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Enteromorpha prolifera soluble 
dietary fiber alleviates ulcerative 
colitis through restoration of 
mucosal barrier and gut 
microbiota homeostasis
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Xiang Ding 1, Meng-Chun Qi 2, Wei Dong 2 and Chen-Guang Liu 1*
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Background: Ulcerative colitis (UC), a recurrent chronic colon inflammation, 
presents substantial therapeutic challenges due to the frequent adverse effects 
associated with conventional pharmacological treatments. These limitations 
underscore the critical need for developing alternative dietary interventions 
with improved safety profiles. The present study investigated the therapeutic 
potential of Enteromorpha prolifera soluble dietary fiber microparticles (EDFM) 
in UC management, focusing on restoring mucosal barrier integrity and 
modulating gut microbiota homeostasis.

Methods: EDFM was fabricated through aqueous extraction of E. prolifera 
soluble dietary fiber via boiling followed by spray-drying. A mouse UC 
model was induced by dextran sulfate sodium (DSS). The severity of UC was 
evaluated through daily disease activity index (DAI) scoring; quantification of 
pro-inflammatory cytokines (TNF-α, IL-1β) via ELISA; histopathological analysis 
of colon sections with H&E staining; immunofluorescence detection of tight 
junction proteins (ZO-1, occludin); and 16S rRNA sequencing for gut microbiota.

Results: EDFM treatment significantly reduced the expression of pro-inflammatory 
cytokines (TNF-α and IL-1β), enhanced the expression of tight junction proteins 
(ZO-1 and occludin), and stimulated mucin (MUC2) production. Additionally, 
EDFM promoted the proliferation of beneficial probiotics (Alloprevotella, 
Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014), 
while inhibiting pathogenic bacteria (Escherichia-Shigella, Parabacteroides, 
Rikenellaceae_RC9_gut_group, Odoribacter, and [Ruminococcus]_torques_
group).

Conclusion: EDFM supplementation significantly ameliorates UC through 
dual modulation of gut microbiota and intestinal barrier integrity, indicating its 
potential as a functional food ingredient for UC prevention and treatment.
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1 Introduction

Ulcerative colitis (UC), an inflammatory bowel disease, is a 
recurrent chronic inflammation of the colon (1). In recent decades, 
the prevalence and incidence of UC have notably increased, likely due 
to changes in lifestyle and environmental factors (2). During the 20th 
century, over 1.5 million North American and 2 million European are 
suffering from the disease (3). UC is mainly characterized by diarrhea, 
hematochezia, of intestinal barrier function impairment, and gut 
microbiota dysbiosis (4). Significantly, UC may increase the risk of 
colorectal cancer (5). Patients who experience a disease trajectory 
lasting longer than 20 years have a 10–15 times higher risk of colon 
cancer than ordinary people (5). Although the etiology of UC remains 
uncertain, various factors have been identified as potential causes of 
its pathogenesis and development, including host genetic 
susceptibility, environmental factors, the host immune system, gut 
microbiota and the integrity of the intestinal barrier (6).

The intestinal barrier plays a crucial role in the health of humans 
and animals. The intestinal barrier comprises physical, chemical, 
immune and biological barrier (7). As the intestinal physical barrier, 
intestinal epithelial cells depend on the precise organization of 
intercellular and intracellular tight junction proteins, including ZO-1 
and occludin, to establish the structural integrity of the intestinal 
barrier (1). The intestinal physical barrier can impede the passage of 
toxins, germs, viruses, and other deleterious substances, while 
simultaneously facilitating the transit of advantageous substances (8). 
Intestinal mucus serves as the intestinal chemical barrier, maintaining 
intestinal homeostasis, protecting intestinal epithelial cells from 
physical, chemical, and biological damage, and creating a favorable 
habitat and nourishment for symbiotic bacteria residing in the gut (9). 
Gut microbiota, served as intestinal biological barrier, can modulate 
the host’s immune response, suppress the proliferation of intestinal 
pathogens, modulate intestinal homeostasis, and maintain intestinal 
barrier integrity (1, 10). For UC patients, their intestinal barriers are 
impaired, manifested as damaged epithelial tight junctions (11), 
decreased intestinal mucus (12), and dysregulated gut microbiota (13). 
In contrast, the disrupt of intestinal barrier exacerbates inflammation 
and even directly induces UC (14). Therefore, the restoration of the 
integrity of the intestinal barrier is beneficial for the anesis of UC.

Currently, there is no curative treatment for UC. The primary 
objective of existing treatments is to manage and alleviate the patient’s 
symptoms rather than cure the disease. Treatment for UC patients 
often spans a lifetime, with pharmaceutical interventions being the 
primary method. However, prolonged pharmaceutical interventions 
may result in serious side effects and drug resistance, such as vomiting, 
fatigue, diarrhea, and abdominal pain (15). Researchers have made 
significant efforts to explore novel treatment strategies for UC, 
including oral probiotics, fecal microbiota transplantation (FMT), and 
dietary fiber supplements. However, the effectiveness of oral probiotics 
is hindered by their weak resistance to gastric acid and poor intestinal 
colonization ability. FMT is constrained by the availability of medical 
equipment and skilled personnel, limiting its use to only a small 
number of UC patients. Dietary fiber is an edible plant component 
resistant to digestion and absorption in the small intestinal area, 
partially or completely fermented in the colon by gut microbiota (16). 
Studies have demonstrated the beneficial effects of dietary fiber on the 
immune system, intestinal mucosal repair, gut microbiota regulation, 
and the occurrence of bacterial translocation (17). Notably, the 

absence of dietary fiber can result in elevated intestinal permeability, 
a reduction in mucus thickness and dysregulated gut microbiota, 
which is prone to inducing UC (18, 19). This demonstrates that the 
supplement of dietary fiber in the diet may potentially restore the 
integrity of the intestinal barrier, thus preventing and treating UC.

Dietary fiber is commonly categorized as soluble dietary fiber and 
insoluble dietary fiber based on its solubility in water (20). And it is 
now widely recognized that the health-promoting effects of the dietary 
fiber depend on its source, structure and composition. Dietary fiber 
can be naturally obtained from both terrestrial plants and marine 
seaweeds. Seaweeds, in particular, are rich in dietary fiber and offer a 
higher nutritional value when compared to terrestrial plants (17). 
Enteromorpha prolifera (E. prolifera) is an edible green seaweed used 
worldwide in the food and medical industry, rich in soluble dietary 
fiber (21). Wherein polysaccharides are the primary constituent of 
utmost significance. The polysaccharides from E. prolifera (EP) are 
considered as a safe compound with various physiological functions, 
such as antioxidant (22), anti-inflammatory (23), immunomodulatory 
(24), tissue restoration (25), and gut microbiota modulatory (26) 
properties. These effects are attributed to its unique structure of 
sulfated rhamnose. According to previous researches, it has been 
proved that EP exhibits preventative and mitigating properties 
concerning several diseases, including pancreatic damage (27), lipid 
metabolism disorders (28), excessive obesity (29), and intestinal 
inflammation (30). The soluble dietary fiber extracted from E. prolifera 
not only contains a high content of EP but also includes water-soluble 
proteins and minerals, all of which exert beneficial effects on human 
health (31, 32). In addition, uniform micro/nanoparticles have high 
contact area with intestinal epithelial cells, thereby enhancing 
bioavailability. Simultaneously, they are conducive to the adhesion and 
fermentation by gut microbiota, thus amplifying their prebiotic effects 
(1). Therefore, E. prolifera dietary fiber micro/nanoparticle (EDFM) 
prepared using spray-drying not only maintain the stability of active 
components but also optimize their functional performance, 
representing a promising functional food formulation with significant 
application potential. Although the activity of EP in alleviating 
inflammation and regulating gut microbiota has been fully 
demonstrated, it is still unclear whether EDFM can be  used as a 
dietary supplement to promote the repair of intestinal barrier 
function, thereby alleviating UC.

Herein, EDFM might be  used for UC treatment as a dietary 
supplement. The unique sulfated polysaccharide in EDFM exhibit 
anti-inflammatory, immunomodulatory, and microbiota-regulatory 
properties, suggesting its potential to restore intestinal barrier integrity 
in UC. Moreover, the micro/nanoparticle formulation of EDFM could 
enhance its interaction with epithelial cells and gut microbiota, 
potentially amplifying its therapeutic effects. This study will present 
an experimental foundation supporting the utilization of EDFM as a 
functional component in a specialized medicinal nutrition product 
designed to prevent and treat UC.

2 Materials and methods

2.1 Materials and reagents

Fresh E. prolifra was collected from the coast of Qingdao (36°10′N; 
120°47′E), China. Fresh E. prolifra was washed with tap water, 
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followed by removing excess water. Then the above clean E. prolifra 
was dried by freeze dryer (SCIENTZ-10 N, Ningbo Xinzhi 
Biotechnology Co., Ltd., China). Mannose (Man), Ribose (Rib), 
Rhamnose (Rha), Glucuronic acid (GluA), Glucose (Glc), Xylose 
(Xyl), Arabinose (Ara), and DSS (35–50 kDa) were purchased from 
Sigma Chemical Co. (St. Louis, MO, USA). Antibodies against zonula 
occludens-1 (ZO-1) and occludin were purchased from Abcam 
(Cambridge, UK). Mesalazine enteric-coated tablets were purchased 
from Losan Pharma GmbH (Neuenburg, Germany). Absolute ethanol, 
Sulphuric acid, BCA protein quantitative kit, Anthrone reagent, 
Acetone, and Methanol were obtained from Sinopharm Chemical 
Reagent Co., Ltd. (Shanghai, China). Mouse Myeloperoxidase (MPO) 
activity assay kit, TNF-α and IL-1β enzyme-linked immunosorbent 
assay (ELISA) kits were obtained from R&D Systems China (Shanghai, 
China). Hematoxylin and eosin staining kit, fluorescent secondary 
antibodies and 4′, 6-diamidino-2-phe-nylindole (DAPI) were 
purchased from Beijing Solarbio Technology Co., Ltd. (Beijing, China).

2.2 Nutritional composition analysis of 
E. prolifra

Moisture content, ash content, water-soluble polysaccharides 
content and crude fiber content of E. prolifra were determined 
according to the methods previously reported research (33). Protein 
and fat contents were determined by Kjeldahl method (34) and soxhlet 
extractor method according to previously reported with some 
modifications (35), respectively.

2.3 Preparation of E. prolifera soluble 
dietary fiber microparticles

The flowchart of E. prolifera soluble dietary fiber microparticle 
(EDFM) preparation was showed in Figure  1. Specifically, 12 g 
E. prolifra and 960 mL distilled water were placed in a vacuum wall 
breaker, then breaking at vacuum condition for 5 min. Further, the 
above mixture was boiled for 3 h, followed by centrifugation at 8000 g 
for 10 min. Then, the supernatant and precipitation were collected, 

respectively. The boiling process was performed twice. Finally, the 
supernatant was concentrated to 400 mL (36, 37).

EDFM was manufactured by a spray dryer (B-290, Buchi, 
Switzerland), according to the reported study (38). The preparation 
process of EDFM was optimized by single factor analysis using its 
yield and particle size as a criterion. Firstly, the air inlet volume, air 
pressure and injection speed were set to 100%, 40 mm and 45%, 
respectively. The inlet temperature was optimized by adjusting it to 
120°C, 140°C, 160°C, 180°C and 200°C. Secondly, the air inlet 
volume, air pressure and inlet temperature were set to 100%, 40 mm 
and 180°C, respectively. The injection speed was optimized by 
adjusting it to 25, 35, 45, 55, and 60%.

2.4 Characterization of EDFM

The particle size and particle size distribution were characterized 
by a micro nano laser particle sizer (Winner 2,000, Jinan, China). The 
morphology of EDFM was observed by optical microscope (DSX1000, 
Olympus, Japan), and its particle size was counted with Nanomeasure 
1.2 software. Moisture, ash, protein, fat, and polysaccharide contents 
of EDFM were determined according to previously reported methods 
(33). The polysaccharides were separated from EDFM. Briefly, EDFM 
was dissolved into distilled water (15 mg/mL), and then the EDFM 
solution was mixed with alcohol at a volume ratio 1:3, staying 
overnight. Next, the precipitation was collected and dried at 50°C for 
5 h to get the crude polysaccharide. Subsequently, the crude 
polysaccharide was purified by chromatography of Q Sepharose FF 
column (39). The polysaccharide solution (5 mg/mL, 4 mL) was 
applied to a column (3 cm × 20 cm). Then, the column was eluted by 
stepwise elution of NaCl solution at a 2 mL/min flow rate. The eluates 
were collected and then analysed using the phenol-sulfuric acid 
method. The eluates from the same peak were collected and dialyszed 
to remove NaCl, then concentrated and lyophilized to obtain the 
purified polysaccharide. Furthermore, the molecular weight was 
analyzed by Gel Permeation Chromatography (GPC). The sulfate 
content was determined using the barium chloride-gelatin method, as 
described in previous studies (40). Finally, the monosaccharide 
composition was analyzed by 1-phenyl-3-methyl-5-pyrazolone (PMP) 

FIGURE 1

Flowchart of EDFM preparation.
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precolumn derivation high performance liquid chromatography 
(HPLC) according to previously reported study (40).

2.5 Induction and EDFM treatment of 
DSS-induced UC

The induction and EDFM dietary treatment regimen of 
DSS-induced UC was shown in Supplementary Figure S1. Briefly, 
sixty C57BL/6 mice (Male, 20 ± 2 g, 6 weeks old) were purchased from 
Vital River Laboratories (Beijing, China). All mice were housed in 
standard polycarbonate cages with sterile bedding and maintained in 
a controlled environment (25°C, 55% relative humidity) with adequate 
ventilation. They were allowed to acclimate for 7 days prior to the 
experiment. During the adaptive feeding period, the mice were fed 
with AIN-9G. Then the mice were randomly divided into 6 groups 
[Healthy group (Healthy); UC group (UC), Mesalazine-treated group 
(Mesalazine); low-dosed EDFM group (LEDFM); Medium-dosed 
EDFM group (MEDFM); High-dosed EDFM group (HEDFM)] 
according to their body weight (n = 10 per group). Before inducing 
UC, the mice in the Healthy, UC and Mesalazine groups were fed with 
AIN-93G for 15 days. The mice in the LEDFM, MEDFM and HEDFM 
groups were fed with AIN-9G supplemented with 19 mg EDFM /100 g 
AIN-93G, 38 mg EDFM /100 g AIN-93G and 96 mg EDFM/100 g 
AIN-93G for 15 days, respectively. Next, the mice of all experimental 
groups except for the Healthy group were intragastrically administered 
with DSS of 4 g/kg·d for 5 days to induce UC. After inducing UC, the 
mice in the Mesalazine group were intragastrically administered with 
Mesalazine enteric-coated tablets (614 mg/kg), while others were 
intragastrically administered physiological saline. The kind of diet for 
each group remained unchanged throughout the entire experimental 
process. Each mouse was fed with 20 g of experimental diet every day, 
and the daily food intake of mice was monitored. All animal 
experiments were performed with the approval of the Experimental 
Animal Ethics Committee of Ocean University of China (accreditation 
number: OUC-AE-2023-154).

2.6 Measurements of disease activity index 
(DAI)

The body weight, stool characteristics and fecal occult blood of 
mice were recorded daily. According to Supplementary Table S1, the 
scores of the body weight, stool characteristics and fecal occult blood 
of each mouse were scored. Further, based on the standards reported 
by Jin et  al. (41), the DAI values were calculated using the 
following equation.

 

= +
+
DAI (body weight loss score stool characters score

fecal occult blood)/ 3

2.7 Collection and processing of blood 
samples, spleen and colon tissue of mice

The day before the end of the experiment, all mice were fasted 
for one night with only access to water. The blood samples of mice 

were obtained by removing eyes and centrifuged at 4°C, 3000 g for 
10 min, and then the upper serum was taken and stored at −80°C 
for cytokine measurements. Further, the mice were sacrificed by 
cervical dislocation, and the colon and spleen tissues were harvested 
and weighed. The length of the colon was also measured. In 
addition, the colon tissue was divided into two parts: one part was 
fixed in 4% paraformaldehyde, and the other one was homogenized 
by tissue homogenizer (F6/10, Shanghai Jingxin Industrial 
Development Co., Ltd., China). Then, the colon homogenate was 
centrifugated and the supernatant was obtained to store at −80°C 
for cytokine measurements.

2.8 Cytokine assay

The levels of cytokines of TNF-α and IL-1β in serum and colon 
tissues were measured by ELISA kits according to the 
manufacturer’s protocols.

2.9 Histological and immunofluorescence 
analyses

The colon tissues fixed in 4% paraformaldehyde were embedded 
in paraffin, and sliced into 4 μm sections. These slices of the colon 
were stained with hematoxylin and eosin (H&E) and alcian blue and 
periodic acid-Schiff (AB-PAS) (42) and subsequently observed with a 
light microscope (DSX1,000, Olympus, Japan). The histological scores 
of H&E-stained sections were performed using the evaluation criteria 
showed in Supplementary Table S2 reported by Xu et al. (42).

For immunofluorescence analysis, the slices of the colon were 
dewaxed, rehabilitated and incubated antibodies (ZO-1 and occludin, 
1:500) at 4°C overnight. The slices were then incubated with CY3 and 
FITC-labeled secondary antibodies and treated with DAPI for nuclear 
counterstaining. The slices were scanned with a 3DHISTECH 
Pannoramic MIDI digital slide scanner and analyzed using the 
CaseViewer software. The mean densities of ZO-1 and occludin were 
analyzed using the ImageJ software (43).

2.10 Gut microbiota 16S sequencing assay

On the final day of the experiment, fecal samples aseptically 
collected from 6 randomly selected mice per group (healthy, UC, and 
HEDFM groups) during the diurnal inactive phase (09:00–11:00) to 
standardize circadian rhythm effects. Immediately upon collection, 
samples were frozen in liquid nitrogen, and sent to Biomarker 
Technologies, Inc. (Beijing, China) for gut microbiota analysis by 16S 
sequencing assay. Briefly, microbiome DNA was extracted from the 
feces of the mouse by a QIAamp DNA Stool Mini Kit (Germantown, 
MD, United States) and the 16S rRNA libraries were constructed using 
the VAHTS Universal DNA Library Prep Kit for Illumina on an 
Illumina MiSeq (Illumina, Novaseq 6,000). A panel of GENEWIZ’s 
proprietary primers containing the sequences “CCTACGGR 
RBGCASCAGKVRVGAAT” (forward primers) and “GGACTACNV 
GGGTWTCTAATCC” (reverse primers) were adopted for the 
construction, which was specific to the V3-V4 regions of the 
microbiota 16S rRNA.
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16S rRNA gene sequencing analysis was performed using the 
QIIME 2 data analysis package. Specifically, the forward and reverse 
reads were linked and allotted to samples according to the barcode, 
and then the barcode and primer sequence were further removed. The 
obtained product was filtered to delete the sequences that contained 
ambiguous bases, whose length was over 200 bp, or whose mean 
quality score was less than 20. The chimeric sequences were 
determined by a reference database (RDP Gold database) with the 
UCHIME algorithm and discarded to obtain the effective sequences 
for ultimate analysis. The clustering program VSEARCH (1.9.6) was 
utilized to cluster the sequences into operational taxonomic units 
(OTUs) with 97% sequence identity. The 16S rRNA reference database 
was Silva 132, and taxonomic category analysis was performed on all 
OTUs with an 80% confidence threshold using the Ribosomal 
Database Program (RDP) classifier. Finally, the Chao1, Shannon, 
Simpson, ACE, and beta diversity index was calculated in the QIIME 
2 data analysis package according to the OTU analysis results. For 
microbial correlation analysis, Spearman’s rank correlation was 
performed to assess relationships between gut microbiota composition 
and UC-related parameters. Heatmaps were generated to visualize the 
relative abundance of microbial taxa and their correlations with 
clinical indicators. The linear discriminant analysis (LDA) and LDA 
effect size (LEfSe) methods (the threshold of a logarithmic score of 
LDA analysis was set to 4.0) were applied to analyze the metagenomic 
biomarker among groups using the Galaxy Online Analysis Platform.

2.11 Statistical analysis

The experiments in vitro were conducted in triplicate (n = 3) and 
in  vivo were conducted in sextuplicate (n = 6). The results are 
presented as the mean ± standard deviation. Comparative analysis of 
means was conducted using one-way ANOVA, with statistical 
significance set at p < 0.05.

3 Results

3.1 EDFM prepared by spray drying

Enteromorpha prolifera used in this study contained water-soluble 
polysaccharide of 55.81 ± 0.30%, the crude fiber of 7.90 ± 0.30%, 
protein of 18.42 ± 0.08%, ash content of 9.79 ± 0.23%, crude fat of 
0.36 ± 0.02% and water of 8.30 ± 0.10%, which demonstrated water-
soluble polysaccharide from EP is the main chemical component. 
EDFM was prepared with the highest yield of 76.9 ± 4.1% by spray 
drying at an inlet temperature of 180°C and injection rate of 45% 
(Supplementary Figures S2, S3 and Supplementary Table S3). The 
prepared EDFM was spherical, with a relatively uniform particle size 
of 2.1 ± 0.6 mm (Figures 2a,b), and its chemical composition was 
analyzed to contain EP (73.70 ± 0.30%), protein (1.04 ± 0.04%), ash 
(13.71 ± 0.43%), and water (10.23 ± 0.31%). The EP purified from 
EDFM contained monosaccharides including mannose, rhamnose, 
glucuronic acid, galacturonic acid, glucose, galactose, xylose, and 
fucose, in a proportion of 0.602:54.492:24.669:0.322:5.213:2.368:11.9
70:0.365 (Figures 2c,d). Furthermore, EP was tested with a sulphate 
content of 6.9 ± 0.1%, and the molecular weight of EP in EDFM was 
4.1 × 105 Da.

3.2 EDFM improved general symptoms of 
the mice with UC

As shown in Figures 3a,b, the mice of all experimental groups 
maintained a steady daily food intake, displayed a gain in body weight, 
and had no diarrhea in the first 14 days prior to inducing UC, 
suggesting the dosages of the EDFM employed in this study was 
within the safe limits and showed no adverse effects on the mice. After 
the induction of UC starting on the experiment’s 14th day, the mice’s 
daily feed intake and body weight dramatically reduced, and their DAI 
scores significantly increased in all other experimental groups 
excluding the healthy group (Figures 3a–c). After the induction of UC 
stopping on the experiment’s 19th day, the daily feed intake and body 
weight of the mice in all other experiment groups begun to rebound, 
and their DAI scores decreased, except for the UC and LEDFM groups 
(Figures 3a–c). Furthermore, the colon weight/length ratio showed 
that the colon weight/length ratio values of the Mesalazine, MEDFM 
and HEDFM groups were significantly higher than those in the UC 
and LEDFM groups (Figures 3d,e). However, Mesalazine, LEDFM and 
MEDFM treatments failed to decrease the spleen weight (% body 
weight), in contrast, HEDFM treatment decreased the spleen weight 
to the level of mice in the healthy group (Figure 3f). These results 
demonstrated the dietary supplement of EDFM could alleviate the 
general symptoms of the mice with UC at medium (38 mg EDFM 
/100 g) and high dosage (96 mg EDFM/100 g).

3.3 EDFM enhanced epithelial barrier and 
regulated inflammation of the mice with 
UC

The H&E images showed the colon of mice in the healthy group 
possessed a fully intact epithelial barrier, entire crypt structure, 
complete goblet cells, and no inflammatory cell infiltration (Figure 4a). 
Nonetheless, UC group exhibited typical characteristics of colon with 
abnormal structure, including the depletion of epithelial and goblet 
cells, crypt destruction, and substantial infiltration of inflammatory 
cells in the intestinal mucosa and submucosa, caused by continuous 
administration of DSS (Figure 4b). Except for the LEDFM group, all 
other experimental groups mice exhibited diminished damage, 
maintained a complete epithelial barrier and crypt structure, increased 
goblet cells, and reduced inflammatory cell infiltration (Figures 4c–f). 
Furthermore, the colon histological score of the mice in UC group was 
3.5 ± 0.4, which was observed to be significantly higher than those 
observed in other groups. Figure 4g demonstrated that Mesalazine, 
MEDFM, and HEDFM treatment reduce the histological score to 
2.0 ± 0.3, 1.5 ± 0.3, and 1.5 ± 0.4, respectively. Figure 4h illustrated a 
considerable downregulation of myeloperoxidase (MPO) expression 
in the colon of mice in Mesalazine, MEDFM and HEDFM groups, as 
compared to the UC group, suggesting the administration of 
Mesalazine, MEDFM, and HEDFM could mitigate the infiltration of 
inflammatory cells of the colon, as observed in H&E images.

As for the expression of tight junction proteins (TJs), Figures 5a–c 
illustrated the weak green fluorescence and red fluorescence intensity 
in the colon of mice in the UC group. This fluorescence intensity is 
approximately 30 and 32% of the fluorescence intensity observed in 
the colon of mice in the healthy group, respectively. However, the 
colon of mice in the Mesalazine, MEDFM, and HEDFM groups 

https://doi.org/10.3389/fnut.2025.1579889
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ding et al. 10.3389/fnut.2025.1579889

Frontiers in Nutrition 06 frontiersin.org

exhibited enhanced green and red fluorescence intensity compared to 
the fluorescence intensity observed in the UC group. These 
demonstrated the administration of Mesalazine, MEDFM, and 
HEDFM could maintain the integrity of the intestinal epithelial 
barrier by improving the expression of Occludin and ZO-1 proteins 
in the colon.

The expression of pro-inflammatory cytokines including tumor 
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was evaluated 
later. As shown in Figures 5d–g, the levels of the expression for TNF-α 
and IL-1β in both the colon and serum of mice in the UC group 
exhibited a considerable upregulation compared to those of mice in 
the healthy group. This finding serves as evidence for the successful 
establishment of the UC model. Following the administration of 
Mesalazine, MEDFM, and HEDFM, a notable decrease in the levels of 
TNF-α and IL-1β was observed in both colon and serum, in 
comparison to mice in the UC group. In contrast, the supplement of 
LEDFM did not significantly alter TNF-α and IL-1β expression levels 

in the colon and serum. These findings suggested that MEDFM and 
HEDFM can downregulate the expression of TNF-α and IL-1β in mice 
with UC, leading to a mitigation of inflammatory response.

3.4 EDFM improved the mucus barrier of 
the mice with UC

Given the importance of the mucus layer in the integrity of the 
intestinal barrier, this study further evaluated the effect of EDFM on 
the mucus layer by staining the mucin in the colon with Alcian blue. 
Figure 6a illustrated the goblet cells located in the lamina propria were 
filled with mucin, and mucin was also observed on the surface of the 
colon epithelium of mice in the healthy group. In contrast, most of the 
goblet cells in the lamina propria and lumen of the colon of mice in 
the UC group were lost (Figures 6b,g,h), resulting in almost no mucin. 
Following the treatment with.

FIGURE 2

(a) The photograph of EDFM under optical microscope and (b) the statistical histogram of their particle size. (c) HPLC chromatogram of standard 
monosaccharide mixture: mannose (Man); ribose (Rib); rhamnose (Rha); Glucuronic acid (GlcA); Galacturonic acid (GalA); N-acetylglucosamine (NAG); 
glucose (Glc); N-acetylglucosamine; galactose (Gal); xylose (Xyl); arabinose (Ara); fucose (Fuc) and monosaccharide composition of the purified EP 
from EDFM. (d) The peak area of each peak in the HPLC curves of the purified EP from EDFM.
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Mesalazine, MEDFM, and HEDFM, there was a notable 
increase in the number of goblet cells filled with mucin within each 
crypt located in the lamina propria of the colon. Additionally, the 
crypt damage score was observed to diminish, with the lamina 
propria becoming filled with mucin. Notably, mucin was also 
observed to accumulate on the surface of the colon epithelium 
(Figures 6c,e–h). However, there was no significance in the number 
of goblet cells and the crypt damage score in the colon of mice 
subjected to LEDFM treatment, in comparison to the UC group 
(Figures 6b,d,g,h). These results suggested that the treatment of 
Mesalazine, MEDFM, and HEDFM could effectively preserve the 
integrity of the mucus layer and impede the progression of UC by 
safeguarding the goblet cells and promoting the production and 
secretion of mucin.

3.5 EDFM modulated gut microbiota 
dysbiosis of the mice with UC

To investigate whether the effect of EDFM on UC is related to the 
regulation of gut microbiota, 16 s rRNA gene sequencing was 
performed in three experimental groups (Healthy, UC, and HEDFM-
treated groups) to identify alterations in the composition of the gut 
microbiota. The rarefaction and rank abundance curves are frequently 
employed in the characterization of sample diversity, indicating that 
sample sequencing data is reasonable and that the majority of 
microbial diversity in all samples has been captured 
(Supplementary Figures S4a,b). The Venn diagrams on the OTU level 
showed that 364 OTUs were shared in the feces of mice in the healthy, 
UC and EDFM groups. The total OTU number of mice feces in these 

FIGURE 3

Effect of dietary supplement of EDFM on the (a) daily feed intake, (b) daily initial body weight ratio, (c) DAI, (d) colon length, (e) colon weight/length 
ratio and (f) spleen weight of the mice. Data are represented as the mean ± SD, n = 6. Data with different superscript letters indicate significant 
differences (p < 0.05).
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three groups was 496, 486 and 456, respectively. The unique OTU 
number in the feces of mice in the healthy group (12) was a lot higher 
than those in the EDFM (7) and UC groups (4). These indicated that 
the treatment of EDFM and DSS may lead to alterations in the 
microbial composition (Figure 7a). Alpha diversity analysis serves as 
a comprehensive measure of species richness, encompassing the 
Chao1 and Ace indices, as well as diversity, represented by the 
Shannon and Simpson indices (44). Previous research shows a positive 
correlation between the Ace and Chao1 indices and microbial 
richness, and the Shannon and Simpson indices exhibit a positive 
correlation with microbial diversity (44). As shown in Figures 7b–e, 
the Ace index, Chao index, Shannon index, and Simpson index of gut 
microbiota of mice in the UC group exhibited a statistically significant 
reduction compared to those in the healthy group, suggesting a 

notable decline in both the diversity and richness of gut microbiota in 
mice with UC. The dietary supplement of EDFM resulted in a notable 
increase of gut microbial diversity and richness in mice, suggesting 
EDFM possessed the potential to mitigate the reduction in gut 
microbial diversity and richness observed in mice with UC effectively. 
For PCoA on the OTU level of β-diversity, the gut microbiota was 
distictly clustered among healthy, UC and EDFM groups and the 
distribution of the EDFM group was much closer to the healthy group. 
ANOSIM analysis showed substantial differences between the healthy, 
UC, and EDFM groups (p < 0.05). This suggested that EDFM could 
modulate the composition of the gut microbiota in mice, leading to a 
beneficial development for the body.

To facilitate a more comprehensive examination of the regulatory 
impact of EDFM on gut microbiota and reveal the specific 

FIGURE 4

Histopathological observation of colon stained by hematoxylin and eosin. (a) Healthy group. (b) UC group. (c) Mesalazine group. (d) LEDFM group. (e) 
MEDFM group. (F) HEDFM group. Scale bar 100 mm and 50 mm. (g) Histological score and (h) MPO activity of the colon. Data are represented as the 
mean ± SD, n = 6. Data with different superscript letters indicate significant differences (p < 0.05).
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composition of gut microbiota, an investigation was conducted to 
assess alterations in the composition and relative abundance of gut 
microbiota at both the phylum and genus levels. Figure 7g displayed 

the top 10 microbial communities at the phylum level. Notably, the 
relative abundance of Bacteroidetes, Firmicutes, Proteobacteria, 
Epsilonbacteraeota, and Verrucomimicrobia phyla is significantly 

FIGURE 5

(a) Immunofluorescence staining of ZO-1 and occludin. Green fluorescence reflects the expression of ZO-1. Red fluorescence demonstrates the 
expression of occludin. Blue fluorescence represents the cell nucleus. Scale bar 50 mm. The fluorescence intensity of (b) ZO-1 and (c) occludin of the 
colon. The colon levels of inflammatory factors (d) TNF-α and (e) IL-1β. The serum levels of inflammatory factors (f) TNF-α and (g) IL-1β. Data are 
represented as the mean ± SD, n = 6. Data with different superscript letters indicate significant differences (p < 0.05).
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influenced by UC. The feces of mice in the UC group showed a 
reduced relative abundance of Firmicutes and Epsilonbacteraeota 
phyla, while an increased relative abundance of Bacteroidetes and 
Proteobacteria phyla compared to the healthy group (Figures 7h–l). 
Compared with the mice in the UC group, the dietary supplement of 
EDFM resulted in a notable rise in the relative abundance of Firmicutes 
and Verrucomimicrobia phyla within the gut microbiota of mice. 
Conversely, the abundance of Bacteroidetes and Proteobacteria phyla 
exhibited a drop.

Furthermore, the top 30 microbial communities at the genus level 
were shown in Figure  8a. Among these 30 genera, seven were 
upregulated, and ten were downregulated in the feces of mice in the 
UC group compared to the healthy group. Nevertheless, the dietary 
supplement of EDFM successfully mitigated these detrimental 
alterations, resulting in a reduction in the relative abundance of 
pathogenic bacteria, including Bacteroides, Escherichia-Shigella and 
Enterococcus, and an increase in the relative abundance of probiotics, 

specifically Alloprevotella, Lachnospiraceae_NK4A136_group, 
uncultured_bacterium_f_Lachnospiraceae, Ruminococcaceae_UCG- 
014 and Ruminiclostridium_5. In addition to the upregulation of 
pathogenic bacteria, probiotics in the gut microbiota of mice with UC 
are downregulated, such as Muribaculaceae, Rikenellaceae, 
Lachnospiraceae, Ruminococcaceae, and Prevotellaceae. Here, EDFM 
successfully downregulated the relative abundance of Bacteroides, 
Escherichia-Shigella, Enterococcus and upregulated the relative 
abundance of Alloprevotella, uncultured_bacterium_f_Lachnospiraceae, 
Lachnospiraceae_NK4A136_group, Ruminococcaceae_UCG-014, 
Ruminiclostridium_5 in gut microbiota of mice with UC. Notably, 
compared to the mice in the healthy and UC groups, Akkermansia was 
substantially upregulated in the EDFM group.

To further investigate the differences in microbial communities 
between groups, we searched for species with significant differences 
in abundance between groups (i.e., biomarkers) and identified the 
dominant microorganisms in each group using LEfSe linear 

FIGURE 6

The colonic tissue sections stained by alcian blue periodic acid-Schiff. (a) Healthy group. (b) UC group. (c) Mesalazine group. (d) LEDFM group. (e) 
MEDFM group. (f) HEDFM group. Scale bar 100 mm and 50 mm. (g) The number of goblet cells per crypt of the colon. (h) The crypt damage 
histological score of the colon. Data are represented as the mean ± SD, n = 6. Data with different superscript letters indicate significant differences 
(p < 0.05).
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FIGURE 7

Effect of dietary supplement of EDFM on the diversity and composition of the gut microbiota at the phylum level. (a) Venn diagrams on the OTU level, 
(b) Ace index, (c) Chao1 index, (d) Shannon index, (e) Simpson index, (f) PCoA on the OUT level of the gut microbiota. (g) The Community column 
diagram at the phylum level and (h–l) the relative abundance of their top 5 phyla. Data are represented as the mean ± SD, n = 6. Data with different 
superscript letters indicate significant differences (p < 0.05).
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FIGURE 8

Effect of dietary supplement of EDFM on the gut microbiota. (a) The column diagram of the top 30 genera at the genus level. The statistically 
significant difference was analyzed by the Wilcoxon rank-sum test and Kruskal−Wallis H test. *p < 0.05, **p < 0.01, and ***p < 0.001, n = 6 (* represents 
Healthy/EDFM vs. UC). (b) Differentially abundant microbial cladogram obtained by LEfSe.
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discriminant analysis (LDA). This analysis first employs the 
nonparametric Kruskal-Wallis rank sum to identify species whose 
abundances differ significantly between groups. Then, the Wilcoxon 
rank sum is used to test the consistency of differences between 
subgroups of distinct species determined in the preceding phase. 
Finally, linear regression analysis (LDA) is utilized to estimate the 
extent of each species’s impact on the difference effect. 
Supplementary Figure S4c illustrated the distribution of LDA values 
for species with differences between groups, highlighting species with 
significant differences in abundance under conditions where the LDA 
score was greater than 4. As shown in Supplementary Figure S4c, there 
were 10, 16, and 14 significantly different taxonomic groups at 
different classification levels in the Healthy, UC, and EDFM groups, 
respectively. The evolutionary branching diagrams of these species 
with significantly different taxonomic groups were shown in Figure 8b. 
It could be seen from Figure 8b that the dominant bacteria in each 
group were different and that the dominant bacteria in the healthy 
group were f_Muribaculaceae, g_Alloprevotella, f_Prevotellaceae, 
g_Lachnospiraceae_NK4A136_group, while f_Bacteroidaceae, 
f_Marinifilaceae, g_Odoribacter, f_Tannerellaceae, g_Parabacteroides, 
g_Ruminococcus_torques_group, g_Escherichia_Shigella in the UC 
group and g_Prevotellaceae_UCG001, g_Rikenellaceae_RC9_gut_
group, f_Rikenellaceae, g_Ruminococcaceae_UCG_014, 
o_Erysipelotrichales, g_Akkermansia in the EDFM group. These could 
be biomarkers for the diagnosis and prognosis of UC.

Furthermore, Spearman rank correlation analysis was employed 
to examine the potential correlations between significantly altered 
taxa in the gut microbiota and UC-related indicators. As shown in 
Figure 9a, 12 genera were correlated with at least one UC-related 
indicator negatively or positively (p < 0.05, marked as *). Among 
them, [Ruminococcus]_ Torques_ Group, Parabacteroides, Bacteroides, 
Escherichia-Shigella were positively correlated with spleen weight, 
colon weight/length ratio, TNF-α, IL-1β and MPO, indicating they 
were related with the development of UC, while 
Ruminococcaceae_UCG-014, Alloprevotella, uncultured_bacterium_f_
Ruminococcaceae, Lachnospiraceae_NK4A136_group, uncultured_
bacterium_f_Muribaculaceae, uncultured_bacterium_f_Prevotellaceae 
were negatively correlated with them, indicating they were relative 
with the alleviation of UC. Besides, Alloprevotella, uncultured_
bacterium_f_Ruminococcaceae and uncultured_bacterium_f_
Prevotellaceae were positively correlated with ZO-1 and Occludin, 
indicating they were related to the destruction of the integrity of the 
intestinal barrier. At the same time, Parabacteroides, Bacteroides and 
Escherichia-Shigella were negative with them, demonstrating they 
were related to the repair of intestinal barrier integrity.

Moreover, a circle layout correlation network analysis was 
performed on the microbial community to investigate the association 
between distinct microbial communities. As depicted in Figure 9b, a 
densely interconnected network was observed, suggesting the 
presence of various microbial communities that exert either facilitative 
or inhibitory impacts. The correlation between the genera of bacteria 
associated with UC was analyzed. The Ruminococcaceae_UCG-014 
and Alloprevotella genera were connected by red lines, indicating a 
positive correlation between the two genera. The Alloprevotella and 
Escherichia-Shigella genera were connected by green lines, showing a 
negative correlation between the two genera. In addition, the 
Uncultured_ Bacterium_ F_ Ruminococcaceae genus and uncultured_ 
Bacterium_ F_ Muribaculaceae genus showed a positive correlation. 

Uncultured_ Bacterium_ F_ Prevotelaceae genus and uncultured_ 
Bacterium_ F_ Muribaculaceae genus showed a positive correlation. 
Parabacteroides genus and Rikenellaceae_RC9_gut_group genus 
showed a positive correlation. These results indicated a mutually 
promoting effect among the genera associated with the alleviation of 
UC and among those related to the development of UC. In contrast, 
the genera associated with the alleviation of UC and those associated 
with UC development had a direct or indirect inhibitory effect.

4 Discussion

Dietary fiber, categorized into soluble and insoluble types, is 
known for its health-promoting effects, which vary depending on its 
source, structure, and composition (16). Among marine seaweeds, 
E. prolifera is a type of edible green algae rich in soluble dietary fiber, 
which includes water-soluble polysaccharides, crude fiber, protein, 
minerals, fats, etc. The main chemical component of E. prolifera used 
in this study was water-soluble polysaccharide (EP), whose main 
monosaccharides composition was rhamnose and glucuronic acid 
(Figures  2c-d). This chemical structure could confer EP excellent 
antioxidant capability (45–47). Additionally, glucose, galactose and 
xylose in EP could stimulated the growth profile of some probiotic 
bacteria and higher production of short-chain fatty acids (SCFAs) (48, 
49). Furthermore, EP had a sulphate content of 6.9 ± 0.1%, which 
indicated that EP was sulfated polysaccharide. Compared with 
non-sulfated polysaccharide, sulfated polysaccharide showed stronger 
(p < 0.05) anti-inflammatory activity (50). In addition, the molecular 
weight of EP in EDFM was 4.1 × 105 Da. Previous studies have 
demonstrated the antioxidant and immunomodulatory activities of 
EP (6 × 105 Da, with a sulfate content of 11.5%) (51). These properties 
suggest that EDFM has significant potential to treat UC through its 
antioxidant, anti-inflammatory, and gut microbiota-modulating 
abilities. Specifically, the sulfated rhamnose structure of EP may 
enhance its ability to interact with intestinal epithelial cells and 
modulate immune responses, while its monosaccharide of glucose, 
galactose and xylose promotes the growth of beneficial bacteria such 
as Alloprevotella and Lachnospiraceae and the production of SCFAs 
(44, 45).

EDFM dietary supplement could improve typical clinical 
symptoms of colitis which was evidence by the reduction of DAI 
values, colon and spleen index (Figure 3), suggesting its potential 
therapeutic efficacy in UC (52). The improvement of the above clinical 
parameters is likely due to its anti-inflammatory and antioxidant 
abilities, thus maintaining the integrity of intestinal barrier (53). 
During the development of UC, the colon inflammation gradually 
exacerbates, characterized by a significant infiltration of inflammatory 
cells. This infiltration ultimately results in the impairment of the 
colon’s epithelial function and the dysregulation of TJs (54). The 
administration of Mesalazine, MEDFM, and HEDFM could mitigate 
the infiltration of inflammatory cells of the colon, as observed in H&E 
images (Figure 4c,e,f). EDFM also downregulates the expression of 
MPO (Figure 4h), which is served as an indicator for the recruitment 
of neutrophils (55), hence providing additional confirmation that it 
can mitigate the infiltration of inflammatory cells of the colon. 
Meanwhile, our study showed that the administration of MEDFM and 
HEDFM could both improve the expression of Occludin and ZO-1 
proteins in the colon (Figures  5a–c), which are fundamental 
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FIGURE 9

(a) Heat map representation of Spearman rank correlation between different gut microbiota and UC-related indicators. *p < 0.05, **p < 0.01, and 
***p < 0.001, n = 6. (b) Circle layout correlation network of gut microbiota.
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constituents of the intestinal epithelial barrier (56). This suggests that 
EDFM supplementation helps maintain the integrity of the intestinal 
epithelial barrier, which can be attributed to the presence of EP in 
EDFM. Previous studies have showed EP can enhanced the gut barrier 
integrity of obese mice (21). However, the specific regulatory 
mechanism and receptor related to TJs protein expression promoted 
by EP need further explored.

Furthermore, MEDFM and HEDFM can downregulate the 
expression of pro-inflammatory cytokines including TNF-α and IL-1β 
in mice with UC (Figures  5d–g), leading to a mitigation of 
inflammatory response (57). Our previous research have demonstrated 
that EP can downregulate the expression of IL-1β, IL-6, and TNF-α 
through TLR2-dependent NF-κB, PKC/ERK/MAPK, and PI3K/Akt 
signaling pathways (51). This suggests that the anti-inflammatory 
effects of MEDFM and HEDFM in UC may be  attributed to the 
regulatory role of EP in these signaling pathways. Thereby the above 
findings confirm that EDFM supplementation plays a crucial role in 
mitigating inflammatory response.

Moreover, the treatment of MEDFM and HEDFM effectively 
protected goblet cells and promoted mucin production (Figure 6). 
This effect may be attributed to the fermentation of EDFM in the 
colon, which enhances the production of short-chain fatty acids, 
known to stimulate mucin production (58). The mucus layer, a key 
component of the intestinal barrier, serves as the first line of defense, 
preventing direct interactions between pathogens, toxins, and the 
intestinal epithelium (41). Additionally, it creates a favorable 
environment and provides nourishment for beneficial bacteria (19). 
Therefore, EDFM supplementation helps preserve the integrity of the 
mucus layer, contributing to the protection and maintenance of the 
intestinal barrier and potentially impeding the progression of UC.

Additionally, the gut microbiota is a critical component in the 
maintenance of intestinal homeostasis, and the dysregulation of gut 
microbiota is a significant contributing factor in the pathogenesis of 
UC (59). In our study, we found a notable decline in both the diversity 
and richness of gut microbiota in mice with UC (Figures 7b–e), which 
is consistent with other research showing that UC leads to disturbances 
in the gut microbiota, resulting in reduced microbial diversity and 
richness (30). Interestingly, EDFM dietary treament effectively 
improved the diversity and richness (Figures 7b–e), confirming its 
potential to regulate the gut microbiota. In addition, UC mice 
exhibited dereased abundance of Firmicutes phylum (42) and 
increased abundance of Proteobacteria_Enterobacteriaceae and 
Bacteroidota_Bacteroides (60), and EDFM dietary supplement regulate 
it to normal level (Figures  7h–l). Consistent with our findings, a 
number of studies have reported poor microbial diversity, unchecked 
expansion of Proteobacteria and Bacteroidetes phyla, and depletion of 
Firmicutes phylum in UC patients (57, 61). Thus, the above results 
preliminarily suggest that EDFM supplementation may help restore 
gut microbiota homeostasis and potentially offer therapeutic 
benefits for UC.

The analysis of gut microbiota composition at the genus level 
provides further evidence. Specifically, the relative abundance of 
pathogenic bacteria, including Bacteroides, Escherichia-Shigella, 
and Enterococcus, was significantly increased in UC mice, while 
beneficial bacteria such as Muribaculaceae, Rikenellaceae, 
Lachnospiraceae, Ruminococcaceae, and Prevotellaceae, which are 
associated with fiber degradation and SCFAs production (62, 63), 
were markedly reduced (Figure  8). However, dietary 

supplementation with EDFM effectively reversed these dysbiotic 
changes by suppressing harmful bacteria while enriching 
probiotics such as Alloprevotella, Lachnospiraceae_NK4A136_
group, uncultured_bacterium_f_Lachnospiraceae, Ruminococcaceae 
_UCG-014, and Ruminiclostridium_5 (Figure  8), indicating its 
potential to restore microbial homeostasis. The beneficial effects 
of EDFM on gut microbiota may be  attributed to its high EP 
content, which facilitates microbiota modulation. The dysbiosis 
observed in UC is characterized by an overabundance of 
pathogenic bacteria that exacerbate intestinal inflammation. For 
example, Escherichia-Shigella, a member of Proteobacteria phylum, 
is a gram-negative bacterium with an outer membrane rich in 
lipopolysaccharides (LPS), also known as endotoxins. LPS can 
activate pattern recognition receptors such as Toll-like receptor 4 
(TLR4), triggering the MAPK/NF-κB signaling pathway and 
leading to the production of pro-inflammatory cytokines like 
TNF-α, thereby exacerbating intestinal inflammation (64). 
Additionally, Enterococcus strains isolated from UC patients have 
been shown to induce colitis in genetically susceptible mice (65, 
66), while excessive Bacteroides in the gut microbiota can 
negatively impact gut immune function (67). Numerous studies 
highlight the gut microbiota-modulating effects of 
polysaccharides, promoting intestinal homeostasis and alleviating 
UC. For instance, inulin increases the abundance of probiotics 
such as Muriaculaceae (S24-7), Prevotellaceae, and Rikenellaceae, 
mitigating UC in mice (68). Similarly, Gastrodia elata 
polysaccharides and arabinogalactan from Lycium barbarum can 
enhance Ligilactobacillus, Alloprevotella, Lactospiraceae and 
Ruminococcaceae (42, 63). Notably, our results showed a 
significant upregulation of Akkermansia in the EDFM group 
compared to both the UC and healthy groups. Akkermansia, a 
gram-negative anaerobe belonging to Verrucomicrobia, is known 
to reside at the outermost layer of the gastrointestinal tract, where 
it utilizes mucin as its primary energy source (69). Despite 
consuming mucin, it paradoxically stimulates mucin (MUC2) 
expression, enhancing mucus secretion and intestinal barrier 
integrity (70). Numerous studies have demonstrated a negative 
correlation between Akkermansia and metabolic disorders in 
hosts, including enteritis, obesity, and diabetes (71, 72). Hence, 
we  propose that EDFM supplementation may enhance 
Akkermansia abundance, promoting mucus synthesis and 
reinforcing the intestinal barrier.

By analyzing the correlation between UC-related indicators 
(Body weight, Spleen weight, Colon weight/length ratio, TNF-α, 
IL-1β, MPO, ZO-1, Occludin) and significantly altered taxa in the 
gut microbiota, key microbial populations and its possible function 
in the development and treatment of UC can be  identified. 
Spearman rank correlation analysis revealed Alloprevotella, 
uncultured_bacterium_f_Ruminococcaceae, Ruminococcaceae_
UCG-014, Lachnospiraceae_NK4A136_group were positively 
correlated with improved intestinal barrier function and alleviated 
inflammation; whereas Parabacteroides, Bacteroides, Escherichia-
Shigella Rikenellaceae_RC9_gut_group, Odoribacter, and 
[Ruminococcus]_torques_group were positively associated with 
intestinal barrier disruption, aggravated inflammation, and 
worsening clinical symptoms of UC (Figure  9). Combining the 
results of alteration in microbial abundance (Figure 8), we think the 
therapeutic effect of EDFM on UC may be achieved by promoting 
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the proliferation of UC remission-related microbial populations 
(Alloprevotella, Ruminococcaceae_UCG-014, Lachnospiraceae_
NK4A136_group) while inhibiting the proliferation of UC 
development-related microbial populations (Escherichia-Shigella, 
Parabacteroides, Rikenellaceae_RC9_gut_group, Odoribacter, 
[Ruminococcus]_torques_group), thereby maintaining intestinal 
microbiota homeostasis and ultimately improving the pathological 
state of UC. However, correlation does not imply causation, and 
therefore, it is necessary to integrate multi-omics technologies, such 
as metabolomics and transcriptomics, to systematically validate the 
specific roles of these microbial populations in the 
pathogenesis of UC.

In conclusion, the dietary supplement of EDFM has been 
found to mitigate inflammation of the colon, as well as a decrease 
levels of pro-inflammatory cytokines. Furthermore, it could 
upregulate the expression of ZO-1 and occludin, thereby 
maintaining the integrity of the intestinal mechanical barrier. 
Additionally, it can increase the number of goblet cells and 
stimulate the synthesis and secretion of mucus, thereby facilitating 
the restoration of the intestinal chemical barrier. In addition, it 
could augment the diversity and abundance of the gut microbiota, 
stimulate the proliferation of microbes that produce short-chain 
fatty acids, and inhibit the growth of pathogenic microbes, thereby 
reinstating the integrity of the intestinal biological barrier 
(Figure 10). Our research offers a dietary approach for treating 
UC by repairing the integrity of the intestinal barrier, presenting 
a potential alternative or supplementary dietary intervention for 
UC prevention and treatment. However, additional research is 
required to elucidate the intricate mechanism by which it treats 
UC prior to its use.
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