighted results were compared to verify primary

findings’ reliability. Additionally, three progressive models with

consistent covariate adjustment strategies were constructed

for primary exposure and outcome variables to evaluate the

impact of different adjustment strategies. Beyond comparing

weighted and unweighted results, our sensitivity analyses included:

incrementally adding potential confounding variables to models

to assess core association stability; comparing results across

different missing data handling methods (complete case analysis

and multiple imputation); and re-evaluating association patterns

using alternative pesticide exposure classification methods (tertiles,

quintiles). Result stability was assessed through percentage changes

in effect sizes and confidence interval overlap.

3 Results

3.1 Baseline characteristics of study
population

The study included 12,432 participants, with 300 cardiovascular

deaths and 12,132 non-cardiovascular deaths (Table 1).

Regarding demographic characteristics, the study population

was predominantly middle-aged, with 38.9% aged 40–59 years.

However, in the cardiovascular death group, the proportion of

elderly individuals (≥60 years) was significantly higher (79.7% vs.

24.9%, P< 0.001).Women comprised 52.1% of the total population

but represented a lower proportion in the cardiovascular death

group (40.1% vs. 52.4%, P < 0.001). Non-Hispanic White people

constituted the majority (70.1%) of the racial composition, with an

even higher proportion in the cardiovascular death group (82.4%).

Regarding socioeconomic characteristics, 63.6% had above high

school education, but this percentage was significantly lower in

the cardiovascular death group (45.6% vs. 63.9%, P < 0.001).

For income levels, 51.6% of the population had an income-to-

poverty ratio >3, while this proportion was only 35.4% in the

cardiovascular death group.

Concerning cardiovascular health indicators, most participants

(68.9%) had moderate LE8 scores, but the cardiovascular death

group showed a significantly higher proportion of low scores

(30.7% vs. 15.8%, P < 0.001). Specifically, the cardiovascular death

group performed worse on multiple LE8 components, particularly

blood pressure scores (45.18 vs. 70.25, P < 0.001), blood glucose

scores (66.57 vs. 83.69, P < 0.001), sleep scores (77.71 vs. 83.48,

P = 0.01), and physical activity scores (29.66 vs. 42.41, P =

0.003). Regarding CMI, the cardiovascular death group showed

slightly higher values than the non-cardiovascular death group

(1.91 vs. 1.71), though the difference was not statistically significant

(P = 0.348).

3.2 Correlation analysis of pesticide
biomarkers

Spearman correlation analysis revealed generally weak

correlations among the five pesticide biomarkers included in the

study (Figure 1). 2,4-D class herbicides showed low correlation

coefficients with other pesticides, exhibiting weak correlations

with atrazine metabolites (r = 0.27), organophosphate dimethyl (r

= 0.22), and diethyl metabolites (r = 0.12). A relatively stronger

correlation was observed between organophosphate dimethyl

and diethyl metabolites (r = 0.51), possibly due to their being

metabolites of the same class of pesticides. Glyphosate showed

moderate correlation only with atrazine metabolites (r = 0.68),

while showing almost no correlation with organophosphate

metabolites (r =−0.04 to 0.04).
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TABLE 1 Characteristics of the study participants: NHANES 2007–2018.

Characteristics Level Overall
(N= 12,432)

Cardiovascular
death (N = 300)

Non-cardiovascular
death (N = 12,132)

P value

Age (%) 20–39 4,101 (35.2%) 10 (3.4%) 4,091 (35.8%) <0.001

40–59 4,236 (38.9%) 38 (16.9%) 4,198 (39.3%)

≥60 4,095 (25.8%) 252 (79.7%) 3,843 (24.9%)

Gender (%) Male 5,951 (47.9%) 183 (59.9%) 5,768 (47.6%) <0.001

Female 6,481 (52.1%) 117 (40.1%) 6,364 (52.4%)

Race (%) Mexican American 1,759 (7.6%) 14 (2.7%) 1,745 (7.7%) <0.001

Other Hispanic 1,211 (5.2%) 17 (2.0%) 1,194 (5.3%)

Non-Hispanic White 5,698 (70.1%) 201 (82.4%) 5,497 (69.9%)

Non-Hispanic Black 2,523 (10.3%) 63 (10.8%) 2,460 (10.3%)

Other 1,241 (6.8%) 5 (2.1%) 1,236 (6.8%)

Education_new (%) Under high school 2,776 (14.5%) 89 (25.5%) 2,687 (14.3%) <0.001

High school or equivalent 2,788 (22.0%) 89 (28.9%) 2,699 (21.9%)

Above high school 6,868 (63.6%) 122 (45.6%) 6,746 (63.9%)

Pir (%) <1 2,570 (13.6%) 55 (12.9%) 2,515 (13.6%)

1–3 5,122 (34.8%) 163 (51.7%) 4,959 (34.5%)

>3 4,740 (51.6%) 82 (35.4%) 4,658 (51.9%)

Life_essential_8_score (%) Low 2,502 (16.1%) 100 (30.7%) 2,402 (15.8%) <0.001

Moderate 8,415 (68.9%) 190 (66.5%) 8,225 (68.9%)

High 1,515 (15.1%) 10 (2.8%) 1,505 (15.3%)

BP_score [mean (SD)] 69.82 (0.50) 45.18 (2.72) 70.25 (0.50) <0.001

Diet_score [mean (SD)] 39.87 (0.58) 40.30 (2.42) 39.87 (0.58) 0.858

Blood_glucose_score [mean (SD)] 83.40 (0.29) 66.57 (1.83) 83.69 (0.29) <0.001

Smoke_score [mean (SD)] 72.52 (0.71) 69.93 (2.91) 72.57 (0.72) 0.374

Non_HDL_score [mean (SD)] 64.33 (0.38) 61.24 (1.71) 64.39 (0.39) 0.078

BMI_score [mean (SD)] 60.38 (0.46) 57.25 (2.92) 60.44 (0.47) 0.283

Sleep_score (mean (SD)) 83.38 (0.33) 77.71 (2.16) 83.48 (0.34) 0.01

PA_score [mean (SD)] 42.19 (0.70) 29.66 (4.22) 42.41 (0.70) 0.003

CMI [mean (SD)] 1.71 (0.04) 1.91 (0.22) 1.71 (0.04) 0.348

3.3 Weighted regression analysis of
pesticide exposure and cardiovascular
health indicators

The study evaluated associations between pesticide exposure

and cardiovascular health using two approaches: first, analyzing

continuous relationships between pesticide biomarkers and

cardiovascular health indicators, and second, assessing impacts of

different exposure levels through quartile analysis (see Tables 2,

3). Results from Models 1 and 2 for continuous relationships are

shown in Supplementary Table S2.

After adjusting for demographic characteristics, socioeconomic

status, and cardiovascular disease history, different pesticide

biomarkers showed varying association patterns with

cardiovascular health indicators (Table 2):

2,4-D herbicides showed significant negative correlations with

multiple LE8 components, including BMI scores (β =−1.441, 95%

CI: −2.158, −0.725), sleep scores (β = −0.617, 95% CI: −1.107,

−0.126), and diet scores (β = −1.241, 95% CI: −1.825, −0.658),

but positive correlation with blood pressure scores (β = 0.627, 95%

CI: 0.130, 1.124).

Organophosphate metabolites (dimethyl and diethyl) exposure

showed significant positive correlations with smoking scores,

diet scores, and total LE8 scores. Dimethyl metabolites showed

strongest associations with smoking scores (β = 2.688, 95% CI:

1.367, 4.009) and diet scores (β = 4.202, 95% CI: 2.899, 5.506),

while diethyl metabolites showed strongest positive correlation

with BMI scores (β = 3.503, 95% CI: 1.685, 5.321).

Glyphosate showed significant positive correlation with

physical activity scores (β = 3.779, 95% CI: 1.833, 5.724), but
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FIGURE 1

Spearman correlation analysis heatmap.

negative correlations with smoking scores (β = −2.865, 95% CI:

−4.641, −1.090) and non-HDL scores (β = −1.645, 95% CI:

−2.907,−0.384).

Total pesticide exposure scores showed significant positive

correlation with blood pressure scores (β = 0.803, 95% CI: 0.372,

1.234) and negative correlations with BMI scores (β =−0.919, 95%

CI:−1.386,−0.452) and sleep scores (β =−0.469, 95% CI:−0.857,

−0.081). Notably, no significant associations were found between

any pesticide exposure indicators and CMI.

Quartile analysis (Table 3) revealed significant differences in

association patterns between exposure levels of different pesticides

and LE8 scores. 2,4-D herbicides and atrazine metabolites showed

negative correlations, with Q3 groups showing significant negative

associations compared to Q1 groups in fully adjusted models (2,4-

D: β =−1.445, 95%CI:−2.740,−0.150; atrazine: β =−1.252, 95%

CI:−2.449,−0.055).

In contrast, organophosphate metabolites showed positive

associations. Dimethyl metabolites showed significant positive

correlations in Q3 (β = 2.033, 95% CI: 0.585, 3.482) and Q4

groups (β = 3.400, 95%CI: 1.940, 4.859), with stronger associations

at higher exposure levels. Diethyl metabolites showed significant

positive association in Q4 group (β = 2.130, 95% CI: 0.438, 3.823).

Glyphosate metabolites and total pesticide exposure scores

showed no significant statistical relationships with LE8 scores.

These associations persisted after adjustment for potential

confounders, though with reduced strength. While glyphosate

metabolites showed no significant association with LE8 scores, they

showed significant negative correlation with CMI at Q2 exposure

level (β = −0.437, 95% CI: −0.836, −0.038). Only glyphosate

showed correlations with CMI (Supplementary Table S3).

Weighted logistic regression further validated the associations

between pesticide exposure and cardiovascular health indicators

(Figure 2). Results showed that certain associations-maintained

consistency with continuous variable analyses:

Organophosphate dimethyl metabolites showed significant

positive correlation with high-level LE8, with Q3 group (OR= 1.45,

95% CI: 1.12–1.87) and Q4 group (OR = 1.65, 95% CI: 1.25–2.20)

both showing higher probability of good cardiovascular health.

Similarly, the Q4 group of organophosphate diethyl metabolites

also demonstrated significant positive association (OR= 1.40, 95%

CI: 1.05–1.87).

Regarding dietary behaviors, the positive associations with

organophosphate pesticides were also confirmed, with dimethyl

Q4 group (OR = 2.36, 95% CI: 1.77–3.14) and diethyl Q4 group

(OR = 2.11, 95% CI: 1.54–2.89) both significantly increasing the

likelihood of good dietary behaviors. In contrast, 2,4-D and atrazine

exposure were associated with poorer dietary behaviors, consistent

with continuous variable analysis results.

For blood pressure control, the positive association with total

pesticide exposure score was confirmed, with Q2 to Q4 groups

all showing significantly increased hypertension risk (ORs ranging

from 1.19 to 1.34). Interestingly, glyphosate was the only pesticide
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TABLE 2 Associations between pesticide exposure biomarkers and cardiovascular health components in Model 3.

Variables 2,4-D Atrazine OP-Dimethyl OP-Diethyl Glyphosate Total pesticide score

β (95% Cl) P value β (95% Cl) P value β (95% Cl) P value β (95% Cl) P value β (95% Cl) P value β (95% Cl) P value

Continuous (Ln-transformed)

BP score 0.627

(0.130, 1.124)

0.016 0.568

(0.040, 1.095)

0.039 0.935

(-0.090, 1.960)

0.080 1.484

(0.057, 2.912)

0.047 −0.037

(−1.239, 1.165)

0.952 0.803

(0.372, 1.234)

<0.001

Blood glucose

score

−0.133

(−0.644, 0.377)

0.611 0.130

(−0.234, 0.494)

0.485 −0.075

(−0.777, 0.626)

0.835 −0.085

(−0.947, 0.776)

0.847 0.321

(−0.352, 0.995)

0.355 −0.141

(−0.490, 0.208)

0.431

Smoke score −0.135

(−1.014, 0.744)

0.764 −1.451

(−2.100,−0.802)

<0.001 2.688

(1.367, 4.009)

<0.001 2.011

(0.079, 3.942)

0.047 −2.865

(−4.641,

−1.090)

0.003 −0.265

(−0.920, 0.391)

0.431

Non-HDL score −0.037

(−0.668, 0.593)

0.908 −0.387

(−1.000, 0.225)

0.220 0.526

(−0.603, 1.655)

0.366 −1.025

(−2.417, 0.367)

0.156 −1.645

(−2.907,

−0.384)

0.014 −0.351

(−0.861, 0.159)

0.181

BMI score −1.441

(−2.158,−0.725)

<0.001 −1.180

(−1.840,−0.519)

0.001 0.899

(−0.127, 1.925)

0.093 3.503

(1.685, 5.321)

<0.001 −0.841

(−2.066, 0.384)

0.185 −0.919

(−1.386,

−0.452)

<0.001

Sleep score −0.617

(−1.107,−0.126)

0.017 −0.004

(−0.428, 0.419)

0.984 −0.395

(−1.303, 0.514)

0.399 −1.412

(−2.619,

−0.205)

0.026 0.081

(−1.043, 1.206)

0.888 −0.469

(−0.857,

−0.081)

0.020

PA score −0.026

(−0.949, 0.897)

0.956 2.166

(1.173, 3.158)

<0.001 −0.710

(−2.126, 0.706)

0.331 −2.325

(−4.765, 0.114)

0.068 3.779

(1.833, 5.724)

<0.001 0.629

(−0.122, 1.380)

0.105

Diet score −1.241

(−1.825,−0.658)

<0.001 −0.865

(−1.462,−0.269)

0.006 4.202

(2.899, 5.506)

<0.001 5.159

(3.331, 6.987)

<0.001 −0.278

(−1.400, 0.845)

0.630 −0.160

(−0.663, 0.343)

0.534

LE8 score −0.375

(−0.623,−0.128)

0.004 −0.128

(−0.414, 0.158)

0.383 1.009

(0.539, 1.478)

<0.001 0.914

(0.195, 1.633)

0.016 −0.186

(−0.714, 0.343)

0.494 −0.109

(−0.320, 0.102)

0.315

CMI 0.017

(−0.040, 0.073)

0.565 −0.022

(−0.072, 0.027)

0.380 −0.055

(−0.164, 0.055)

0.334 0.126

(−0.028, 0.279)

0.115 −0.009

(−0.109, 0.091)

0.859 −0.010

(−0.058, 0.039)

0.700
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TABLE 3 Dose-response relationship between pesticide exposure biomarkers and Life’s Essential 8 score.

Pesticides Quartiles Crude (β, 95% Cl) P value Model 2 (β, 95% Cl) P value Model 3 (β, 95% Cl) P value

2,4-D Q1 Ref Ref Ref

Q2 −1.049 (−2.485, 0.386) 0.156 −0.803 (−2.168, 0.561) 0.253 −0.593 (−1.859, 0.672) 0.362

Q3 −2.628 (−4.060,−1.195) 0.001 −1.892 (−3.317,−0.467) 0.011 −1.445 (−2.740,−0.150) 0.033

Q4 −3.578 (−4.963,−2.193) <0.001 −2.203 (−3.616,−0.790) 0.003 −1.204 (−2.405,−0.003) 0.054

Atrazine Q1 Ref Ref Ref

Q2 −0.791 (−1.932, 0.350) 0.178 −0.794 (−1.897, 0.310) 0.163 −0.290 (−1.360, 0.781) 0.598

Q3 −1.739 (−3.042,−0.437) 0.011 −1.906 (−3.187,−0.625) 0.005 −1.252 (−2.449,−0.055) 0.045

Q4 −1.757 (−3.359,−0.155) 0.035 −1.800 (−3.244,−0.356) 0.017 −0.959 (−2.356, 0.438) 0.184

OP-Dimethyl Q1 Ref Ref Ref

Q2 0.872 (−0.639, 2.384) 0.262 1.220 (−0.165, 2.606) 0.090 0.891 (−0.471, 2.254) 0.207

Q3 2.147 (0.700, 3.594) 0.005 2.604 (1.212, 3.996) 0.001 2.033 (0.585, 3.482) 0.009

Q4 3.632 (2.052, 5.212) <0.001 4.581 (3.110, 6.052) <0.001 3.400 (1.940, 4.859) <0.001

OP-Diethyl Q1 Ref Ref Ref

Q2 0.745 (−0.944, 2.434) 0.391 1.272 (−0.359, 2.902) 0.132 0.777 (−0.748, 2.302) 0.323

Q3 1.319 (−0.553, 3.192) 0.172 1.500 (−0.294, 3.294) 0.107 1.108 (−0.605, 2.821) 0.212

Q4 2.119 (0.203, 4.034) 0.034 2.444 (0.565, 4.323) 0.014 2.130 (0.438, 3.823) 0.018

Glyphosate Q1 Ref Ref Ref

Q2 1.042 (−1.074, 3.158) 0.338 1.305 (−0.806, 3.416) 0.231 0.981 (−0.786, 2.748) 0.282

Q3 1.065 (−1.104, 3.234) 0.340 1.598 (−0.637, 3.833) 0.167 1.240 (−0.601, 3.081) 0.193

Q4 0.140 (−1.941, 2.220) 0.896 0.447 (−1.679, 2.573) 0.682 0.436 (−1.389, 2.261) 0.642

Total pesticide

score

Q1 Ref Ref Ref

Q2 −0.128 (−1.152, 0.896) 0.807 −0.069 (−1.027, 0.889) 0.888 0.052 (−0.872, 0.976) 0.912

Q3 0.621 (−0.336, 1.579) 0.207 0.710 (−0.234, 1.654) 0.144 0.767 (−0.099, 1.633) 0.087

Q4 −1.509 (−2.553,−0.464) 0.006 −0.899 (−1.935, 0.136) 0.092 −0.377 (−1.317, 0.563) 0.434

showing significant association with CMI, with both Q2 group (OR

= 0.53, 95% CI: 0.38–0.76) and Q4 group (OR = 0.62, 95% CI:

0.43–0.88) reducing the risk of high CMI.

3.4 Dose-response relationship between
individual pesticides exposure and health
scores

Restricted cubic spline (RCS) analysis was used to evaluate

relationships between various pesticide exposures and LE8 scores

(Figure 3).

2,4-D herbicides showed significant non-linear association

with LE8 scores (overall P = 0.043, non-linearity P = 0.001).

The dose-response curve showed an inflection point at a log-

transformed exposure level of −0.341, displaying an “inverted

U-shape” relationship, suggesting the existence of an optimal

exposure level.

Organophosphate pesticide metabolites both showed overall

significance (dimethyl: P = 0.002; diethyl: P = 0.032), but did

not exhibit significant non-linear characteristics (dimethyl: non-

linearity P= 0.226; diethyl: non-linearity P= 0.092). The dimethyl

metabolites showed an inflection point at log value 0.269, followed

by a stable positive correlation trend; diethyl metabolites showed

an inflection point at log value −1.729, followed by a gradually

increasing trend.

Atrazine also showed statistically significant association with

LE8 scores (overall P = 0.047, non-linearity P = 0.110), with an

inflection point at log value 0.708, followed by a slow upward

trend. Total pesticide exposure score also showed significant overall

association (P = 0.030) but did not exhibit obvious non-linear

characteristics (non-linearity P = 0.384).

3.5 Mixed exposure e�ect analysis

Weighted quantile sum (WQS) regression analysis was used

to evaluate associations between mixed pesticide exposure and

cardiovascular health (Figure 4). Results showed significant

associations between mixed pesticide exposure and both

LE8 scores and CMI, which remained stable across different

adjustment models.

In LE8 score analysis, the fully adjusted model showed the

strongest association (β = 0.828, 95% CI: 0.579–1.077, P <
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FIGURE 2

Associations between pesticide exposure biomarkers and cardiovascular health indicators. (A) Associations between 2,4-D and health scores. (B)

Associations between Atrazine and health scores. (C) Associations between OP-Dimethyl and health scores. (D) Associations between OP-Diethyl

and health scores. (E) Associations between Glyphosate and health scores. (F) Associations between Total Pesticide Score and health scores.

FIGURE 3

Restricted cubic spline analysis of associations between pesticide exposures and LE8 scores. (A) Association between 2,4-D and LE8 scores. (B)

Association between Atrazine and LE8 scores. (C) Association between OP-Diethyl and LE8 scores. (D) Association between OP-Dimethyl and LE8

scores. (E) Association between Total Pesticide Score and LE8 scores. (F) Association between Glyphosate and LE8 scores.
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FIGURE 4

Weighted contributions of individual pesticides in the WQS regression models.

0.001), with glyphosate contributing the largest weight (∼58%),

followed by organophosphate dimethyl metabolites (∼26%) and

diethyl metabolites (∼16%). In CMI analysis, although the overall

association was relatively weak, it remained statistically significant

(β = 0.063, 95% CI: 0.031–0.096, P < 0.001), with a different

weight distribution pattern: organophosphate diethyl metabolites

dominated (∼62%), followed by 2,4-D (∼28%), while glyphosate

(∼10%), atrazine, and organophosphate dimethyl metabolites

contributed less.

3.6 Subgroup analysis results

Subgroup analyses further revealed population heterogeneity in

associations between pesticide exposure and cardiovascular health

(Supplementary Table S4). Interaction analysis showed that, except

for the interaction between glyphosate and gender (P-interaction

= 0.037), other interactions between pesticide exposure and age,

gender, and race did not reach statistical significance.

Age-stratified analysis showed that organophosphate dimethyl

metabolites demonstrated significant positive associations across

all age groups (20–39 years: OR = 1.195, 95% CI: 1.051–1.358;

40–59 years: OR = 1.269, 95% CI: 1.061–1.516; ≥60 years: OR

= 1.261, 95% CI: 1.083–1.469), while 2,4-D showed significant

negative association only in young populations (20–39 years) (OR

= 0.807, 95% CI: 0.703–0.927).

Gender-stratified analysis found that organophosphate

dimethyl metabolites showed significant positive associations

in both males (OR = 1.219, 95% CI: 1.078–1.379) and females

(OR = 1.275, 95% CI: 1.111–1.462), while 2,4-D showed

significant negative association only in females (OR = 0.810, 95%

CI: 0.713–0.922).

Race-stratified analysis indicated that organophosphate

diethyl metabolites showed the strongest positive association

in Mexican Americans (OR = 1.304, 95% CI: 1.113–1.527),

while organophosphate dimethyl metabolites showed the most

significant association in non-Hispanic White people (OR= 1.317,

95% CI: 1.161–1.495). Meanwhile, 2,4-D in non-Hispanic White

people (OR = 0.892, 95% CI: 0.804–0.988), and glyphosate and

atrazine in Mexican Americans (OR = 0.743, 95% CI: 0.574–

0.961; OR = 0.785, 95% CI: 0.663-0.929) all showed significant

negative associations.

3.7 Mediation analysis results

Mediation analysis for 2,4-D exposure showed significant

mediation through CRP (ACME = −0.003, 95% CI: −0.007 to

−0.002, P < 0.001), accounting for 20.3% of the total effect. SII also

showed a weak but significant mediating effect (ACME = −0.005,

95% CI:−0.002 to−0.0001, P = 0.028).

Among organophosphate pesticides, diethyl metabolites

showed significant mediation through SII (ACME = −0.007,

95% CI: −0.008 to −0.002, P = 0.002), accounting for 36.8%

of the total effect, while also showing significant direct effects

(ADE = 0.027, 95% CI: 0.008–0.047, P = 0.008). Dimethyl

metabolites primarily showed direct effects (ADE= 0.032, 95% CI:

0.017–0.049, P < 0.001), with no significant mediation through

inflammation markers.

Glyphosate exposure primarily showed mediation through

CRP (ACME = −0.007, 95% CI: −0.010 to −0.001, P = 0.012).

Total pesticide exposure score also showed significant mediation

through CRP (ACME = −0.004, 95% CI: −0.004 to −0.001,

P < 0.001), with all inflammation markers showing weak but

statistically significant mediation effects (P < 0.05 for both NLR

and SII).

No significant mediating effects were observed between

atrazine exposure and inflammation markers, suggesting it might

affect cardiovascular health through other mechanisms. These

results indicate that inflammatory response may be an important
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biological pathway through which some pesticide exposures affect

cardiovascular health, though different types of pesticides may act

through different mechanisms.

3.8 Sensitivity analysis

Supplementary Table S5 showed the results of sensitivity

analysis after multiple imputation. In Model 3, the positive

associations between organophosphate pesticides (diethyl

metabolites β = 1.985, 95% CI: 1.601–2.368 and dimethyl

metabolites β = 1.625, 95% CI: 1.356–1.895) and LE8 scores, and

the negative associations of 2,4-D (β = −0.635, 95% CI: −0.812

to −0.458) and atrazine (β = −0.408, 95% CI: −0.574 to −0.242)

remained consistent. Glyphosate and total pesticide exposure score

still showed no significant associations after imputation.

4 Discussion

This study marks the first systematic evaluation of the

associations between pesticide exposure and both non-

cardiovascular mortality and cardiovascular health in the

general population. Through analysis of data from 12,432 adult

participants in the NHANES 2007–2018 database, we identified

significant differential effects of various pesticide types on

cardiovascular health. 2,4-D herbicides showed significant negative

correlations with multiple LE8 components, including BMI

score, sleep score, and dietary score; organophosphate pesticide

metabolites (dimethyl and diethyl) generally demonstrated positive

associations with cardiovascular health indicators, particularly

evident in smoking score, dietary score, and total LE8 score. Dose-

response analysis revealed complex non-linear relationships, with

2,4-D herbicides exhibiting an “inverted U-shaped” relationship

with LE8 scores, showing an inflection point at the exposure

level logarithm of −0.341; meanwhile, organophosphate pesticide

metabolites displayed relatively stable positive correlation trends.

In mixed exposure effect analysis, WQS regression results indicated

that glyphosate contributed the highest weight (∼58%) to LE8

scores, while organophosphate diethyl metabolites dominated

in CMI analysis (∼62%). Furthermore, mediation analysis

revealed that inflammatory markers (particularly CRP and SII)

play crucial roles in the process by which pesticide exposure

affects cardiovascular health, providing new perspectives for

understanding the underlying mechanisms.

Our findings reveal several clinically significant associations

with important public health implications. Among the examined

pesticide biomarkers, 2,4-D herbicides demonstrated the most

consistent negative associations with cardiovascular health,

particularly affecting BMI and diet scores. The inverted U-shaped

relationship between 2,4-D exposure and LE8 scores suggests

there is no ’safe’ threshold for exposure, as even low-level exposure

shows significant negative associations with cardiovascular health.

In contrast, organophosphate metabolites showed unexpected

positive associations with LE8 scores, which may reflect their

correlation with certain healthy dietary patterns or potential

survival bias in our study population. The substantial mediating

role of inflammatory markers provides a plausible biological

pathway connecting pesticide exposure to cardiovascular outcomes

and identifies potential intervention targets.

In this study, different types of pesticides demonstrated distinct

mechanistic pathways: 2,4-D herbicides and organophosphate

pesticides potentially affect cardiovascular health through

mitochondrial dysfunction and oxidative stress induction, leading

to increased cardiomyocyte apoptosis and endothelial dysfunction

(20–23). Glyphosate exhibited a unique mode of action, not only

influencing energy metabolism but also interfering with lipid

metabolism pathways (24–26). Intriguingly, our results indicated

a positive correlation between organophosphate pesticides and

LE8 index, which we attribute to two main factors. First, studies

have shown that specific populations (such as pregnant women in

agricultural regions) exhibit significantly elevated DAP metabolite

levels, reaching 2.5 times that of NHANES female participants,

closely associated with increased fruit and vegetable consumption.

This finding suggests that elevated organophosphate metabolite

levels might reflect healthier lifestyle choices, which explains our

observed positive correlations including smoking and dietary

factors (27–30). Additionally, certain environmental chemicals

(such as organophosphate insecticides) tend to accumulate in

biological adipose tissues, particularly adipocytes. For populations

with higher BMI and advanced age, prolonged exposure time and

increased storage result in higher accumulated chemical levels,

leading to significantly increased health risks (31–33). In our

study, these populations often exhibited cardiovascular disease

symptoms earlier or experienced mortality due to cumulative

damage, suggesting our observations likely reflect survival bias.

These unique patterns were identified through differences in

study population characteristics, exposure assessment methods,

and outcome indicator selection. While studies focusing on

occupationally exposed populations typically involve high exposure

levels and extended durations, our study incorporated the

general population, utilizing multiple pesticide biomarkers for

comprehensive assessment, potentially better reflecting the health

effects of long-term low-dose exposure in the general population.

Furthermore, this study integrated both single and mixed exposure

effects, employing more sophisticated statistical models to evaluate

dose-response relationships. Additionally, most studies focusing

on LE8 scores and CMI indicators typically concentrate on single

clinical endpoints, an approach often leading to bias when focusing

solely on patient populations, which aligns with our findings in

Table 1 of the first section. Our study uniquely explored the effects

of various pesticides on LE8 scores and CMI indicators in the

general population. These methodological innovations enabled a

more comprehensive investigation of pesticide exposure’s impact

on cardiovascular health.

Mediation analysis further revealed the crucial role of

inflammatory responses in pesticide exposure’s impact on

cardiovascular health. CRP demonstrated significant mediation

effects (20.3% of total effect), suggesting systemic inflammation’s

importance in pesticide-induced cardiovascular damage. SII and

NLR mediation effects reflected immune system involvement,

particularly in organophosphate diethyl metabolites’ effects,

with SII mediating 36.8% of total effects. These findings suggest

pesticide exposure may activate multiple inflammatory pathways,
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including NF-κB signaling and MAPK cascades, ultimately leading

to cardiovascular function alterations (34, 35). Different pesticide

types act through distinct signaling pathways and mediators,

forming complex network effects.

Subgroup analyses revealed significant population

heterogeneity in pesticide exposure-cardiovascular health

associations. Age-stratified analysis showed organophosphate

dimethyl metabolites maintained significant positive associations

across all age groups, while 2,4-D showed significant negative

associations only in young adults (20–39 years). These age-

related differences may reflect the impact of metabolic capacity

and detoxification mechanism changes with age, with younger

populations potentially more sensitive to certain pesticides. Gender

difference analysis found significant interactions only between

glyphosate and gender, with other pesticide exposures showing

non-significant gender differences. Notably, glyphosate was the

only pesticide showing significant associations with CMI, with

Q2 (OR = 0.53, 95% CI: 0.38–0.76) and Q4 (OR = 0.62, 95% CI:

0.43–0.88) groups showing reduced high CMI risk. This unique

association pattern may relate to glyphosate’s specific mechanisms

affecting lipid and glucose metabolism, possibly subject to

gender-specific regulation, explaining the significant interactions

observed in gender-stratified analysis (36, 37). Race-stratified

results showed varying organophosphate pesticide effects across

races, most pronounced in Mexican Americans and non-Hispanic

White people, possibly due to differences in genetic background,

lifestyle, and environmental exposure patterns (38). These findings

emphasize the need for population-specific considerations in

prevention strategy development and differentiated intervention

measures for various populations.

This study possesses several notable strengths: it is based

on NHANES national survey data with a large sample size,

ensuring good population representativeness; it employs multiple

pesticide biomarkers for comprehensive assessment, providing a

more thorough exposure evaluation; and it utilizes sophisticated

statistical methods, including WQS regression and mediation

analysis, to thoroughly investigate exposure-response relationships

and potential mechanisms. However, the study also has several

limitations: the cross-sectional design precludes establishment

of causal relationships; single biomarker measurements may

not reflect long-term exposure levels; furthermore, several

methodological limitations should be acknowledged: the WQS

regression, while useful for mixture analysis, assumes similar

directional effects across all mixture components and may

not fully capture complex interactions between pesticides; RCS

analysis is sensitive to knot placement and may not optimally

characterize exposure-response relationships with limited data

points at extreme exposure levels; mediation analysis relies

on untestable assumptions about unmeasured confounding and

temporal ordering that cannot be verified in cross-sectional

data; and our statistical approaches may be sensitive to sample

size variations across subgroups and the handling of missing

data despite our validation efforts; additionally, certain potential

confounding factors (such as occupational exposure history and

dietary habits) may not have been adequately adjusted for. Future

research should conduct prospective cohort studies to establish

causality, further explore molecular mechanisms, particularly the

role of inflammatory pathways, and evaluate the effectiveness of

various intervention measures. Additionally, assessment of policy

implementation effects is needed to optimize pesticide exposure

control strategies.

From a public health perspective, our WQS regression analysis

revealed that glyphosate contributed most significantly to overall

pesticide mixture effects on LE8 scores, while organophosphate

diethyl metabolites dominated CMI effects, highlighting differential

impacts across pesticide types. These findings support the need

for more stringent regulation of certain pesticides (particularly

2,4-D), pesticide-specific risk assessments rather than treating all

agricultural chemicals as homogenous, and targeted public health

messaging for vulnerable subpopulations identified in our analysis.

Implementation of comprehensive biomonitoring programs could

help identify at-risk individuals and track the effectiveness of

regulatory interventions aimed at reducing harmful pesticide

exposure in the general population.

5 Conclusion

In summary, our study provides novel evidence of differential

associations between pesticide exposure and cardiovascular

health in a nationally representative sample of U.S. adults

from NHANES 2007–2018. Specifically, 2,4-D herbicides

showed significant negative correlations with multiple LE8

components, while organophosphate metabolites demonstrated

protective associations with cardiovascular health indicators.

Atrazine exposure showed moderate negative associations with

cardiovascular health, particularly impacting BMI and dietary

scores, as well as showing positive associations with blood pressure

components, though these associations were less consistent than

those observed for 2,4-D. The exposure-response analysis revealed

a non-linear relationship for 2,4-D (inverted U-shape) and stable

positive trends for organophosphate metabolites. In the mixed

exposure analysis, glyphosate contributed the highest weight

(58%) to LE8 scores, while organophosphate diethyl metabolites

dominated the CMI relationship (62%). Notably, inflammatory

markers (CRP and SII) were identified as significant mediators

in these associations, particularly for 2,4-D and organophosphate

exposures. These findings contribute to our understanding

of pesticide exposure’s impact on cardiovascular health and

have important implications for public health interventions.

Further research, particularly prospective cohort studies, is

warranted to establish causal relationships and explore the

underlying molecular mechanisms. Additionally, strengthening

environmental monitoring and developing targeted prevention

strategies for different population subgroups would be advisable

based on our findings of demographic heterogeneity in pesticide

exposure effects.
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