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Background: In recent years, caloric restriction (CR), intermittent fasting (IF), and 
the ketogenic diet (KD) have gained popularity as primary dietary interventions 
for improving body composition. While these approaches offer benefits, both 
IF and KD have been associated with various adverse effects. Although CR is 
generally devoid of significant side effects, it may lead to reductions in lean 
body mass. To mitigate this, CR combined with exercise (CR + EX) has become a 
preferred strategy for maintaining overall health. However, under CR conditions, 
the effects of exercise may differ from those observed with a normal diet. Most 
existing studies compare CR + EX with CR alone, exercise alone, or a control 
(CON) group. Although prior studies have examined caloric restriction with 
exercise, direct comparisons between specific exercise modalities in a caloric 
deficit remain unclear, necessitating a network meta-analysis approach. This 
study summarizes the literature on CR combined with exercise to identify which 
exercise regimen, when paired with CR, yields the most favorable outcomes. 
The findings will provide valuable recommendations for individuals seeking to 
maintain or improve body composition through CR + EX.

Methods: A systematic review was conducted in accordance with the PRISMA 
guidelines, covering literature from the inception of databases up to September 
2024. Searches were performed in PubMed, Web of Science, Embase, and the 
Cochrane Library. This study was registered in PROSPERO under the identifier: 
CRD42024588241. Only randomized controlled trials (RCTs) involving healthy 
populations were included. Articles were rigorously screened according to the 
PICOS strategy (methods) eligibility criteria, and the risk of bias was assessed 
using the Cochrane Risk of Bias Tool. A network meta-analysis was performed, 
and the intervention effects were ranked using the Surface Under the Cumulative 
Ranking (SUCRA) curve.

Results: The network meta-analysis included 62 RCTs, encompassing 4,429 
participants. The ranking of intervention effects is as follows: Weight reduction: 
high-intensity aerobic exercise (HA) > moderate-intensity aerobic exercise 
(MA) > low-intensity aerobic exercise (LA) > moderate-intensity mixed exercise 
(MM) > high-intensity mixed exercise (HM) > CR > low-intensity resistance 
exercise (LR) > moderate-intensity resistance exercise (MR) > high-intensity 
resistance exercise (HR) > Control group (CON), Compared to CON, the effect 
sizes for the other groups were as follows: HA: 7.94 (6.34, 9.55), MA: 7.78 (5.97, 
9.58), LA: 7.10 (5.10, 9.10), MM: 6.65 (3.49, 9.81), HM: 7.47 (3.19, 11.75), CR: 7.10 
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(5.10, 9.10), LR: 5.45 (0.17, 10.72), MR: 5.62 (3.17, 8.06), HR: 6.00 (3.24, 8.76); 
BMI reduction: LA > MM > HA > MA > HR > CR > HM > MR > CON; Fat mass 
reduction: LA > HA > HM > MA > MR > LR > HR > CR > MM > CON, Compared 
to CON, the effect sizes for the other groups were as follows: LA: 2.70 (1.76, 3.65), 
MM: 3.35 (1.94, 4.75), HA: 2.90 (2.11, 3.70), MA: 2.96 (2.09, 3.84), HR: 2.56 (1.43, 
3.69), CR: 2.47 (1.79, 3.15), HM: 1.73 (−0.34, 3.81), MR: 2.26 (1.08, 3.45); Body fat 
percentage reduction: HA > MM > LR > HR > MR > HM > MA > LA > CR > CON, 
Compared to CON, the effect sizes for the other groups were as follows: HA: 
4.80 (3.50, 6.10), MM: 5.87 (3.22, 8.52), LR: 6.24 (1.05, 11.42), HR: 4.40 (1.93, 
6.87), MR: 4.18 (2.21, 6.15), HM: 4.40 (0.80, 7.99), MA: 4.17 (2.70, 5.64), LA: 
3.40 (1.44, 5.35), CR: 3.23 (2.08, 4.39); Lean body mass preservation: CON > 
MM > MR > LR > HR > MA > LA > HM > HA > CR, Compared to CON, the effect 
sizes of the other groups were as follows: MM: 0.14 (−2.91, 3.19), MR: 0.03 
(−2.24, 2.29), LR: 0.36 (−4.15, 4.87), HR: −0.17 (−2.36, 2.02), MA: −0.40 (−2.22, 
1.43), LA: −0.58 (−2.75, 1.59), HM: −0.81 (−4.27, 2.65), HA: −0.67 (−2.33, 0.98), 
CR: −1.66 (−3.12, −0.19). In summary, LR + CR, MA + CR and MR + CR are at an 
advantageous level in improving various indicators.

Conclusion: Combining moderate-and low-intensity resistance or aerobic 
exercise with caloric restriction optimizes fat loss while preserving lean body 
mass, making it a superior strategy for body composition improvement.

Systematic review registration: This study was registered in PROSPERO under 
the identifier: CRD42024588241.
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1 Introduction

With the increase in human energy intake, more individuals are 
struggling with the negative impacts of overweight and obesity. 
Preventing and addressing obesity has become a key area of growing 
concern. It is well established that reducing total body weight or body 
fat by 5–10% can yield significant health benefits. Among 
non-pharmacological interventions for preventing and managing 
obesity, diet and exercise are the most widely applicable methods (1–3).

In recent years, caloric restriction (CR), intermittent fasting (IF), 
and the ketogenic diet (KD) have gained popularity as major dietary 
interventions. While these approaches can improve body composition, 
both IF and KD have been associated with various adverse effects. 
Studies have shown that KD has pro-inflammatory effects, which may 
lead to heart fibrosis and kidney damage (4–9), often linked to 
elevated lipid levels in the body (10). Several studies suggest that IF 
protocols may induce apoptosis through pathways that are 
independent of caloric reduction, circadian rhythm alterations, or the 
mTORC1 nutrient-sensing mechanism. Such fasting triggers a rapid 
surge in free fatty-acid release, disrupts cellular metabolism, elevates 
reactive oxygen species (ROS), and causes oxidative damage and 
programmed cell death, ultimately leading to metabolic dysregulation 
and impaired normal growth. In contrast, studies suggesting adverse 
side effects of CR are relatively limited. CR has been shown to promote 
mitochondrial biogenesis, improving mitochondrial function and 
efficiency, reducing total oxygen consumption, and consequently 
decreasing ROS production (11). Some studies indicate that CR, when 
not associated with malnutrition, can extend lifespan in various 
species (12). Therefore, in an era of rising obesity rates, CR is often 
considered the most effective method for improving overall health. 

While CR reduces body fat, many studies suggest it also leads to a 
decrease in lean body mass (13, 14). Research indicates that diet-
induced weight loss reduces both fat mass and fat-free mass (FFM), 
with approximately 75% of the lost weight being fat tissue and about 
25% being FFM (15, 16). Loss of skeletal muscle is particularly 
concerning, as it may impair exercise capacity, lower basal metabolic 
rate and calorie expenditure, and is associated with increased 
disability, hospitalization, and mortality risks (17–19).

Some studies have shown that exercising during CR can reduce 
the loss of FFM by up to 50% (20). Our previous research confirmed 
that combining exercise with CR significantly helps preserve lean 
body mass (21). Other studies have suggested that resistance exercise 
during CR nearly halts the loss of lean body mass induced by CR (22, 
23). Consequently, many studies combine CR with exercise to achieve 
the dual benefits of reducing body fat while preserving lean body 
mass. However, during CR, the body’s metabolic state may change, 
and the effects of different types of exercise may vary. Most studies 
compare CR + EX with CON, exercise alone, or CR alone, 
demonstrating significant improvements in body composition, but 
they fail to compare the effects of different exercise modalities. 
According to previous literature, We hypothesize that CR + AE will 
be  the most effective for weight and fat loss, while CR + RE will 
be superior for lean body mass preservation. To categorize the various 
exercise modalities, we  define exercise intensity as follows: 
Low-intensity exercise was defined as less than 39% of maximal 
oxygen uptake (VO₂ max), 54% of maximal heart rate (HR max), 39% 
of heart rate reserve (HRR), and 49% of one-repetition maximum 
(1RM). Moderate-intensity exercise was defined as falling between the 
upper limit of low intensity and below 69% of VO₂ max, 74% of HR 
max, 69% of HRR, and 70% of 1RM. Exercise exceeding the upper 
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limit of moderate intensity was classified as high-intensity 
exercise (24).

Since factors such as exercise type and intensity can lead to 
variations in exercise outcomes—and even cause negative effects—it 
is crucial to explore which exercise modality, when combined with 
CR, produces the best results. This study summarizes the literature on 
CR combined with exercise to identify which exercise regimen, when 
paired with CR, yields the most favorable outcomes. The findings will 
provide valuable recommendations for individuals seeking to 
maintain or improve body composition through CR + EX.

2 Methods

2.1 Protocol and registration

This systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (25). The review protocol has been registered 
with PROSPERO (identifier: CRD42024588241).

2.2 Search strategy

A thorough search was conducted from the inception of the 
databases to September 2024, covering PubMed, Web of Science, 
Embase, and the Cochrane Library. Only English-language 
publications were considered, this network meta-analysis did not 
include gray literature or unpublished studies. Two authors (Y.X. and 
Y.H.) independently reviewed and assessed relevant articles according 
to predefined inclusion criteria. Disagreements regarding article 
selection were resolved through discussion with a third author (L.Z.). 
The search terms used are listed in Supplementary file S1.

2.3 Inclusion criteria and exclusion criteria

Inclusion Criteria: (1) the included literature must be  a 
randomized controlled trial containing at least two groups, one of 
which must be a CR + EX group, and the other groups can be a CON 
group, a CR group, or a CE + EX group. (2) Participants must 
be healthy individuals. (3) Outcome measures must include at least 
one of the following: Weight, BMI, body fat percentage, body fat mass 
or lean body mass.

Exclusion Criteria: (1) studies that are not randomized controlled 
trials. (2) Non-human studies. (3) Non-original studies, such as 
reviews, letters, case reports, or papers lacking accurate and clear data. 
(4) Studies involving individuals with existing diseases.

2.4 Data extraction

Data extraction from the selected studies was performed using a 
pre-structured Excel 2019 spreadsheet. The extracted information 
included study titles, participant demographics, age, intervention 
methods, duration, and quality assessments. Two authors (Y.H. and 
Y.X.) independently carried out the data extraction, with discrepancies 
resolved through consultation with a third author (Y.G.). For studies 

that presented mean values solely in graphical form, the Web Plot 
Digitizer (2024.09)1 was used to extract the data. When data were not 
presented as “Mean ± SD,” a standardized evidence-based medicine 
template was applied to convert them into the appropriate format.

2.5 Risk of bias assessment

The quality of the included RCTs was assessed using the Cochrane 
Risk of Bias Tool, which evaluates seven domains: random sequence 
generation and allocation concealment (selection bias), blinding of 
participants and personnel (performance bias), blinding of outcome 
assessment (detection bias), incomplete outcome data (attrition bias), 
selective reporting (reporting bias), and other biases. Each domain 
was classified as having low, high, or unclear risk of bias. Two authors 
(Y.X. and Y.H.) independently conducted the assessments, with any 
disagreements resolved through discussion with a third author (L.Z.).

2.6 Statistical analysis

Review Manager 5.3 was used to analyze the data and generate 
both the Risk of Bias summary and the Risk of Bias graph. Network 
meta-analysis combines direct and indirect evidence, thereby 
increasing statistical power and alleviating problems caused by sparse 
data. The surface under the cumulative ranking curve (SUCRA) 
quantifies the probability distribution of treatment ranks and is 
particularly valuable for its clinical interpretability. By converting 
cumulative ranking probabilities into a 0–100% scale, SUCRA 
conveys the overall hierarchy of therapeutic benefit more clearly than 
simply reporting the “best-rank” probability. In addition, because it 
is based on cumulative probabilities, SUCRA is less sensitive to 
marginal differences between ranks and thus helps prevent over-
interpretation of trivial distinctions. Network meta-analysis, 
consistency testing between direct and indirect comparisons, and the 
calculation of the League Table for interventions were performed 
using Stata MP 17 software. Surface Under the Cumulative Ranking 
(SUCRA) values were also calculated, and various plots, including the 
Network Plot, SUCRA Plot, clustered ranking plot, and funnel plots, 
were generated. Results were presented as standardized mean 
differences (SMD) with 95% confidence intervals (95% CI). We will 
assess the data for inconsistency; when significant inconsistency is 
detected, we will first perform subgroup analyses. Sensitivity analyses 
will be undertaken only if the subgroup approach fails to resolve 
the discrepancies.

3 Results

3.1 Search results and study selection

As of September 2024, a total of 2,715 articles were retrieved 
from four databases: PubMed (240), Web of Science (1,951), 
Embase (272), and the Cochrane Library (252). After removing 726 

1 https://automeris.io/

https://doi.org/10.3389/fnut.2025.1579024
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://automeris.io/


Xie et al. 10.3389/fnut.2025.1579024

Frontiers in Nutrition 04 frontiersin.org

duplicates, 1,989 articles were excluded based on their titles or 
abstracts, leaving 171 articles for full-text review. However, 2 
articles could not be located prior to the full-text review. Following 
the review, 169 articles were excluded for various reasons: abstract-
only content (n = 17), participants with high blood pressure 
(n = 30), lack of body composition indicators (n = 10), absence of 
original data (n = 19), and studies not involving exercise combined 
with dietary interventions (n = 31). In total, 62 articles were 
included in the final analysis (Figure  1) (11, 17, 26–85). The 
screening process was independently conducted by two authors, 
resulting in a kappa value of 0.7618, indicating a high level 
of agreement.

3.2 Study characteristics

A total of 62 articles were included in the meta-analysis 
(Supplementary Table S1). These studies, conducted between 1995 
and 2024, involved 4,429 participants. The duration of exercise 
interventions ranged from 2 weeks to 1 year, with the primary exercise 
modalities being resistance training and aerobic activities, including 

running, cycling, walking, and swimming. Exercise intensity was 
classified into low, moderate, and high intensity. The exercise modes 
examined in this study include low-intensity aerobic exercise (LA), 
low-intensity resistance exercise (LR), moderate-intensity aerobic 
exercise (MA), moderate-intensity resistance exercise (MR), 
moderate-intensity mixed exercise (MM), high-intensity aerobic 
exercise (HA), high-intensity resistance exercise (HR), and high-
intensity mixed exercise (HM). Each exercise session lasted between 
30 and 60 min, with participants exercising 2 to 7 times per week. The 
studies reviewed reported potential side effects during the initial phase 
of CR, such as irritability, difficulty concentrating, and reduced energy 
levels. However, these symptoms typically improved as participants’ 
bodies adapted to the intervention. In the CR group, total energy 
expenditure (TEE) was measured 1 week before the intervention 
began. During the intervention, participants in the CR group had their 
caloric intake reduced by 10–25% of their TEE. All dietary 
interventions were designed by professional nutritionists. In most 
studies, participants were provided with 1–2 main meals per day or 
were instructed to record the types and quantities of food they 
consumed daily. The specific characteristics of the studies are detailed 
in Supplementary Table S1.

FIGURE 1

Flow diagram of study selection.
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3.3 Risk of bias in included studies

Among the 62 included studies, 3 could not be assessed for the 
risk of random sequence generation, 39 could not be assessed for 
allocation concealment, and 8 could not be evaluated for incomplete 
outcome data. All studies that were assessed were deemed to have an 
unclear risk for blinding of participants and personnel, as effective 
blinding of the dietary and exercise interventions in the experimental 
groups was unlikely (Supplementary Figures S1, S2).

3.4 Effects of the interventions

We first conducted a consistency test across multiple interventions. 
When significant inconsistency was identified, subgroup analyses 
were performed to investigate potential sources, focusing on factors 
such as gender, age, obesity, intervention duration, and frequency. If 
consistency was deemed adequate, a Network Plot was generated to 
visualize the distribution of key characteristics across the studies. 
Subsequently, a League Table was created to present pairwise 
comparison data, followed by the construction of a SUCRA Plot to 
rank the different intervention methods. Even when the study 
population and exercise modality are identical, a certain degree of 
heterogeneity may still emerge in the outcomes. For instance, 
variability in high-intensity resistance-training results can stem from 
differences in participants’ baseline training status, adherence levels, 
or methodological inconsistencies across studies.

3.4.1 The effect of different exercise combined 
with caloric restriction on body weight

The Network Plot, League Table, and SUCRA Plot for the effect of 
different exercise combined with caloric restriction on body weight 
are shown in Figure 2.

As shown in Figure 2A, most studies primarily investigated caloric 
restriction combined with low-intensity aerobic exercise, moderate-
intensity aerobic exercise, high-intensity aerobic exercise, and high-
intensity resistance exercise. The largest number of participants was found 
in the caloric restriction combined with moderate-intensity aerobic 
exercise and caloric restriction combined with high-intensity aerobic 
exercise groups. Figure 2B summarizes the estimated effect size differences 
(SMD, 95% CI) for pairwise comparisons of 10 intervention methods. 
Compared to the control group, all 9 intervention groups showed 
significant reductions in body weight. When compared to the caloric 
restriction group, only the caloric restriction combined with high-
intensity aerobic exercise group showed a significant reduction in body 
weight. Figure 2C displays the SUCRA ranking of the 10 interventions, 
with the area under the curve representing the effectiveness of each 
intervention. The larger the area under the curve, the higher the 
effectiveness ranking. The ranking of interventions for weight loss 
was as follows: HA > MA > LA > MM > HM > CR > LR > MR > 
 HR > CON. Compared to CON, the effect sizes for the other groups were 
as follows: HA: 7.94 (6.34, 9.55), MA: 7.78 (5.97, 9.58), LA: 7.10 (5.10, 
9.10), MM: 6.65 (3.49, 9.81), HM: 7.47 (3.19, 11.75), CR: 7.10 (5.10, 9.10), 
LR: 5.45 (0.17, 10.72), MR: 5.62 (3.17, 8.06), HR: 6.00 (3.24, 8.76).

3.4.2 The effect of different exercise combined 
with caloric restriction on BMI

The Network Plot, League Table, and SUCRA Plot for the effect of 
different exercise combined with caloric restriction on BMI are shown 
in Figure 3.

As shown in Figure 3A, most studies primarily investigated 
caloric restriction combined with low-intensity aerobic exercise, 
moderate-intensity aerobic exercise, high-intensity aerobic exercise, 
and high-intensity resistance exercise. The largest number of 
participants were in the caloric restriction combined with 
moderate-intensity aerobic exercise and caloric restriction 

FIGURE 2

Network meta-analysis of weight: Network Plot, League Table, and SUCRA Plot. (A) Presents the Network Plot. The size of the nodes is proportional to 
the sample size of each dietary intervention, and the thickness of the lines corresponds to the number of available studies. (B) Displays the pairwise 
comparison League Table, where the estimated effect size differences (SMD with 95% CI) represent the difference between the intervention on the top 
and the intervention on the right. (C) Illustrates the SUCRA Plot, where the size of the area under the curve indicates the effectiveness of each 
intervention.
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combined with high-intensity aerobic exercise groups. Figure 3B 
summarizes the estimated effect size differences (SMD, 95% CI) for 
pairwise comparisons of 9 intervention methods. Compared to the 
control group, all groups—except for the HM + CR group—showed 
a significant reduction in BMI. Figure  3C displays the SUCRA 
ranking of the 9 interventions, with the area under the curve 
representing the effectiveness of each intervention. The larger the 

area under the curve, the higher the effectiveness ranking. The 
ranking of interventions for reducing BMI was as follows: 
LA > MM > HA > MA > HR > CR > HM > MR > CON. Compared 
to CON, the effect sizes for the other groups were as follows: LA: 
2.70 (1.76, 3.65), MM: 3.35 (1.94, 4.75), HA: 2.90 (2.11, 3.70), MA: 
2.96 (2.09, 3.84), HR: 2.56 (1.43, 3.69), CR: 2.47 (1.79, 3.15), HM: 
1.73 (−0.34, 3.81), MR: 2.26 (1.08, 3.45).

FIGURE 3

Network meta-analysis of BMI: Network Plot, League Table, and SUCRA Plot. (A) Presents the Network Plot. The size of the nodes is proportional to the 
sample size of each intervention, and the thickness of the lines corresponds to the number of available studies. (B) Displays the pairwise comparison 
League Table, where the estimated effect size differences (SMD with 95% CI) represent the difference between the intervention on the top and the 
intervention on the right. (C) Illustrates the SUCRA Plot, where the size of the area under the curve indicates the effectiveness of each intervention.

FIGURE 4

Network meta-analysis of body fat: Network Plot, League Table, and SUCRA Plot. (A) Presents the Network Plot. The size of the nodes is proportional 
to the sample size of each intervention, and the thickness of the lines corresponds to the number of available studies. (B) Displays the pairwise 
comparison League Table, where the estimated effect size differences (SMD with 95% CI) represent the difference between the intervention on the top 
and the intervention on the right. (C) Illustrates the SUCRA Plot, where the size of the area under the curve indicates the effectiveness of each 
intervention.
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3.4.3 The effect of different exercise combined 
with caloric restriction on body fat

The Network Plot, League Table, and SUCRA Plot for the effect of 
different exercise combined with caloric restriction on body fat are 
shown in Figure 4.

As shown in Figure 4A, most of the studies primarily investigated 
caloric restriction combined with low-intensity aerobic exercise, 
moderate-intensity aerobic exercise, high-intensity aerobic exercise, 
and high-intensity resistance exercise. The highest number of 
participants were in the caloric restriction combined with moderate-
intensity aerobic exercise and caloric restriction combined with high-
intensity aerobic exercise groups. Figure 4B summarizes the estimated 
effect size differences (SMD, 95% CI) for pairwise comparisons of 10 
intervention methods. Compared to the control group, all 8 
intervention groups, except for the MM + CR group, showed 
significant reductions in body fat. Compared to the CR group, the 
MA + CR and HA + CR groups also showed significant reductions in 
body fat. Figure  4C displays the SUCRA ranking of the 10 
interventions, with the area under the curve representing the 
effectiveness of each intervention. The larger the area under the curve, 
the higher the effectiveness ranking. The ranking of interventions for 
reducing body fat was as follows: LA > HA > HM > MA >  
MR > LR > HR > CR > MM > CON. Compared to CON, the effect 
sizes for the other groups were as follows: LA: 5.16 (3.66, 6.67), HA: 
5.63 (4.22, 7.05), HM: 5.95 (2.86, 9.04), MA: 5.55 (4.01, 7.10), MR: 
5.92 (3.31, 8.53), LR: 6.74 (0.25, 13.23), HR: 4.87 (2.68, 7.07), CR: 4.30 
(3.11, 5.48), MM: 3.48 (−1.33, 8.28).

3.4.4 The effect of different exercise combined 
with caloric restriction on body fat percentage

The Network Plot, League Table, and SUCRA Plot for the effect of 
different exercise combined with caloric restriction on body fat 
percentage are shown in Figure 5.

As shown in Figure 5A, most studies primarily investigated caloric 
restriction combined with moderate-intensity aerobic exercise, moderate-
intensity resistance exercise, and high-intensity aerobic exercise. The 
largest number of participants were in the MA + CR, MR + CR, and 
HA + CR groups. Figure  5B summarizes the estimated effect size 
differences (SMD, 95% CI) for pairwise comparisons of 10 intervention 
methods. Compared to the control group, all 9 intervention groups 
showed significant reductions in body fat percentage. Compared to the 
CR group, the MM + CR and HA + CR groups demonstrated significant 
reductions in body fat percentage. Figure 5C displays the SUCRA ranking 
of the 10 interventions, with the area under the curve representing the 
effectiveness of each intervention. The larger the area under the curve, 
the higher the effectiveness ranking. The ranking of interventions for 
reducing body fat percentage was as follows: HA > MM > LR > HR >  
MR > HM > MA > LA > CR > CON. Compared to CON, the effect sizes 
for the other groups were as follows: HA: 4.80 (3.50, 6.10), MM: 5.87 
(3.22, 8.52), LR: 6.24 (1.05, 11.42), HR: 4.40 (1.93, 6.87), MR: 4.18 (2.21, 
6.15), HM: 4.40 (0.80, 7.99), MA: 4.17 (2.70, 5.64), LA: 3.40 (1.44, 5.35), 
CR: 3.23 (2.08, 4.39).

3.4.5 The effect of different exercise combined 
with caloric restriction on lean mass

The Network Plot, League Table, and SUCRA Plot for the effect of 
different exercise combined with caloric restriction on lean mass are 
shown in Figure 6.

As shown in Figure 6A, most of the studies primarily focused on 
caloric restriction combined with low-intensity aerobic exercise, 
moderate-intensity aerobic exercise, high-intensity aerobic exercise, 
and high-intensity resistance exercise. The MA + CR and HA + CR 
groups had the largest number of participants. Figure 6B summarizes 
the estimated effect size differences (SMD, 95% CI) from pairwise 
comparisons of the 10 intervention methods. Compared to the control 
group, the CR group showed a significant decrease in lean body mass. 

FIGURE 5

Network meta-analysis of body fat percentage: Network Plot, League Table, and SUCRA Plot. (A) Presents the Network Plot. The size of the nodes is 
proportional to the sample size of each intervention, and the thickness of the lines corresponds to the number of available studies. (B) Displays the 
pairwise comparison League Table, where the estimated effect size differences (SMD with 95% CI) represent the difference between the intervention 
on the top and the intervention on the right. (C) Illustrates the SUCRA Plot, where the size of the area under the curve indicates the effectiveness of 
each intervention.
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Additionally, the MM + CR and HA + CR groups demonstrated a 
significant decrease in lean body mass compared to the CR group. 
Figure  6C presents the SUCRA rankings of the 10 interventions, 
where the area under the curve represents the effectiveness of each 
intervention. The larger the area under the curve, the higher the 
effectiveness ranking. The ranking of interventions in 
maintaining lean body mass was as follows: CON > MM >  
MR > LR > HR > MA > LA > HM > HA > CR. Compared to CON, 
the effect sizes of the other groups were as follows: MM: 0.14 (−2.91, 
3.19), MR: 0.03 (−2.24, 2.29), LR: 0.36 (−4.15, 4.87), HR: −0.17 (−2.36, 
2.02), MA: −0.40 (−2.22, 1.43), LA: −0.58 (−2.75, 1.59), HM: −0.81 
(−4.27, 2.65), HA: −0.67 (−2.33, 0.98), CR: −1.66 (−3.12, −0.19).

3.4.6 The effect of different interventions on 
LM + FAT

The Clustered Ranking Plot for the effects of different 
interventions on LM + FAT is shown in Figure 7.

As shown in Figure 7, the 10 interventions are categorized 
into four groups. The CON group is the most effective in 
maintaining lean body mass but the least effective in reducing 
body fat. The CR group exhibits moderate effectiveness in 
reducing body fat but is the least effective in preserving lean body 
mass. The LR, MR, HR, and MM groups form a category that is 
effective in preserving lean body mass but only moderately 
effective in reducing body fat. The LA, MA, HA, and HM groups 
are grouped together in another category, which is effective in 
reducing body fat but only moderately effective in maintaining 
lean body mass.

4 Discussion

Our network meta-analysis (NMA) included 62 randomized 
controlled trials to evaluate the effects of CR and CR combined with 

exercise on body composition. Based on the included studies, 
we  ranked the effects of 10 interventions (CON, CR, LA + CR, 
LR + CR, MA + CR, MR + CR, MM + CR, HA + CR, HR + CR, and 
HM + CR) to assess the differences in their impacts on body 
composition indicators. Our findings suggest that for weight 
reduction, aerobic exercise is the most effective, with its efficacy 
increasing with exercise intensity. In contrast, resistance training is 
less effective for weight reduction compared to CR alone. For body fat 
reduction, aerobic exercise is more effective than resistance training 
and combined exercise regimens. In terms of preserving lean body 
mass, the effects under CR differed from those observed with a normal 
diet. During CR, moderate-intensity mixed exercise and all intensities 
of resistance training were the most effective at maintaining lean body 
mass. However, as the intensity of mixed exercise and aerobic exercise 
increased, their effects on lean body mass became less favorable. Each 
intervention effectively reduced body fat and weight but also resulted 
in a reduction in lean body mass. Overall, LR + CR, MA + CR, and 
MR + CR demonstrated the most favorable combined effects in terms 
of reducing body fat and preserving lean body mass.

It is well established that exercise improves physical fitness; 
however, the effects of exercise during CR are less understood. CR 
induces a negative energy balance by reducing caloric intake, which 
results in changes to energy metabolis (86–88). When energy intake 
persistently falls below energy expenditure, the body enters a state of 
negative energy balance. To bridge the resulting caloric gap, it not only 
mobilizes adipose reserves but also catabolizes skeletal muscle 
proteins via gluconeogenesis to produce glucose, thereby eroding 
muscle mass. The concomitant reduction in lean tissue is accompanied 
by a decline in resting metabolic rate. Collectively, these metabolic 
adaptations shift the organism toward a survival-oriented 
physiological profile. This metabolic adaptation seems to be unique to 
CR, as studies on exercise-induced weight loss have not observed a 
similar adaptation (89–92). The focus of this study is to explore the 
effects of exercise during this period of metabolic change.

FIGURE 6

Network meta-analysis of lean mass: Network Plot, League Table, and SUCRA Plot. (A) Presents the Network Plot. The size of the nodes is proportional to 
the sample size of each intervention, and the thickness of the lines corresponds to the number of available studies. (B) Displays the pairwise comparison 
League Table, where the estimated effect size differences (SMD with 95% CI) represent the difference between the intervention on the top and the 
intervention on the right. (C) Illustrates the SUCRA Plot, where the size of the area under the curve indicates the effectiveness of each intervention.
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Our findings suggest that, during CR, aerobic exercise is more 
effective than combined exercise or resistance training for weight 
reduction. Both aerobic and resistance exercises contribute to 
reductions in body fat. However, aerobic exercise demands more 
energy, and during CR, this additional energy is sourced from fat 
stores, making it more effective than resistance training for reducing 
overall body weight. Additionally, resistance training tends to increase 
muscle mass, leading to less weight loss compared to aerobic exercise. 
Some studies propose that, when energy expenditure from exercise is 
equal, the intensity of exercise may not significantly influence weight 
loss (71). However, our results indicate that weight loss improves as 
the intensity of aerobic exercise increases. This is not contradictory, as 
the studies included in this analysis did not directly measure energy 
expenditure during exercise. Exercise durations ranged from 30 to 
60 min, with no significant differences in the time spent exercising at 
different intensities. Consequently, higher intensity resulted in greater 
energy expenditure. This does not imply that higher intensity is always 
superior, as intensity was adjusted according to participants’ fitness 
levels, with no exercise intensity exceeding what participants could 
safely handle. When exercise intensity surpasses an individual’s 
capacity, it may lead to adverse effects such as oxidative stress and 
inflammation, which can negatively impact health (93). This study 
also suggests that resistance exercise intensity does not significantly 
affect weight loss during CR. This may be due to the balance between 
muscle gain and fat loss induced by varying resistance training 
intensities, which results in no significant change in body weight (94). 
This finding aligns with some existing literature, which indicates that 
resistance exercise alone may even lead to weight gain (95). Regarding 
BMI, the results of this study indicate that changes in BMI follow a 
similar pattern to changes in body weight.

Adipose tissue serves as the primary energy storage site and is one 
of the main tissues affected during periods of negative energy balance 

(96–99). Weight loss resulting from a low-calorie diet differs 
significantly from weight loss due to exercise. Studies show that a 5% 
reduction in body weight is associated with a 21.3% reduction in body 
fat following exercise training, compared to only a 13.4% reduction 
with a low-calorie diet. To achieve the same 13.4% reduction in body 
fat through exercise, only a 2.4% weight reduction is required. This 
finding aligns with the ACSM position statement on weight loss 
interventions, which emphasizes the broader health benefits of 
exercise beyond weight reduction (100). Clinically significant 
reductions in body fat (up to 6.1%) can occur without any weight loss 
following exercise training, potentially reducing cardiovascular risk 
and improving metabolic health (101). However, some studies suggest 
that long-term caloric restriction can also produce fat loss comparable 
to exercise (102). Nonetheless, combined interventions of caloric 
restriction and exercise are generally more effective in reducing body 
fat. Our study confirms that, under caloric restriction, aerobic exercise 
is more effective in reducing body fat than combined exercise or 
resistance training, aligning with trends observed under normal 
dietary conditions. Once aerobic exercise reaches a sufficient duration, 
the body predominantly relies on fat as an energy source, making 
aerobic exercise the most effective for fat reduction. In contrast, 
resistance training, though less energy-intensive, promotes muscle 
growth, which increases TEE and indirectly enhances fat utilization 
(103, 104). Several studies suggest that improvements in lipid 
metabolism are linked to the volume of physical activity, emphasizing 
the importance of energy expenditure in enhancing lipid metabolism 
(105, 106), which supports our findings. Interestingly, our results show 
that moderate-to low-intensity resistance training is more effective 
than high-intensity resistance training in reducing body fat during 
caloric restriction. From an energy expenditure perspective, resistance 
training intensity has minimal impact on energy consumption, as 
lifting a weight equal to 1RM once requires the same energy as lifting 

FIGURE 7

The Clustered Ranking Plot of LM + FAT. The horizontal axis represents the effect on reducing FAT, and the vertical axis represents the effect on 
increasing LM, with points in the top right representing the best effects.
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50% of 1RM for multiple repetitions. Low-intensity resistance training 
typically involves more repetitions than high-intensity training, 
resulting in similar energy expenditure between the two. Despite this, 
we  observed that the CR + HR combination was less effective in 
maintaining lean body mass compared to moderate-to low-intensity 
resistance training. This further reinforces the idea that resistance 
exercise increases basal metabolic rate by preserving lean body mass, 
ultimately enhancing fat reduction.

Studies indicate that during CR, the negative energy balance 
caused by reduced caloric intake leads to decreased mTOR 
signaling (107). mTORC1 regulates key anabolic processes, 
including ribosome biogenesis, protein translation, autophagy, 
lipogenesis, and nucleotide biosynthesis (108). Reduced mTOR 
activity impairs muscle protein synthesis and promotes protein 
degradation, leading to a loss of lean body mass (109). When 
exercise is performed during CR, the body not only enhances fat 
consumption but also uses energy to support myofibrillar protein 
synthesis, helping preserve lean body mass (110). Some studies 
suggest that CR increases PGC-1 and mitochondrial biogenesis, 
which can improve skeletal muscle mass and function, 
particularly during short-term CR (111–116). Our study found 
that during CR, all intensities of resistance training and 
moderate-intensity combined exercise are most effective in 
maintaining lean body mass. This is supported by previous 
research showing that combining resistance and aerobic exercise 
during CR improves skeletal muscle strength and mass (38). 
Interestingly, we  observed that Moderate-and low-intensity 
resistance training during caloric restriction effectively preserves 
lean body mass, outperforming high-intensity resistance training. 
Resistance training intensity is based on the participant’s 1RM 
percentage, so there is no concern about excessively high 
resistance training intensity. Under normal dietary conditions, 
muscle mass increases with higher resistance training intensity 
(94, 117). However, during CR, limited energy intake may hinder 
muscle synthesis, especially with high-intensity resistance 
training. This phenomenon may stem from an energy deficit that 
precipitates a latent negative nitrogen balance. Additionally, 
we  found that high-intensity combined exercise and high-
intensity aerobic exercise were less effective than other exercise 
modalities in preserving lean body mass during CR. This 
contrasts with patterns observed under normal dietary 
conditions, where higher exercise intensity typically leads to 
better preservation of lean body mass (118). During CR, high-
intensity aerobic exercise may promote protein utilization or even 
contribute to muscle breakdown, a topic that warrants further 
investigation. Overall, our findings suggest that the optimal 
exercise intensity for maintaining lean body mass during CR is 
lower than typically seen under normal dietary conditions. This 
aligns with previous studies indicating that excessive resistance 
training intensity does not necessarily result in better muscle gain 
than moderate- or low-intensity resistance training (119–121). 
Individuals performing RT to build LM should avoid prolonged 
energy deficiency, and individuals performing RT to preserve LM 
during weight loss should avoid energy deficits >500 kcal day-1 
(122), further supporting the conclusions of our study.

Body fat percentage is primarily influenced by fat mass and lean 
body mass. The results of this study indicate that, under CR, HA is 
most effective in reducing body fat percentage. This effect may 

be attributed to the combined impact of CR and HA, which is highly 
effective in reducing both body weight and fat mass, though less so in 
preserving lean body mass. During caloric restriction, the body enters 
a catabolic state, where it breaks down both fat and muscle tissue for 
energy. However, during high-intensity aerobic exercise, the body 
preferentially oxidizes fat for fuel. If the caloric deficit is too large or the 
diet is unbalanced, muscle tissue can also be broken down. While lean 
body mass decreases, fat mass decreases more significantly, leading to 
a net reduction in body fat percentage. Furthermore, our results show 
that, under caloric restriction, resistance exercise is more effective in 
reducing body fat percentage than moderate-to low-intensity aerobic 
exercise. This is likely because resistance exercise helps preserve lean 
body mass, which contributes to maintaining body weight and 
ultimately results in a lower body fat percentage compared to 
moderate-to low-intensity aerobic exercise.

In summary, combined interventions such as LR + CR, 
MA + CR, and MR + CR are the most effective for reducing body 
fat and maintaining lean body mass. While fat loss is a key goal, 
preserving lean body mass is equally crucial. Therefore, CR 
combined with resistance exercise is a superior approach, as it 
minimizes the loss of lean body mass (95). Some studies suggest 
that long-term CR can result in fat loss comparable to exercise, but 
it often leads to significant lean body mass loss (123). Thus, during 
CR, the emphasis should be on preserving lean body mass. For body 
recomposition, several studies emphasize that the primary research 
focus is to identify intervention strategies capable of simultaneously 
reducing body fat while preserving or increasing lean mass (124–
126). The results of this study indicate that moderate-to 
low-intensity resistance exercise is highly effective in minimizing 
lean body mass loss while simultaneously reducing body fat. This 
makes it one of the most effective strategies for improving body 
composition. In addition, moderate-intensity aerobic exercise also 
yields positive results by reducing body fat while preserving some 
lean body mass, though it is less effective than resistance exercise.

These findings indicate that non pharmacological interventions in 
healthy individuals should be tailored to participant characteristics and 
the planned duration of treatment. For reducing body weight and body 
fat percentage, HA + CR is the preferred strategy, whereas MM + CR 
is better suited for maintaining or augmenting lean body mass. 
Clinicians should tailor exercise prescriptions based on patient goals.

While many studies show that combined exercise regimens are 
more effective than either aerobic or resistance exercise alone, this 
study focused exclusively on body composition outcomes and did 
not address cardiovascular health. This limitation restricts the 
broader applicability of our findings. In the studies reviewed, 
research on resistance and mixed exercise was significantly less 
prevalent than that on aerobic exercise, which may introduce 
limitations when integrating the findings across studies. After bouts 
of high-intensity exercise, the body continues to expend additional 
energy, leading to an elevated metabolic rate for several hours post-
workout—a residual effect that is difficult to eliminate in most 
experimental settings. Additional factors may also compromise the 
precision of the findings, including small sample sizes in some 
RCTs, heterogeneity in caloric-restriction protocols across studies, 
and a paucity of long-term follow-up data. For future research, it is 
advisable to investigate the long-term effects of different training 
modalities and to assess hormonal and metabolic responses to 
CR + EX interventions.
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5 Conclusion

Combining moderate-and low-intensity resistance or aerobic 
exercise with caloric restriction optimizes fat loss while preserving 
lean body mass, making it a superior strategy for body composition 
improvement. Suggest future RCTs with standardized exercise 
protocols to validate findings.
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