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Vitamin D₃ (cholecalciferol) is a fat-soluble secosteroid with essential roles 
in calcium-phosphorus metabolism, bone health, and an expanding range of 
extraskeletal processes. Upon synthesis in the skin via ultraviolet B exposure or 
ingestion from dietary sources, cholecalciferol is hydroxylated in the liver and 
kidneys to form its active metabolite, calcitriol (1,25-dihydroxyvitamin D), which 
exerts pleiotropic effects through vitamin D receptor (VDR)-mediated genomic 
and non-genomic pathways. This narrative review synthesizes evidence on 
the systemic effects of high-dose cholecalciferol on bone health, metabolism, 
cardiovascular and immune function, and its emerging roles in neurological, 
gastrointestinal, reproductive, oncologic, and psychiatric disorders. High-
dose vitamin D₃ has demonstrated benefits in specific populations, including 
improved bone mineral density, immune homeostasis, glycemic control, and 
reduced inflammation. In patients with chronic kidney disease, cystic fibrosis, 
and inflammatory bowel disease, targeted supplementation has been associated 
with clinical improvements. Preclinical models support calcitriol’s antiproliferative 
and neuroprotective functions, and its synergistic effects with chemotherapy, 
although large-scale randomized controlled trials (RCTs) have yielded mixed or 
inconclusive results, particularly in cancer, cardiovascular events, and cognitive 
decline. Methodological variability—such as inconsistent dosing regimens, baseline 
vitamin D status, and heterogeneous populations—limits definitive conclusions. 
While vitamin D supplementation is generally safe within recommended limits, 
excessive intake may cause hypercalcemia or nephrolithiasis, emphasizing the 
need for personalized strategies. Food fortification and targeted screening remain 
underutilized yet cost-effective public health interventions. Overall, vitamin D₃ 
represents a promising but complex therapeutic agent, necessitating further 
rigorously designed clinical trials to establish evidence-based guidelines for its 
use in diverse pathological conditions.
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1 Introduction

Vitamin D is a fat-soluble vitamin naturally present in certain 
foods, fortified in others, and available as a dietary supplement. A 
distinctive characteristic of vitamin D is its endogenous production in 
the human body when ultraviolet (UV) rays from sunlight stimulate 
its synthesis in the skin. The two primary forms of vitamin D are 
vitamin D2 (ergocalciferol), derived from plants and commonly used 
in food fortification, and vitamin D3 (cholecalciferol), synthesized in 
human skin from 7-dehydrocholesterol and obtained from dietary 
sources of animal origin (1, 2).

The synthesis of vitamin D into its biologically active metabolites 
occurs through two hydroxylation steps. The first hydroxylation takes 
place in the liver, where the enzyme 25-hydroxylase converts vitamin 
D—whether obtained through diet or sunlight—into 25-hydroxyvitamin 
D. The second hydroxylation occurs in the kidneys, where the enzyme 
1-alpha-hydroxylase converts 25-hydroxyvitamin D into the 
physiologically active form, 1,25-dihydroxyvitamin D (calcitriol) 
(Figure 1) (3–5). Several tissues, including cardiomyocytes and immune 
cells, express nuclear vitamin D receptors (VDRs) and respond to 
1,25-dihydroxyvitamin D (1,25(OH)2D) (6). While renal hydroxylation 
dominates systemic calcitriol production, extrarenal activation (e.g., in 
macrophages) contributes to local immunomodulation (7), serum 
25(OH)D cutoffs by ESPEN, 2023 are (e.g., deficiency as <20 ng/mL, 
insufficiency as 20–30 ng/mL) (8) (Figure 1).

The biological actions of vitamin D are primarily mediated by the 
VDR, a nuclear receptor expressed in numerous cell types including 
immune, cardiovascular, and metabolic tissues. Upon binding to 
calcitriol, the VDR forms a complex with the retinoid X receptor 
(RXR), translocates to the nucleus, and binds to vitamin D response 
elements (VDREs) in the promoter regions of target genes. This 
complex modulates the transcription of genes involved in inflammation, 
oxidative stress, calcium absorption, and cellular differentiation (9). For 
example, calcitriol downregulates pro-inflammatory cytokines such as 
TNF-α and IL-6 by inhibiting NF-κB and MAPK pathways, while 
enhancing anti-inflammatory cytokines like IL-10 (9, 10). In immune 
cells, vitamin D enhances the expression of antimicrobial peptides (e.g., 
cathelicidin, defensins) and promotes regulatory T cell (Treg) 
differentiation, thus modulating immune tolerance (9, 10).

Vitamin D also regulates genes critical to calcium and phosphate 
homeostasis, such as TRPV6 and calbindin, which facilitate intestinal 
calcium absorption (11). Beyond its genomic effects, vitamin D 
initiates rapid non-genomic signaling cascades involving second 
messengers and kinases, contributing to processes such as muscle 
contraction, neurotransmission, and vascular tone (11).

Recent transcriptomic studies have shown that high-dose vitamin D 
supplementation (e.g., an 80,000  IU bolus) can rapidly alter gene 
expression profiles in peripheral blood mononuclear cells (PBMCs), 
upregulating genes involved in focal adhesion (e.g., HLA-C) and 
downregulating pro-inflammatory mediators. However, these responses 
vary considerably between individuals due to genetic background, 
baseline vitamin D levels, and epigenetic factors (10). Notably, 
developmental vitamin D deficiency (DVD) induces persistent epigenetic 
dysregulation of hepatic genes implicated in cholesterol biosynthesis and 
energy metabolism, even after postnatal supplementation, suggesting a 
long-term impact on metabolic disease risk (12).

In metabolic disorders such as type 2 diabetes, vitamin D 
enhances insulin sensitivity by activating AMPK, suppressing mTOR 
signaling, and modulating PPAR-γ activity to promote adipogenesis 
(13). It also regulates microRNAs, such as miR-146a, to attenuate 
chronic inflammation, a key driver of β-cell dysfunction and insulin 
resistance (9, 13). These findings underscore vitamin D’s dual role as 
both a hormonal regulator and an epigenetic modulator linking 
nutrient status to disease susceptibility. To better contextualize the 
pleiotropic effects of vitamin D, Table 1 summarizes the key target 
tissues, downstream pathways, and physiological outcomes mediated 
by VDR activation across multiple organ systems.

Although vitamin D is widely recognized for its role in skeletal 
health, emerging evidence suggests broader benefits, including 
improved glycemic control, neurocognitive protection, cardiovascular 
regulation, and enhanced immunity against infections. Nevertheless, 
the strength of evidence for these extraskeletal effects remains 
inconclusive. While observational studies have reported promising 
associations, randomized controlled trials (RCTs) often yield 
conflicting results, and optimal dosing strategies are still under debate 
(14). This duality—established efficacy in bone metabolism versus 
uncertainty in broader systemic roles—highlights the need for a 
balanced and evidence-based perspective (Figure 2).

Current parenteral recommendations for vitamin D3 remain 
conservative at 200 IU/day. Nevertheless, multiple studies have 
demonstrated that single high-dose regimens—such as 300,000 to 
500,000 IU administered once—are both safe and effective, resulting 
in increases of serum 25(OH)D by approximately 26–28 ng/mL over 
1–3 months in elderly or rheumatologic populations (6). Furthermore, 
maintenance dosing with 50,000 IU weekly or 100,000 IU monthly has 
been shown to sustain serum 25(OH)D concentrations within the 
40–60 ng/mL range, with no evidence of toxicity. These findings 
reinforce the notion that vitamin D is among the least toxic fat-soluble 
vitamins, and that vitamin D toxicity is exceedingly rare, especially 
when serum calcium is monitored (15). This safety profile is partly 

FIGURE 1

Chemical structure of cholecalciferol, calcifediol, and calcitriol.

https://doi.org/10.3389/fnut.2025.1579957
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ortiz-Prado et al. 10.3389/fnut.2025.1579957

Frontiers in Nutrition 03 frontiersin.org

attributed to the action of CYP24A1, a mitochondrial cytochrome 
P450 enzyme responsible for the 24-hydroxylation and catabolism of 
both 25(OH)D and 1,25(OH)₂D. CYP24A1 also metabolizes vitamin 
D analogs, providing an additional safeguard against excessive 
accumulation (16, 17).

This narrative review synthesizes current evidence on the systemic 
effects of high-dose cholecalciferol, focusing on its roles in 
osteoporosis, diabetes, cardiovascular diseases, gastrointestinal 
disorders, and cystic fibrosis. It also explores its emerging applications 
in oncology, neurodegenerative diseases such as Parkinson’s and 
Alzheimer’s, and other chronic conditions. While numerous reviews 
have addressed vitamin D in general, this review specifically 
emphasizes the therapeutic potential and clinical implications of high-
dose cholecalciferol across diverse disease contexts.

2 Materials and methods

A comprehensive literature review was conducted using Scopus, 
PubMed, Web of Science, and SciELO databases. No restrictions were 
applied regarding language or publication date. The following search 
strategy was employed to identify relevant studies: (“high-dose 
cholecalciferol” OR “high-dose vitamin D3” OR “cholecalciferol” OR 
“vitamin D3”) AND (“human health” OR “bone health” OR “fractures” 

OR “osteoporosis” OR “hypertension” OR “cardiovascular health” OR 
“atherosclerosis” OR “acute myocardial infarction” OR “atrial 
fibrillation” OR “inflammatory bowel disease” OR “Crohn’s disease” OR 
“ulcerative colitis” OR “reproductive health” OR “chronic kidney 
disease” OR “cystic fibrosis” OR “immune system” OR “neurological 
health” OR “dermatological disorders” OR “pulmonary diseases” OR 
“psychiatric disorders”).

All retrieved articles were screened for relevance based on titles 
and abstracts. Full-text articles that met inclusion criteria were 
reviewed in detail. In cases where clinical trials were included, their 
methodological quality was assessed using the CASP Checklist for 
Randomized Controlled Trials (Supplementary Table S1). For 
observational studies, including cohort and case–control designs, 
quality appraisal was performed using the Newcastle-Ottawa Scale 
(NOS) (Supplementary Tables S2, S3).

3 Human health

3.1 Bone health

3.1.1 Bone development and maintenance
Vitamin D plays a critical role in bone health by promoting bone 

formation, mineralization, and maintenance. Supplementation with 

TABLE 1 System-specific effects of vitamin D via VDR activation.

System/organ Target cells/
tissues

Receptor & pathway Downstream effects Physiological 
outcome

Reference

Skeletal System Osteoblasts, osteoclasts, 

bone matrix

VDR (Nuclear 

receptor) → RXR heterodimer 

→ VDRE binding

↑ RANKL expression (osteoclast 

activation), ↑ osteocalcin, ↑ 

calcium/phosphate transporters

Bone remodeling, 

mineralization

(9, 11)

Intestine (GI Tract) Enterocytes (mainly in 

duodenum, jejunum)

VDR → ↑ transcription of 

TRPV6, calbindin-D9k, 

PMCA1b

↑ Calcium and phosphate 

absorption

Increases serum Ca2+ and Pi (9, 11)

Kidneys Distal tubule epithelial 

cells

VDR → ↑ expression of 

TRPV5, calbindin-D28k, Na+/

Pi co-transporters

↑ Calcium reabsorption, ↓ 

phosphate reabsorption (via 

FGF23)

Maintains calcium 

homeostasis, regulates 

phosphate

(3–5, 11)

Parathyroid Gland Chief cells VDR → Direct inhibition of 

PTH gene transcription

↓ PTH secretion Negative feedback loop (9, 11)

Immune System Monocytes, 

macrophages, dendritic 

cells, T cells

VDR → immune gene 

modulation (e.g., cathelicidin, 

defensins)

↑ Innate immunity, ↓ Th1/Th17 

cytokines, ↑ Treg differentiation

Immunomodulatory: anti-

inflammatory & 

antimicrobial

(9, 10, 13)

Pancreas (β-cells) Islet β-cells VDR → Modulates insulin 

gene expression, Ca2+ channels

↑ Insulin secretion (via Ca2+ 

signaling), β-cell survival

Glucose homeostasis (9, 13)

Cardiovascular System Vascular smooth 

muscle cells, 

cardiomyocytes

VDR → Regulation of renin-

angiotensin system, anti-

inflammatory genes

↓ Renin expression, ↓ vascular 

calcification, ↓ proinflammatory 

cytokines

Cardiovascular protection (6, 9, 13)

Skin Keratinocytes VDR → Regulates 

proliferation/differentiation

↓ Hyperproliferation, ↑ 

differentiation (e.g., involucrin, 

loricrin)

Maintains skin barrier, 

anti-psoriatic effect

(9)

Reproductive System Ovarian & testicular 

cells

VDR → Steroidogenic gene 

expression

Modulates sex hormone 

production, folliculogenesis, 

spermatogenesis

Fertility regulation (9, 11)

Cancer Cells Colon, breast, prostate 

cancer cells

VDR → Cell cycle arrest genes 

(p21, p27), pro-apoptotic genes

↓ Proliferation, ↑ apoptosis, ↓ 

angiogenesis

Antitumor effects (9, 10, 12)
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vitamin D has been shown to enhance collagen fiber production, 
improve bone material properties, and increase trabecular bone 
volume fraction. Specifically, higher vitamin D levels contribute to 
greater bone ductility and hardness, particularly in the tibia. These 
findings suggest that adequate vitamin D intake during early life may 
support the attainment of peak bone mass in adulthood, thereby 
reducing the risk of osteoporosis (7).

High-dose vitamin D3 supplementation (typically 4,000–
10,000  IU/day in adults) has been investigated for its potential to 
promote bone mass accrual and prevent mineral loss. Clinical trials 
have demonstrated that individuals receiving weekly doses of 
20,000 IU of cholecalciferol experience a slower decline in femoral 
neck bone mineral density (BMD) compared to placebo, suggesting a 
protective effect against age-related bone loss (18). Mechanistically, 
vitamin D3 enhances intestinal calcium and phosphorus absorption—
two minerals essential for hydroxyapatite deposition and bone matrix 
mineralization. Inadequate vitamin D3 impairs calcium uptake, 
weakening skeletal structure and increasing fracture susceptibility. 
Supporting this, preclinical studies in murine models have shown that 

high-dose cholecalciferol supplementation results in greater bone 
mass and mineral content compared to standard-dose regimens (7).

Despite these benefits, high-dose regimens must be interpreted 
with caution. While doses used in these studies (e.g., 20,000 IU/week) 
are generally within safe limits for short-term clinical use, the Institute 
of Medicine (IOM) recommends an upper intake limit of 4,000 IU/
day for adults to mitigate the risk of toxicity (19). Chronic excessive 
intake may lead to hypercalcemia—characterized by elevated serum 
calcium levels—resulting in clinical manifestations such as nausea, 
renal dysfunction, nephrocalcinosis, and, in severe cases, vascular 
calcification or cardiac arrhythmias (19). The risk is especially 
heightened in individuals with renal impairment, granulomatous 
diseases, or disorders of calcium metabolism such 
as hyperparathyroidism.

Beyond its role in bone formation, consistent maintenance of 
optimal vitamin D3 levels supports lifelong skeletal integrity. 
Increased serum 25(OH)D concentrations are associated with 
improved BMD and denser, more resilient bone microarchitecture, 
particularly during adolescence and early adulthood, when the 

FIGURE 2

Synthesis and functions of vitamin D in the human body.
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skeleton is undergoing rapid modeling. This reinforcement of bone 
structure reduces fracture risk and lays the groundwork for long-term 
musculoskeletal health. As osteoporosis remains a significant 
contributor to disability and diminished quality of life among the 
elderly, maintaining adequate vitamin D status through 
supplementation represents an effective preventive public health 
strategy (7).

However, while high doses of vitamin D3 offer clear skeletal 
benefits, maintaining an appropriate balance is crucial. Excessive 
vitamin D3 intake can lead to hypercalcemia, characterized by 
excessive calcium accumulation in soft tissues such as the kidneys and 
blood vessels, potentially resulting in calcifications and other health 
complications. Therefore, while vitamin D3 supplementation is a 
valuable tool for bone growth and maintenance, its administration 
should be  carefully monitored by healthcare professionals. This 
approach ensures that its benefits are maximized while minimizing 
potential risks, ultimately supporting long-term skeletal and 
overall health.

3.1.2 Fracture healing
Vitamin D is substantial for bone maintenance and mineralization 

by regulating calcium metabolism and maintaining skeletal 
homeostasis (20). Bone mineralization is essential for fracture healing, 
particularly in processes such as hard callus formation and bone 
remodeling (21). Fracture healing occurs in four distinct phases: 
inflammation, soft callus formation, hard callus formation, and bone 
remodeling (Table 2).

The potential impact of vitamin D deficiency on fracture healing 
in humans remains a topic of debate, as most available evidence is 
derived from indirect and retrospective studies, making causality 
difficult to establish. However, research conducted on human tissue 
suggests that vitamin D influences cellular processes involved in 
fracture healing (22). Despite this, the precise role of vitamin D in 
human fracture repair has not yet been fully defined. While there is 
growing interest in the potential benefits of vitamin D supplementation 
for patients with deficiencies, clinical studies assessing its direct effects 
on fracture healing remain limited, and no definitive conclusions have 
been reached (2). A study revealed that vitamin D modulates cellular 
senescence—a key driver of bone aging—by downregulating 
p16INK4a and senescence-associated secretory phenotype (SASP) 
markers in osteoblasts. These pleiotropic effects include enhanced 
osteogenic differentiation and reduced oxidative stress in bone 
marrow stromal cells, suggesting a direct anti-aging mechanism (23).

3.1.3 Osteoporosis management
Osteoporosis represents a significant global public health 

challenge, affecting approximately 25% of the adult population, with 
postmenopausal women being disproportionately impacted. 
Characterized by progressive loss of bone mass and microarchitectural 
deterioration, the condition substantially increases skeletal fragility, 
rendering patients vulnerable to fractures even after minimal trauma. 
These fractures can lead to long-term disability, loss of autonomy, and 
increased mortality, particularly in the elderly.

Management strategies for osteoporosis encompass both 
pharmacological and non-pharmacological interventions. 
Pharmacological treatments include bisphosphonates, calcium 
supplements, and vitamin D, all of which aim to enhance BMD and 
reduce fracture risk. Among these, vitamin D plays a crucial role by 

improving calcium absorption, modulating bone remodeling, and 
supporting muscle function. Clinical studies have shown that vitamin 
D supplementation, particularly when combined with resistance 
training or weight-bearing exercise, can significantly improve BMD, 
reduce fall risk, and enhance overall quality of life in osteoporotic 
individuals. Additionally, UV light therapy, which promotes 
endogenous synthesis of vitamin D3, has been proposed as a 
supportive preventive measure for populations at risk of deficiency.

Although dietary sources such as fatty fish, fish liver oil, and egg 
yolks contribute to vitamin D intake, they are typically insufficient to 
maintain optimal serum 25-hydroxyvitamin D [25(OH)D] 
concentrations in most individuals (24). As such, supplementation is 
often required, with recommended dosages varying by age and 
physiological status. For infants up to 1 year, 400–1,000 IU/day is 

TABLE 2 Role of vitamin D in the different phases of fracture healing.

Fracture healing 
phases

Vitamin D role

Inflammation

The alteration of bone and soft tissue continuity 

results in a fracture hematoma and, consequently, an 

associated inflammatory response. Vitamin D has 

been shown to increase the secretion of platelet-

derived growth factors. It stimulates the migration 

and proliferation of mesenchymal stem cells and 

osteoblasts.

Soft callus formation

Various in vitro studies (human bone marrow or 

osteoblastic cells) have addressed the effect of vitamin 

D on IGF-I (promotes bone matrix formation), IGF-II 

(stimulates type I collagen production, cartilage 

matrix synthesis, and cellular proliferation) and the 

IGF-binding proteins (3). High doses of vitamin D 

have been shown to support the production and 

release of various growth stimulating factors for bone 

remodeling.

Hard callus formation

Van Driel et al. showed that 1,25(OH)2 D3 directly 

stimulated mineralization by activation of vitamin D 

receptors in the osteoblast, and that the mineralization 

process was enhanced by the catabolic products of 

25(OH)D and 1,25(OH)2 D3 (24R,25(OH)2 D3 and 

1,24R,25(OH)3 D3 respectively) (3). Osteoblast 

proliferation is influenced by vitamin D. In 

combination with vitamin K, they can modulate the 

differentiation of human mesenchymal stem cells. 

Further vitamin D supplementation has been shown 

to enhance the stimulation of osteoblast genesis. 

Collagen type I is similarly stimulated by vitamin D 

supplementation (3).

Bone remodeling

Vitamin D may be an important regulator of 

osteoclastogenesis, due to the receptors it possesses. 

There may be a dose-dependent inhibition of 

osteoclastogenesis by vitamin D, at minimal doses of 

vitamin D deficiencies there may be inhibition. It has 

been shown in several studies that vitamin D 

supplementation significantly increases calcium levels, 

which contributes to optimal and faster bone 

remodeling (5).
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advised; for children and adolescents up to 18 years, 600–1,000 IU/
day; and for adults, 1,500–2000 IU/day may be necessary to correct or 
prevent deficiency. Notably, individuals with obesity may require 2–3 
times higher doses due to volumetric dilution and altered 
metabolism (25).

Current guidelines recommend a combined daily intake of 
1,200 mg of calcium and 800 IU of vitamin D to reduce fracture risk 
in individuals over 65 years and in postmenopausal women (5). 
Supplementation has been associated with reductions in bone 
resorption, improved muscle strength and balance, enhanced joint 
function, and better bone quality—collectively contributing to lower 
fall and fracture incidence and improved quality of life. Seasonal and 
geographic factors also influence vitamin D status; for example, in 
regions with prolonged winter seasons such as Poland, routine vitamin 
D supplementation is advised.

Despite its benefits, excessive vitamin D intake poses risks, 
particularly the development of hypercalcemia—a condition marked 
by elevated serum calcium levels. Symptoms include nausea, vomiting, 
muscle weakness, polyuria, and in severe cases, renal impairment or 
nephrolithiasis (26). The risk of toxicity is increased in individuals 
with comorbidities such as renal insufficiency, sarcoidosis, 
or hyperparathyroidism.

The relationship between high-dose vitamin D and kidney stone 
formation remains complex and somewhat controversial. While some 
studies suggest that excessive vitamin D intake enhances intestinal 
calcium absorption and urinary calcium excretion—thereby 
potentially increasing lithogenic risk—others indicate that vitamin D 
supplementation alone, in the absence of concurrent high calcium 
intake, does not significantly elevate kidney stone incidence (27). 
These findings emphasize the need for individualized dosing strategies 
and close clinical monitoring in high-risk populations.

Importantly, there is no universally accepted definition of what 
constitutes a “high dose” of vitamin D. Different health authorities 
propose varying upper intake levels (ULs) based on available safety 
data. The U.S. National Academy of Medicine recommends a UL of 
4,000 IU/day for adults (28), whereas the Endocrine Society suggests 
that up to 10,000 IU/day may be considered safe for certain individuals 
under medical supervision, particularly in the context of deficiency or 
chronic illness (29) (Table 3).

Several studies have shown that there is insufficient synthesis of 
vitamin D through the skin. Deficiencies are more common in 
patients with osteoporosis and elderly patients. It is necessary to verify 
the recommended dosage. It is important to perceive vitamin D 
deficiency to prevent possible fractures or falls (2). The most common 
are loss of mobility, grip strength and muscle mass.

In postmenopausal women, vitamin D supplementation has been 
shown to enhance calcium absorption in the intestines. However, 
routine supplementation is not necessary for women with normal 
calcium levels. Several studies suggest that dietary supplementation 
with vitamin D3, in combination with calcium, reduces the risk of falls 
and fractures, thereby preserving mobility and preventing disability 
in aging populations (2).

3.2 Cardiovascular health

Vitamin D has garnered considerable scientific interest for its 
potential role in modulating cardiovascular health. Observational 

studies and meta-analyses have consistently reported associations 
between low serum 25-hydroxyvitamin D [25(OH)D] 
concentrations—typically defined as <50 nmol/L—and an increased 
risk of cardiovascular diseases (CVD) and cardiovascular-related 
mortality (30). However, findings from large-scale randomized 
controlled trials (RCTs) remain inconclusive, limiting the ability to 
draw definitive causal inferences.

One of the most comprehensive investigations to date, the VITAL 
trial, evaluated the effects of daily supplementation with 2,000 IU of 
vitamin D3 and found no statistically significant reduction in the 
incidence of major cardiovascular events in the general population. 
Nonetheless, subgroup analyses suggested potential cardiovascular 
benefits in specific cohorts, such as individuals with low baseline 
vitamin D levels or those with limited sun exposure (21). Similarly, the 
D-Health trial yielded mixed results, underscoring the complexity and 
heterogeneity of vitamin D’s cardiovascular effects (31). These 
discrepancies may be attributed to differences in baseline 25(OH)D 
status, supplementation regimens, study duration, or population 
characteristics, as well as the potential for threshold effects in vitamin 
D response.

At the mechanistic level, vitamin D exerts its biological effects 
through the vitamin D receptor (VDR), which is expressed in various 
cardiovascular cell types, including endothelial cells, cardiomyocytes, 
and vascular smooth muscle cells (32). VDR activation influences 
numerous pathways relevant to cardiovascular function, such as 
inhibition of the renin-angiotensin-aldosterone system (RAAS), 
modulation of inflammatory cytokines, and regulation of vascular 
tone and calcification. These findings suggest that vitamin D may play 
a direct role in maintaining cardiovascular homeostasis.

Meta-analyses of observational studies have reported a U-shaped 
relationship between vitamin D status and CVD risk, with optimal 
serum 25(OH)D levels around 75 nmol/L being associated with the 
lowest cardiovascular risk (33). However, this association has not been 
consistently replicated in interventional trials, calling into question the 
causality of the relationship. Additionally, Mendelian randomization 
studies—designed to assess causality using genetic variants—have 
largely failed to demonstrate a clear benefit of genetically determined 
higher vitamin D levels on cardiovascular outcomes (34).

Standard-dose vitamin D supplementation (2,000–4,000 IU/day) 
is generally considered safe and well-tolerated, with minimal risk of 
adverse effects. However, excessive intake (>10,000 IU/day) may lead 
to hypercalcemia, a rare but serious complication that can result in 
arrhythmias, vascular calcification, or electrocardiographic changes 
mimicking acute myocardial infarction (30). Therefore, 
supplementation strategies should be guided by baseline serum levels, 
patient-specific risk factors, and current clinical guidelines.

3.2.1 Hypertension
Hypertension is a major cardiovascular risk factor with a 

multifactorial etiology in which vitamin D may play a significant role. 
Large-scale studies, such as NHANES, have reported an inverse 
relationship between serum 25(OH)D (25-hydroxyvitamin D) levels 
and blood pressure, particularly in individuals with moderate to 
severe deficiency. This effect may be mediated through vitamin D’s 
ability to suppress the renin-angiotensin-aldosterone system (RAAS), 
enhance endothelial nitric oxide synthase (eNOS) activity, and reduce 
cyclooxygenase-1 (COX-1) activity, thereby promoting vasodilation 
and reducing arterial stiffness (35). Additionally, vitamin D has been 
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associated with an improved lipid profile, including reduced 
triglycerides and total cholesterol, along with increased HDL-C 
levels (32).

Experimental studies in VDR-knockout mice have demonstrated 
cardiac hypertrophy and elevated blood pressure due to RAAS 
activation. However, studies using calcium-, phosphate-, and lactose-
corrected diets in the same models suggest that vitamin D’s vascular 
effects may be independent of RAAS modulation. Furthermore, some 
studies indicate that vitamin D supplementation primarily benefits 
individuals with comorbidities such as diabetes or cardiometabolic 
disease (35).

There is also evidence indicating a reduction in systolic blood 
pressure (SBP) in patients with Type 1 Diabetes Mellitus (T1DM) and 
cardiovascular autonomic neuropathy (CAN) following high-dose 
cholecalciferol supplementation (33). Nevertheless, other studies and 
meta-analyses have reported that supplementation improves 
endothelial function and reduces blood pressure, although not all 
findings have been consistent (32).

3.2.2 Atherosclerosis and heart failure
Vitamin D plays a role in mitigating oxidative stress by activating 

antioxidant enzymes such as glutathione peroxidase and superoxide 
dismutase, thereby improving nitric oxide (NO) bioavailability, which 
is essential for vasodilation and reducing inflammation (32). Given its 
influence on plaque formation and vascular inflammation, vitamin D 
is hypothesized to impact the progression of atherosclerosis. However, 
clinical evidence is conflicting, with some studies reporting 
improvements in inflammatory markers while others fail to 
demonstrate significant effects (36).

Large-scale trials such as VITAL and ViDA have not shown a clear 
benefit of vitamin D supplementation in improving cardiac function, 
preventing fibrosis, or reducing left ventricular hypertrophy in 
individuals with adequate vitamin D levels (36). However, severe 
vitamin D deficiencies, such as those seen in rickets and osteomalacia, 

have been linked to heart failure, conditions that can be reversed with 
appropriate vitamin D and calcium supplementation (33).

3.2.3 Acute myocardial infarction (AMI)
The Framingham study found that individuals with vitamin D 

deficiency have an 80% higher risk of developing acute myocardial 
infarction (AMI). This is believed to be mediated through vitamin D’s 
regulation of the RAAS, specifically through the modulation of the 
angiotensin II receptor (ACE2) and the reduction of angiotensin II 
levels, which yield cardioprotective effects (37). Additionally, vitamin 
D deficiency has been linked to poorer left ventricular function, 
increased risk of sudden cardiac death, and elevated expression of 
genes associated with inflammation and fibrosis, suggesting a potential 
protective role for vitamin D in cardiovascular health (32).

However, further research is needed to determine whether vitamin 
D supplementation can significantly reduce AMI risk (37). Studies 
conducted in Denmark since 1978 and more recent investigations, 
such as those by Ng et al., have shown that 74% of AMI patients had 
low vitamin D levels, which were associated with an increased risk of 
in-hospital mortality and long-term adverse outcomes (37).

3.2.4 Atrial fibrillation (AF)
Atrial fibrillation (AF) is the most common arrhythmia, associated 

with an elevated risk of stroke, increased mortality, and a significant 
healthcare burden. While observational studies suggest that 
individuals with vitamin D deficiency have nearly twice the risk of 
developing AF, potentially due to mechanisms involving RAAS 
activation, atrial remodeling, and inflammation, findings from 
prospective studies remain inconsistent (37). In the context of 
postoperative AF, particularly after coronary artery bypass grafting, 
low vitamin D levels have been associated with an increased risk of 
this condition. A recent meta-analysis reported a 12% higher 
incidence of postoperative AF in patients with vitamin D deficiency. 
Conversely, supplementation in patients with severe deficiency 

TABLE 3 Comparison of oral and parenteral vitamin D supplementation.

Route of 
administration

Typical dosing regimens Bioavailability & 
pharmacokinetics

Clinical considerations Reference

Oral (PO) Daily: 600–2,000 IU/day for 

maintenance; higher doses (e.g., 

5,000 IU/day) for deficiency 

correction.

 • Weekly: 50,000 IU/week for 

6–8 weeks.

 • Single high-dose (“Stoss” 

therapy): 300,000–600,000 IU 

once, less commonly used.

Absorption occurs in the small 

intestine; bioavailability can 

be affected by factors such as fat 

malabsorption, gastrointestinal 

disorders, and concurrent food intake.

 • Peak serum 25(OH)D levels 

typically achieved within 7–14 days.

 • Requires consistent adherence for 

sustained levels.

Preferred for general population due to 

ease of administration and cost-

effectiveness.

 • Suitable for maintenance therapy and 

mild to moderate deficiency.

 • Less effective in individuals with 

malabsorption syndromes, certain 

gastrointestinal conditions, or 

adherence challenges.

(5, 24, 27)

Parenteral 

(Intramuscular, IM)

Single dose: 300,000 IU IM once.

 • Repeated dosing: 300,000 IU IM 

every 3 months, depending on 

severity of deficiency and patient 

response.

Bypasses gastrointestinal absorption, 

leading to more predictable 

bioavailability.

 • Peak serum 25(OH)D levels may 

be achieved more rapidly and 

sustained longer compared to 

oral dosing.

 • Suitable for patients with 

malabsorption or non-adherence to 

oral therapy.

Useful in patients with malabsorption 

syndromes, severe deficiency, or non-

compliance with oral therapy.

 • Requires healthcare professional 

for administration.

 • Potential for injection site reactions.

 • Monitoring for hypercalcemia is 

recommended, especially with high-

dose regimens.

(26, 27, 29)
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(<20 ng/mL) has been linked to a modest reduction in postoperative 
AF risk, suggesting that vitamin D may have potential benefits in 
specific clinical scenarios (37) (Table 4).

3.3 Gastrointestinal health

3.3.1 Inflammatory bowel disease
Vitamin D plays a key role in inflammatory bowel disease (IBD), 

which encompasses conditions such as Crohn’s disease and ulcerative 
colitis. Beyond its well-established functions in calcium and 
phosphorus homeostasis, vitamin D exerts immunomodulatory 
effects that may influence IBD pathogenesis. Epidemiological studies 
have demonstrated an association between vitamin D deficiency and 
an increased risk of developing IBD, as well as poorer clinical 
outcomes, including higher hospitalization rates and an increased 
need for surgical interventions. Additionally, IBD itself contributes to 
vitamin D deficiency due to malabsorption, dietary restrictions, and 
reduced sun exposure. This bidirectional relationship suggests that 
maintaining optimal vitamin D levels may be critical for effective 
disease management (38).

Clinical evidence suggests that vitamin D status may influence 
disease activity and therapeutic efficacy. In a retrospective study of 88 
patients with IBD receiving vedolizumab, higher baseline serum 
25(OH)D concentrations (≥30 ng/mL) were associated with improved 
endoscopic response in UC and elevated drug levels in CD, suggesting 
a potential synergistic effect between vitamin D and biologic therapy 
(39). Furthermore, a systematic review of nine clinical trials found 
that daily supplementation with ≥2,000 IU of vitamin D significantly 
improved clinical disease indices and quality of life in patients with 
active IBD, although considerable heterogeneity across studies 
precludes definitive recommendations on optimal dosing (40).

In pediatric populations, the relationship between vitamin D 
status and disease activity has also been observed. A study involving 
96 children with IBD showed that serum 25(OH)D levels were 
significantly lower during active disease phases compared to periods 

of remission. Moreover, vitamin D deficiency exhibited notable 
seasonal variation, highlighting the importance of monitoring and 
timely supplementation, particularly during winter months or periods 
of increased disease activity (41).

Emerging evidence supports the use of high-dose vitamin D 
supplementation (typically 4,000–10,000 IU/day) to modulate intestinal 
inflammation, improve epithelial barrier integrity, and favorably alter the 
composition of the gut microbiota. Targeting serum 25(OH)D 
concentrations between 40 and 60 ng/mL may confer therapeutic benefits 
in terms of reducing disease flares and maintaining remission (38). 
However, further randomized controlled trials are needed to establish 
evidence-based guidelines for dosing, duration, and monitoring of 
vitamin D supplementation in both adult and pediatric IBD populations.

3.3.2 Crohn’s disease
Vitamin D plays a fundamental role in immune regulation and 

intestinal homeostasis. Deficiency is particularly prevalent in patients 
with Crohn’s disease, with some clinical studies reporting rates as high 
as 100% in certain populations (42). This deficiency is primarily 
attributed to intestinal malabsorption, dietary restrictions, and 
reduced sun exposure, further exacerbated by the chronic 
inflammation characteristic of the disease.

In its active form (1,25-dihydroxyvitamin D), vitamin D 
modulates the immune response by regulating T-cell activity, 
promoting the production of anti-inflammatory cytokines such as 
IL-10, and suppressing proinflammatory mediators like TNF-α. 
Preliminary studies suggest that vitamin D supplementation may 
enhance intestinal barrier integrity, reduce mucosal inflammation, 
and contribute to sustained clinical remission (42).

For patients with severe vitamin D deficiency, recommended 
dosing includes 6,000–10,000  IU/day or weekly loading doses of 
50,000  IU for 8–12 weeks. These regimens have been shown to 
decrease inflammation, regulate proinflammatory T-cell subsets (Th1 
and Th17), and strengthen the intestinal epithelial barrier, highlighting 
the potential of vitamin D as an adjunctive therapy in Crohn’s disease 
management (42).

TABLE 4 Summary of vitamin D effects on cardiovascular health.

Cardiovascular aspect Key findings Mechanisms Research gaps Reference

General Cardiovascular Health

Low vitamin D (<50 nmol/L) is 

associated with increased CVD risk 

in observational studies

VDRs in endothelial cells, 

cardiomyocytes, and vascular 

smooth muscle cells; influences 

inflammation and vascular tone

Need for RCTs in deficient 

populations; unclear optimal 

dose

(21, 30)

Hypertension

Inverse correlation between 25(OH)

D levels and blood pressure, 

especially in deficient individuals

RAAS suppression, ↑eNOS 

activity, ↓COX-1, improved lipid 

profile

Effectiveness in normotensive 

or mildly hypertensive 

individuals remains unclear

(32, 33, 35)

Atherosclerosis & Heart Failure

Suggested role in reducing oxidative 

stress and vascular inflammation; 

mixed clinical results

↑Antioxidant enzymes (e.g., 

SOD, GPx), ↑NO bioavailability

Conflicting data; effect may 

be limited to severe deficiency

(32, 33, 35, 36)

Acute Myocardial Infarction 

(AMI)

Vitamin D deficiency linked to 

↑AMI risk and worse outcomes

↓Angiotensin II, modulation of 

ACE2, anti-inflammatory effects

Uncertain if supplementation 

lowers AMI incidence or 

improves prognosis

(32), (37)

Atrial Fibrillation (AF)

Deficiency associated with ~2 × AF 

risk; 12% higher postoperative AF 

in deficient patients

RAAS activation, atrial 

remodeling, inflammation

More studies needed in 

surgical and high-risk 

populations

(37)
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3.3.3 Ulcerative colitis
In ulcerative colitis, vitamin D exerts a critical immunomodulatory 

effect through its interaction with the nuclear VDR, which regulates 
genes involved in inflammation and tissue repair. VDR activation has 
been shown to suppress NLRP6 inflammasome activity, reducing the 
production of inflammatory cytokines such as interleukin-1β (IL-1β) 
and interleukin-18 (IL-18). These effects help limit structural damage 
to the intestinal epithelium and maintain mucosal homeostasis. 
Experimental models in both animals and human studies suggest that 
vitamin D3 supplementation not only reduces acute inflammatory 
responses but also lowers relapse rates, reinforcing its potential as a 
therapeutic agent in ulcerative colitis (43).

Vitamin D3 at 4,000 IU/day is more effective than 2,000 IU/day in 
increasing vitamin D to sufficient levels in UC patients with 
hypovitaminosis D (44). These doses have been associated with 
enhanced colonic epithelial protection, immune system regulation, 
and improved intestinal barrier function. However, supplementation 
should be  medically supervised to prevent toxicity and ensure 
therapeutic efficacy (43) (Table 5).

3.4 Glucose metabolism and diabetes

The relationship between vitamin D and glucose metabolism has 
garnered growing attention due to the rising global burden of diabetes 
and metabolic syndrome. Vitamin D receptors (VDRs) are expressed 
in pancreatic β-cells, adipocytes, and skeletal muscle—tissues involved 
in glucose homeostasis—suggesting a potential regulatory role in 
insulin secretion and sensitivity.

One large-scale randomized clinical trial involving 1,774 
participants assessed the impact of daily supplementation with 
4,000 IU of vitamin D3 over a 24-month period. The study found no 
significant improvement in β-cell function as measured by oral 
glucose tolerance test (OGTT)-derived indices in individuals with 
prediabetes who were not selected based on baseline vitamin D 
status (45).

Nevertheless, multiple meta-analyses suggest that vitamin D 
supplementation may confer metabolic benefits, particularly in 
vitamin D-deficient individuals or those with prediabetes. A meta-
analysis of 28 randomized controlled trials, comprising 3,848 
participants, demonstrated that vitamin D supplementation 
significantly reduced glycated hemoglobin (HbA1c), fasting plasma 

glucose, and HOMA-IR—a validated surrogate marker of insulin 
resistance. These improvements were most pronounced in subgroups 
receiving co-supplementation with calcium, as well as in women, 
individuals over 50 years of age, and those with gestational diabetes 
mellitus (46).

Mechanistically, vitamin D deficiency is inversely correlated with 
insulin sensitivity. Low serum 25(OH)D levels have been associated 
with higher HOMA-IR scores, indicating increased insulin resistance. 
Vitamin D may exert its insulin-sensitizing effects through multiple 
pathways, including enhanced expression of insulin receptors, 
modulation of inflammatory cytokines (e.g., TNF-α, IL-6), and 
regulation of VDR polymorphisms within pancreatic β-cells. 
Additionally, vitamin D facilitates the conversion of proinsulin to 
insulin, improves insulin receptor phosphorylation, and augments 
glucose transporter expression, thereby promoting glucose uptake in 
peripheral tissues (32).

Furthermore, vitamin D influences both genomic and 
non-genomic signaling mechanisms. Genomically, it acts through 
VDRE-mediated transcription in liver, muscle, and adipose tissue. 
Non-genomically, vitamin D activates second messenger pathways 
that acutely enhance insulin signaling. In individuals with elevated 
body mass index (BMI), vitamin D deficiency has been linked to 
increased systemic inflammation, characterized by elevated 
proinflammatory cytokines that contribute to insulin 
resistance (45).

Short-term intervention studies suggest that vitamin D 
supplementation may reduce glycated hemoglobin (HbA1c) levels, 
potentially delaying the onset and progression of diabetes-related 
complications (47). Moreover, studies have reported a significant 
reduction in HOMA-IR following vitamin D supplementation, 
highlighting its potential role in improving insulin sensitivity. Vitamin 
D deficiency has also been linked to diabetic nephropathy and both 
microvascular and macrovascular complications in diabetes (48).

While the exact mechanisms by which vitamin D regulates 
glucose metabolism remain unclear, current evidence suggests that it 
plays a crucial role in insulin production and sensitivity. VDRs in 
pancreatic beta cells are essential for insulin secretion, and vitamin D 
supplementation has been shown to improve beta cell function and 
insulin sensitivity, particularly in individuals with low baseline 
vitamin D levels. However, the effectiveness of vitamin D 
supplementation varies depending on the method used to 
assess outcomes.

TABLE 5 Summary of vitamin D effects on gastrointestinal health.

Condition Key findings Mechanisms Supplementation 
evidence

Research gaps Reference

Inflammatory 

Bowel Disease 

(IBD)

Deficiency linked to higher IBD 

risk, worse outcomes, and need for 

surgery

Immunomodulation, 

improved barrier function, 

anti-inflammatory effects

≥2,000 IU/day improves clinical 

scores; ≥30 ng/mL serum 25(OH)

D improves biologic drug 

response (e.g., vedolizumab)

Optimal dosing strategies; 

need for large RCTs

(38, 39, 41)

Crohn’s Disease

Up to 100% deficiency rates in some 

populations; affects remission and 

inflammation control

↓TNF-α, ↑IL-10, T-cell 

regulation, improved 

mucosal integrity

High-dose vitamin D reduces 

inflammation and supports 

remission

Limited data on long-

term safety and efficacy

(42)

Ulcerative 

Colitis

VDR activation reduces 

inflammasome (NLRP6), cytokines 

(IL-1β, IL-18); lowers relapse risk

VDR-mediated suppression 

of epithelial damage and 

inflammation

Vitamin D3 reduces relapse rates 

and enhances barrier protection

More trials needed to 

confirm clinical endpoints 

and relapse prevention

(43, 44)

https://doi.org/10.3389/fnut.2025.1579957
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ortiz-Prado et al. 10.3389/fnut.2025.1579957

Frontiers in Nutrition 10 frontiersin.org

Despite inconsistent results in clinical trials, meta-analyses 
suggest that vitamin D supplementation may help reduce the risk of 
diabetes progression and improve glycemic control. Additionally, 
maintaining adequate vitamin D levels may contribute to type 1 
diabetes prevention and reduce complications associated with type 2 
diabetes and gestational diabetes. Given the potential metabolic 
benefits of vitamin D, further well-designed randomized controlled 
trials are needed to clarify its role in diabetes prevention 
and management.

3.5 Lipid metabolism

Research has demonstrated that the production, storage, and 
metabolism of the active form of vitamin D occur within adipose 
tissue. Adipocytes (fat cells) express both the vitamin D receptor 
(VDR) and the membrane-associated rapid response steroid-binding 
protein (1,25D-MARRS), allowing vitamin D to exert genomic effects 
(which influence gene expression) and non-genomic effects (which 
mediate rapid cellular responses) in adipose tissue. These effects 
regulate key processes such as adipogenesis, apoptosis, inflammation, 
and adipokine secretion (49).

Vitamin D plays a critical role in the formation and function of 
adipocytes, influencing their development, activity, and metabolic 
properties. However, despite growing evidence supporting its role in 
adipose tissue regulation, further clinical research is needed to fully 
elucidate the impact of vitamin D supplementation in individuals with 
metabolic disorders and obesity (49).

Changes in adipocyte quantity and size significantly affect the 
surrounding adipose tissue microenvironment. These alterations 
influence adipokine secretion, fatty acid metabolism, and hypoxia, 
and can lead to adipocyte apoptosis, impaired fatty acid transport, and 
chronic low-grade inflammation. Adipose tissue also contains 
immune cells that participate in adaptive immune responses, such as 
the clearance of apoptotic fat cells, differentiation of new adipocytes, 
and angiogenesis. In obesity, these regulatory mechanisms become 
dysregulated, contributing to persistent inflammation and metabolic 
disorders, including insulin resistance (49).

Insulin is a key regulator of triglyceride (TG) accumulation in 
adipocytes. It promotes glucose uptake and lipogenesis, stimulates 
pre-adipocyte differentiation into mature adipocytes, and inhibits 
lipolysis. Vitamin D influences adipocyte apoptosis through 
mechanisms closely linked to calcium homeostasis, which it helps 
regulate (50).

Studies have shown that vitamin D’s effects on lipolysis and 
lipogenesis vary depending on the type of adipose tissue. Specifically, 
vitamin D stimulates lipolysis in visceral adipose tissue but decreases 
this process in subcutaneous tissue. Conversely, vitamin D promotes 
lipogenesis in subcutaneous tissue while inhibiting it in visceral 
adipose tissue (50).

Vitamin D plays a multifaceted role in adipose tissue by 
influencing both the formation and function of adipocytes through 
genomic and non-genomic mechanisms. Its effects on lipid 
metabolism vary between visceral and subcutaneous fat, highlighting 
its intricate regulatory functions. Despite promising insights into 
vitamin D’s impact on lipolysis, lipogenesis, and adipose tissue 
inflammation, further clinical research is necessary to fully understand 
its therapeutic potential in metabolic disorders and obesity.

3.6 Vitamin D importance in reproductive 
health and pregnant women

3.6.1 Reproductive health
Vitamin D, primarily through its active metabolite calcitriol, 

regulates the transcription of genes involved in steroidogenesis—such 
as CYP19A1 (aromatase), StAR (steroidogenic acute regulatory 
protein), and 3β-HSD (3β-hydroxysteroid dehydrogenase)—as well as 
genes controlling follicular development, endometrial decidualization, 
and semen quality via VDR-mediated genomic signaling pathways 
(51, 52). By enhancing the expression of estrogen- and progesterone-
synthesizing enzymes in granulosa and theca cells, vitamin D supports 
ovarian follicle maturation and improves oocyte quality. Its 
immunomodulatory effects on the endometrium promote vascular 
remodeling and facilitate embryo implantation (53, 54).

In males, VDR activation contributes to androgen biosynthesis 
and improves sperm motility. Vitamin D deficiency has been 
associated with oligozoospermia and reduced semen quality (55). 
Notably, maintaining serum 25(OH)D levels ≥50 ng/mL has been 
correlated with higher clinical pregnancy and live birth rates in both 
in  vitro fertilization (IVF) and natural conception settings, 
highlighting vitamin D status as a modifiable factor influencing 
fertility and reproductive outcomes (56).

3.6.2 Vitamin D supplementation and gestational 
diabetes (GD)

Vitamin D insufficiency and deficiency during pregnancy have 
been associated with increased risks of hyperglycemia, insulin 
resistance, and the development of type 2 diabetes mellitus (T2DM) 
and gestational diabetes (GD). These associations are attributed to 
vitamin D’s role in promoting insulin secretion from pancreatic β-cells 
and enhancing insulin receptor expression, both essential for 
maintaining glucose homeostasis (57). When vitamin D levels are 
suboptimal, these mechanisms are impaired, predisposing pregnant 
women to metabolic disturbances that can adversely affect both 
maternal and fetal health.

Meta-analyses of observational studies have reported significant 
associations between low maternal serum 25-hydroxyvitamin D 
[25(OH)D] levels and a higher risk of gestational diabetes. One meta-
analysis involving 20 studies and more than 9,000 participants found 
that vitamin D deficiency was associated with a 53% increased risk of 
GD (odds ratio [OR] = 1.53; 95% confidence interval [CI]: 1.33–
1.75) (58).

Vitamin D3 deficiency in pregnancy has also been linked to a 
higher incidence of preeclampsia, preterm birth, small-for-
gestational-age (SGA) infants, and impaired neurodevelopment in 
offspring, suggesting that its impact extends beyond glucose 
metabolism and affects broader aspects of maternal and neonatal 
health (59). Regarding GD specifically, a case–control study involving 
50 participants did not find a statistically significant association 
between vitamin D3 deficiency and GD incidence. However, it did 
observe that individuals with both GD and low vitamin D3 levels 
had values within the “insufficient” range, supporting the hypothesis 
that vitamin D may influence insulin regulation and contribute to 
gestational glycemic outcomes (60). Despite these findings, further 
well-designed, adequately powered RCTs are needed to clarify the 
causal relationship between maternal vitamin D status and gestational 
diabetes risk.
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3.6.3 Vitamin D supplementation and 
pre-eclampsia

Preeclampsia is a hypertensive disorder of pregnancy 
characterized by elevated blood pressure (BP) ≥140/90 mmHg in mild 
cases and ≥160/110 mmHg in severe cases. Vitamin D3 insufficiency 
or deficiency has been observed in patients diagnosed with 
preeclampsia, suggesting a potential link between low vitamin D levels 
and hypertensive disorders during pregnancy (61). One proposed 
mechanism for this association is vitamin D3’s regulatory role in the 
renin-angiotensin-aldosterone system (RAAS). Vitamin D inhibits 
renin production, preventing excessive RAAS activation, which 
otherwise leads to increased blood pressure, renal vasoconstriction, 
and sodium and water retention (61). Therefore, low vitamin D3 levels 
may contribute to RAAS overactivation, potentially increasing the risk 
of hypertensive complications in pregnancy. Despite these findings, 
the effectiveness of vitamin D3 supplementation in preventing 
preeclampsia remains controversial. While some systematic reviews 
suggest that vitamin D supplementation may reduce preeclampsia 
risk, other studies report inconclusive results.

A large-scale study involving 2,969 pregnant women demonstrated 
that vitamin D3 supplementation significantly reduced preeclampsia 
risk by nearly 50%, emphasizing its potential as a preventive maternal 
health measure (62). However, other studies have failed to establish a 
statistically significant protective effect, suggesting that additional 
factors, such as genetic predisposition, diet, sun exposure, and body 
mass index (BMI), may influence the outcomes of vitamin D 
supplementation in pregnancy (63).

Similarly, a cohort study examining the impact of vitamin D3 
supplementation in deficient pregnant women found that while 
supplementation restored normal vitamin D levels, no significant 
reduction in adverse perinatal events was observed (64). These 
conflicting results highlight the need for further large-scale, well-
controlled clinical trials to determine whether vitamin D 
supplementation provides consistent benefits in reducing 
preeclampsia incidence.

3.7 Vitamin D importance in patients with 
chronic kidney disease (CKD)

3.7.1 Vitamin D supplementation in 
hyperparathyroidism associated to CKD

In patients with chronic kidney disease (CKD), D3 deficiency has 
been identified as a risk factor for mortality. This is explained by the 
fact that the kidney plays a key role in the conversion of 
25-hydroxyvitamin D to 1.25-dihydroxyvitamin D (calcitriol), which 
is essential for the activation of vitamin D receptors. This activation 
provides protection against the development of hyperparathyroidism, 
hypertension (HTN), renal damage, and systemic inflammation (65). 
In this regard, a prospective, double-blind, randomized, placebo-
controlled trial conducted on 45 patients found that the group 
receiving true D3 supplementation with daily doses of 8,000 IU/day 
showed a reduction in parathyroid hormone (PTH) levels. It was 
concluded that in these cases, D3 supplementation acts as a protective 
factor against the development of hyperparathyroidism (66).

In a study conducted by Dogan et  al., it was observed that 
300,000 IU of colecalciferol per month orally caused a statistically 
significant increase in calcidiol levels (p < 0.001), as well as a decrease 

in iPTH levels. The results supported the proposed hypothesis, 
concluding that patients with CKD greatly benefit from D3 
supplementation (67).

3.7.2 Vitamin D supplementation in patients with 
CDK and diabetes mellitus

In a cohort study involving 344 patients with CKD, of whom 103 
had diabetes and 240 did not, identified a protective effect of D3 
supplementation. The findings showed a significant association 
between supplementation and reduced levels of HbA1C, suggesting 
its potential role in improving glycemic control in this population 
(68). The findings suggest that vitamin D3 may play a supportive role 
in managing glycemic levels, offering potential benefits for this 
population (69). This highlights the protective role of D3 in improving 
survival outcomes. Additionally, it has been suggested that daily D3 
supplementation may help reduce albuminuria in CKD patients, a key 
marker of kidney damage. This reduction not only benefits renal 
health but also contributes to better overall outcomes for this 
population, reinforcing the significance of addressing D3 deficiency 
in their management (70).

3.8 Vitamin D and cystic fibrosis

It is estimated that around 98% of patients with cystic fibrosis (CF) 
experience vitamin D insufficiency, making it a significant concern in 
this population. A systematic review evaluated the effectiveness and 
safety of high-dose vitamin D supplementation in correcting 
inadequate serum 25-hydroxyvitamin D (25(OH)D) levels in adults 
with CF (71). The findings revealed that individuals receiving high-
dose cholecalciferol achieved an average serum 25(OH)D 
concentration of 40.19 ng/mL ± 10.21 ng/mL, compared to 28.50 ng/
mL ± 7.35 ng/mL in the control group (p < 0.01), demonstrating the 
efficacy of high-dose supplementation in reaching optimal 25(OH)D 
levels (>30 ng/mL) (71). Dosing regimens varied, ranging from daily 
supplementation of 1,700 IU to a single 250,000 IU dose. Importantly, 
no cases of hypervitaminosis D or hypercalcemia were reported, and 
adverse effects were minimal, supporting the safety and benefits of 
high-dose vitamin D supplementation in adults with CF (71).

Cholecalciferol, or vitamin D3, is naturally found in animal 
sources such as tuna, other fatty fish, eggs, and fortified foods 
including milk and cereals. Regarding supplementation, vitamin D3 
has been found to be more effective than vitamin D₂ in achieving and 
maintaining serum 25(OH)D levels above 30 ng/mL. According to the 
European Cystic Fibrosis Society, infants should be started on vitamin 
D₂ or D3 at a dose of 1,000–2,000 IU per day, while children older 
than 1 year and adults are recommended to take 1,000–5,000 IU per 
day (72).

3.9 Role of vitamin D in the immune system

3.9.1 Vitamin D and the innate and adaptive 
immune system

The nuclear VDR binds to vitamin D and regulates the expression 
of specific immune-related genes. VDR is expressed by various 
immune cells, including monocytes, macrophages, B and T 
lymphocytes, and dendritic cells. Additionally, the enzyme 
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α-1-hydroxylase, responsible for converting vitamin D into its active 
form, is present in these cells, allowing for autocrine and paracrine 
immune modulation (73).

Through this mechanism, vitamin D downregulates 
pro-inflammatory cytokines such as TNF-α, IL-6, IL-8, MCP-1, and 
IL-12 while also reducing excessive reactive oxygen species by 
increasing intracellular glutathione levels (73).

Adaptive immune responses, initiated by antigen-presenting cells 
such as dendritic cells, B cells, and macrophages, are also influenced 
by vitamin D. The active form of vitamin D, 1,25(OH)₂D, has been 
shown to induce regulatory T cells (Tregs), which contribute to 
immune tolerance and help prevent cytokine storms associated with 
severe viral infections (73). Furthermore, vitamin D regulates adaptive 
immunity by limiting dendritic cell maturation and antigen 
presentation, shifting T cell differentiation from the pro-inflammatory 
Th1 and Th17 subsets toward Th2 and Tregs, which are involved in 
suppressing excessive immune responses (73).

3.9.2 Vitamin D in antimicrobial regulation
Activation of pattern recognition receptors, such as Toll-like 

receptors (TLRs) and NOD-like receptors (NLRs), increases the 
expression of VDR and α-1-hydroxylase in immune cells. This 
activation enhances antimicrobial responses by controlling 
pro-inflammatory cytokine production, promoting autophagy, and 
increasing the synthesis of antimicrobial peptides like cathelicidin and 
β-defensins (73).

Cathelicidin LL-37, produced by neutrophils and epithelial cells, 
plays a key role in antimicrobial defense, neutralizing 
lipopolysaccharides (LPS) and contributing to wound healing, 
angiogenesis, and clearance of dead cells. Vitamin D stimulates LL-37 
production, further supporting its role in immune defense. In 
keratinocytes and macrophages, TLR2 activation leads to increased 
conversion of vitamin D to its active form, enhancing microbicidal 
activity in both skin and circulating phagocytes (74).

Vitamin D metabolism is also influenced by cytochrome P450scc 
(CYP11A1), which converts vitamin D into the non-calcemic 
analogue 20S-hydroxyvitamin D3. This metabolite has potential 
therapeutic applications, including the treatment of rheumatoid 
arthritis and reducing inflammatory cytokines. CYP11A1 is expressed 
in immune cells, including CD4 and CD8 T lymphocytes, B 
lymphocytes, and monocytes, playing a role in local steroidogenesis 
and immune regulation, particularly in maintaining skin integrity and 
immune function (75).

3.9.3 Vitamin D in defense against infections
Vitamin D plays a pivotal role in hosting immune response to 

infections, particularly by enhancing the innate immune system. 
Upon bacterial exposure, monocytes and macrophages upregulate 
the expression of VDR and the enzyme 1-alpha-hydroxylase, 
which locally converts 25-hydroxyvitamin D to its active form, 
calcitriol. This promotes the synthesis of antimicrobial peptides—
such as defensins—that impair intracellular pathogen survival 
(76). Additionally, vitamin D supports autophagy, a key 
intracellular defense mechanism that isolates and degrades 
pathogens and damaged organelles through lysosomal processing. 
This process also enhances antigen presentation to T lymphocytes, 
thereby promoting immune surveillance and maintaining 
homeostasis (73).

Although these mechanistic insights underscore the 
immunological relevance of vitamin D, a direct causal relationship 
between serum vitamin D levels and infection susceptibility remains 
unconfirmed. While vitamin D modulates multiple aspects of the 
immune response, current evidence does not support its 
supplementation solely for infection prevention, given the inconsistent 
outcomes reported in clinical studies (76).

Vitamin D also contributes to antiviral defense by upregulating 
antimicrobial peptides such as cathelicidin (LL-37) and β-defensins, 
which disrupt viral envelopes and inhibit viral replication both in vitro 
and in vivo (77). In parallel, calcitriol modulates cytokine signaling 
pathways: it increases IκBα expression, which inhibits NF-κB 
activation and reduces proinflammatory cytokine production during 
infections such as respiratory syncytial virus (RSV). Moreover, 
vitamin D promotes the differentiation of monocytes into 
macrophages with enhanced chemotactic and phagocytic capabilities, 
facilitating pathogen clearance while limiting immunopathology (78).

Meta-analyses of randomized controlled trials have shown that 
daily or weekly vitamin D supplementation significantly reduces the 
incidence of acute respiratory tract infections, particularly in 
individuals with baseline vitamin D deficiency. However, bolus dosing 
strategies appear less effective in this context (78). Observational and 
interventional studies also report that low serum 25(OH)D 
concentrations are associated with increased severity of influenza, 
RSV, and COVID-19. Conversely, vitamin D supplementation has 
been linked to reduced intensive care unit (ICU) admissions and 
lower mortality rates among hospitalized COVID-19 patients (79, 80). 
These findings collectively suggest that maintaining sufficient vitamin 
D status may enhance first-line antiviral defenses and mitigate the 
severity of infectious diseases (81).

Emerging evidence further emphasizes the relevance of vitamin 
D in both acute COVID-19 outcomes and post-infection recovery. A 
2020 study reported that critically ill COVID-19 patients with serum 
25(OH)D levels below 12 ng/mL exhibited a 3.2-fold increased risk of 
mortality compared to patients with levels above 30 ng/mL (82). This 
supports the proposed immunomodulatory role of vitamin D in 
attenuating cytokine storms and preserving pulmonary epithelial 
integrity. More recently, a 2023 intervention trial demonstrated that 
high-dose cholecalciferol supplementation (50,000  IU/week for 
8 weeks) significantly improved neuropsychiatric symptoms in post-
COVID-19 patients. Compared to controls, those receiving 
supplementation experienced a 42% reduction in fatigue, 38% 
reduction in anxiety, and 35% improvement in cognitive dysfunction 
(83). These findings suggest a dual role for vitamin D—not only in 
modulating acute immune responses during infection but also in 
facilitating neurological recovery during long COVID (84).

3.9.4 Vitamin D and its relationship with immune 
system diseases

The active form of vitamin D, 1,25-dihydroxyvitamin D, acts as an 
immune modulator by inhibiting dendritic cell maturation and 
reducing excessive activation of the acquired immune system. Its 
deficiency has been associated with an increased risk of autoimmune 
diseases, including psoriasis, type 1 diabetes, multiple sclerosis, and 
inflammatory bowel disease (76). Vitamin D supplementation is often 
incorporated into treatment strategies for these conditions (75).

The relationship between vitamin D status and allergic diseases, 
such as asthma and eczema, remains inconclusive. Some studies 
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suggest vitamin D supplementation may reduce wheezing and 
improve forced expiratory volume in the first second (FEV1), but its 
efficacy in asthma prevention and treatment is still uncertain (76).

Routine screening for vitamin D deficiency is not recommended 
for the general population but is advised for individuals at higher risk, 
including those with hyperparathyroidism, hypoparathyroidism, 
osteoporosis, or kidney disease. Vitamin D deficiency is particularly 
common in older adults and has been associated with increased levels 
of proinflammatory cytokines, a higher incidence of pneumonia, and 
an elevated risk of upper respiratory tract infections (73).

3.10 Potential therapeutic uses of vitamin D

3.10.1 Vitamin D and neurological health
Vitamin D plays an important role in the nervous system due to 

the presence of 1α-hydroxylase, 25-hydroxylase, and nuclear VDRs in 
key brain regions, including the thalamus, nucleus accumbens, stria 
terminalis, and amygdala (85). This enables local production of 
vitamin D, which regulates neurotrophin expression, neural 
differentiation, neurotransmission, synaptic plasticity, and apoptosis 
inhibition (86–88). Multiple studies have linked vitamin D deficiency 
to neurological diseases, including multiple sclerosis, Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral 
sclerosis, as well as cognitive decline, increased stroke risk, and carotid 
atherosclerosis (89, 90). Vitamin D deficiency has also correlated with 
cognitive decline, increased stroke risk, and carotid atherosclerosis 
(91). Nonetheless, while the association between vitamin D deficiency 
and neurological disorders is well-documented, the efficacy of vitamin 
D supplementation in treating or preventing these conditions remains 
unclear, necessitating further clinical trials (92).

In AD, vitamin D may play a role in pathogenesis by modulating 
immune response, oxidative stress, and mitochondrial function (90, 
93). Observational studies have shown that active vitamin D 
metabolites enhance amyloid-β clearance by macrophages (94, 95). 
However, clinical trials have reported mixed results; one found no 
cognitive benefits from high-dose vitamin D supplementation in 
mild-to-moderate AD patients (96), while others suggest maintaining 
sufficient vitamin D levels may help prevent or slow cognitive decline 
(97, 98). More well-designed randomized controlled trials (RCTs) are 
needed to confirm vitamin D’s role in AD treatment and prevention.

In Parkinson’s disease, low serum 25(OH)D₃ levels have been 
inversely associated with disease severity and motor symptom 
progression (99, 100), as measured by the Unified Parkinson’s Disease 
Rating Scale (UPDRS) and Hoehn and Yahr Scale (101–103). 
Although a causal link has not been established, preclinical studies 
suggest that vitamin D may exert neuroprotective effects on 
dopaminergic neurons in the substantia nigra by reducing oxidative 
stress, inhibiting neuroinflammation, and acting as a neurotrophic 
factor (104).

Clinical trials report inconsistent results. Some studies 
demonstrate symptomatic improvement with vitamin D 
supplementation (99, 105–108), while others find no significant 
benefit (109, 110). Genetic variability may explain these discrepancies; 
for example, a 12-month double-blind placebo-controlled trial 
involving 104 PD patients showed that those with the FokI TT allele 
(rs10735810) experienced greater motor improvement after receiving 
1,200 IU/day of vitamin D, highlighting the influence of VDR 

polymorphisms on treatment response (105). These findings suggest 
that vitamin D may offer therapeutic benefits in PD management, 
particularly in genetically susceptible individuals, although further 
validation is required.

Recent research by Li et al. also indicates that vitamin D may 
exert epigenetic effects in the brain. For instance, DNA methylation 
changes in AD-related genes such as BACE1 may reduce Aβ 
production, contributing to neuroprotection (111). In parallel, 
vitamin D supports mitochondrial integrity by stabilizing 
mitochondrial membrane potential and decreasing ROS—
mechanisms relevant to the pathogenesis of neurodegenerative 
diseases. Clinically, higher serum vitamin D levels have been 
associated with slower cognitive decline, potentially through 
upregulation of neurotrophic factors such as brain-derived 
neurotrophic factor (BDNF) and enhancement of acetylcholine 
synthesis (112). However, intervention trials remain inconsistent. A 
study administering 4,000 IU/day of vitamin D to patients with mild-
to-moderate AD failed to demonstrate cognitive improvement, 
possibly due to the advanced stage of disease or irreversible neuronal 
damage (113). In contrast, subgroup analyses suggest that individuals 
with baseline vitamin D deficiency may derive greater benefit, 
reinforcing the importance of early intervention and individualized 
dosing strategies.

3.10.2 Vitamin D in dermatological disorders
Vitamin D is synthesized in basal skin cells when exposed to UV 

light and has antiproliferative, pro-differentiating, immunomodulatory, 
and anti-apoptotic effects on keratinocytes, helping to prevent 
opportunistic infections (114). In fact, an inverse correlation has been 
observed between serum vitamin D levels and Staphylococcus aureus 
skin colonization after 4 weeks of supplementation (115). Low vitamin 
D levels are also linked to autoimmune skin diseases, increased 
severity of atopic dermatitis, and chronic urticaria (116, 117). 
Emerging evidence suggests vitamin D may help prevent skin 
malignancies and have therapeutic applications in atopic dermatitis, 
psoriasis, and related skin disorders (116, 118), though further 
research is needed.

In psoriasis, lower 1,25-dihydroxyvitamin D₃ levels have been 
reported compared to healthy controls (119–121). Vitamin D may 
influence psoriasis pathogenesis by regulating keratinocyte 
proliferation and maturation (122). Topical vitamin D has become an 
important therapeutic option, with VDR mRNA expression in 
psoriatic lesions correlating with its antiproliferative activity (123, 
124). However, the benefits of oral vitamin D supplementation remain 
unclear (125). While some studies reported improvements in Psoriasis 
Area and Severity Index (PASI) scores, recent meta-analyses, including 
Formisano et al., found no significant differences, highlighting the 
need for large-scale clinical trials to determine optimal dosing and 
therapeutic efficacy (119).

Research on vitamin D supplementation in atopic dermatitis (AD) 
has yielded mixed results. By downregulating pro-inflammatory 
cytokines (IL-6, TNF-α) and enhancing antimicrobial peptide 
production (cathelicidin), vitamin D may improve skin barrier 
function and immune regulation, reducing infection susceptibility in 
AD patients (77). Some trials found significant improvements in AD 
severity, as measured by Eczema Area and Severity Index (EASI) and 
Scoring Atopic Dermatitis (SCORAD), following cholecalciferol 
(vitamin D3) supplementation (126–128). It has been particularly 
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beneficial for winter-related AD in children (129). A RCT by El-Heis 
et al. provided evidence that antenatal cholecalciferol supplementation 
reduced the risk of infantile eczema (130). However, not all studies 
found supplementation effective, as vitamin D levels correlated with 
AD severity but did not consistently improve symptoms (131, 132).

3.10.3 Vitamin D in pulmonary diseases
Vitamin D plays a critical role in the respiratory system, with 

evidence from animal models showing that 1,25-dihydroxyvitamin D 
enhances alveolar fluid clearance and reduces pulmonary edema by 
decreasing vascular permeability and regulating sodium channel 
(ENaC) expression (133). Additionally, its immunomodulatory and 
anti-inflammatory properties, including attenuation of LPS signaling, 
may influence lung fibroproliferation and remodeling (134). Vitamin D 
also affects innate and adaptive immunity, promoting the production of 
antimicrobial peptides such as cathelicidin (LL-37) and β-defensins 
(135–137). These findings suggest a potential role for vitamin D in 
preventing and managing respiratory infections, chronic obstructive 
pulmonary disease (COPD), asthma, and lung cancer (138).

In respiratory infections, vitamin D enhances antibacterial activity 
in monocytes. Locally synthesized 1,25(OH)₂D binds to VDR in 
immune cells, regulating antimicrobial peptide production (LL-37, 
β-defensins), pattern recognition receptors (PRRs), Toll-like receptors, 
and pro-inflammatory cytokines (IL-6, TNF-α) (81). Vitamin D also 
induces autophagy in immune cells, potentially aiding in the control of 
intracellular pathogens like M. tuberculosis (139). Epidemiological 
studies associate low vitamin D levels with a higher risk of respiratory 
infections, including COVID-19 (1.77 times greater risk in deficient 
individuals) (140) and tuberculosis (141, 142). However, randomized 
controlled trials on vitamin D supplementation for respiratory infections 
have shown mixed results, with both positive effects (143–145) and no 
significant benefit (129, 146–151).

The role of vitamin D in airway remodeling asthma and COPD is 
an active area of research. A systematic review by Salameh et  al. 
highlighted vitamin D’s immunomodulatory effects in asthma 
pathogenesis, particularly its inhibition of matrix metalloproteinases 
(MMP-9, ADAM33), collagen synthesis, smooth muscle contractions, 
and nuclear factor kappa B (NF-κB), all of which are involved in 
airway remodeling (152). Additionally, vitamin D’s regulation of 
oxidative stress, protease/antiprotease balance, and tissue repair 
mechanisms may play a role in chronic lung disease progression (153). 
Given its broad biological activity, vitamin D supplementation may 
offer therapeutic benefits in asthma and COPD, though well-designed 
interventional studies are needed to confirm its clinical efficacy (154).

3.10.4 Vitamin D in Cancer prevention and 
treatment

Epidemiological studies have consistently linked low circulating 
levels of 25-hydroxyvitamin D [25(OH)D] with an increased risk of 
various malignancies, including cancers of the oral cavity, breast, 
prostate, endometrium, ovary, and colorectum (155). The biologically 
active form of vitamin D, calcitriol (1,25-dihydroxyvitamin D₃), 
exhibits potent anticancer properties in preclinical studies. These 
include antiproliferative, pro-apoptotic, anti-angiogenic, and anti-
invasive effects, largely mediated through activation of the VDR. VDR 
signaling regulates the expression of genes involved in cell cycle arrest, 
cellular differentiation, apoptosis, epithelial-mesenchymal transition 
(EMT), and the maintenance of cancer stem cells (156, 157). 
Experimental studies demonstrate that calcitriol and its analogs can 

synergize with standard chemotherapeutic agents. For instance, 
co-administration of tacalcitol (PRI-2191) with 5-fluorouracil 
significantly suppresses colon tumor growth in preclinical models, 
outperforming either agent used alone (158), and calcitriol enhances 
cytarabine-induced DNA fragmentation and leukemic cell death in 
acute myeloid leukemia model (159).

Despite the compelling preclinical evidence, large-scale 
randomized, placebo-controlled trials evaluating the efficacy of daily 
vitamin D₃ supplementation in cancer prevention and treatment have 
yielded mixed results. Most notably, these trials have not demonstrated 
a statistically significant reduction in overall cancer incidence, and 
only a modest (approximately 6%), non-significant reduction in 
cancer-related mortality has been reported in pooled analyses (160). 
However, subgroup analyses from these trials suggest that consistent 
daily dosing—as opposed to intermittent high-dose bolus 
administration—may be more effective, with estimates indicating up 
to a 12% reduction in cancer-specific mortality (161).

Calcitriol’s ability to enhance the therapeutic efficacy of cytotoxic 
agents has also been confirmed in multiple laboratory settings. In colon 
cancer models, it improves the response to 5-fluorouracil (162), and in 
acute myeloid leukemia, it enhances the apoptotic activity of cytarabine 
(163). However, systematic reviews and meta-analyses of randomized, 
placebo-controlled trials found that daily vitamin D supplementation 
did not significantly impact cancer mortality compared to controls (161).

Laboratory studies have consistently demonstrated that vitamin 
D, particularly its active form calcitriol (1,25-dihydroxyvitamin D), 
exhibits anticancer properties through various mechanisms. These 
include promoting cell cycle arrest, inducing apoptosis, inhibiting 
angiogenesis, and modulating immune responses, all of which 
contribute to the suppression of tumor growth and metastasis in 
preclinical models (164). Despite these promising findings, large-scale 
randomized controlled trials (RCTs) have not consistently shown a 
significant reduction in overall cancer mortality with vitamin D 
supplementation (161).

Several factors may account for this discrepancy. Many RCTs have 
been conducted in populations with sufficient baseline vitamin D 
levels, potentially limiting the observable benefits of supplementation. 
Additionally, variations in dosing regimens, such as daily versus 
intermittent bolus dosing, may influence outcomes; some analyses 
suggest that daily dosing is more effective in reducing cancer 
mortality (161).

3.10.5 Vitamin D and psychiatric disorders
Systematic reviews of observational studies and randomized 

controlled trials report that hypovitaminosis D significantly correlated 
with schizophrenia (165), depression (166, 167), autism spectrum 
disorder (168), delirium in hospitalized patients and other psychiatric 
disorders (169). Vitamin D plays crucial roles in brain development, 
neurotransmitter regulation, and neuroprotection (170). In fact, 
observational evidence demonstrates lower serum 25-hydroxyvitamin 
D (25OHD) is related to poorer cognition and predict executive 
dysfunctions (mental shifting, information updating and processing 
speed) (171). Vitamin D receptors in the brain influence critical 
pathways involved in mood regulation, including those affecting 
neurotransmitters like serotonin and dopamine (88).

Mechanistically, vitamin D regulates serotonin synthesis by 
modulating the expression of tryptophan hydroxylase 2 (TPH2), a key 
enzyme in serotonin production (172). Indeed, a systematic review of 
randomized controlled trials in which cholecalciferol supplementation 
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ranged from 600 to 300,000 IU daily for 6 weeks to 2 years found a 
significant reduction in depressive symptoms, assessed by the Beck 
Depression Inventory (BDI), Geriatric Depression Scale (GDS), 
Hamilton Depression Rating Scale (HDRS), or Montgomery-Åsberg 
Depression Rating Scale (MADRS), particularly in individuals with 
severe baseline deficiency (<50 nmol/L) (173).

3.11 Public health strategies, screening 
recommendations, and global health 
relevance

Despite the well-established physiological functions of vitamin D, 
public health strategies to prevent and manage its deficiency remain 
underdeveloped in many regions worldwide. Vitamin D deficiency is 
highly prevalent on a global scale. Approximately 15.7% of the global 
population has serum 25-hydroxyvitamin D [25(OH)D] concentrations 
below 30 nmol/L (12 ng/mL), and nearly 50% have levels below 
50 nmol/L (20 ng/mL), indicating widespread insufficiency and 
underscoring the need for effective public health interventions (174).

Food fortification has emerged as a cost-effective and scalable 
strategy to improve vitamin D status at the population level. Fortifying 
commonly consumed staple foods—such as milk, bread, and eggs—
has been shown to significantly increase serum 25(OH)D levels across 
diverse demographic groups. Advances in encapsulation and 
stabilization technologies have enhanced the bioavailability and shelf-
stability of vitamin D in fortified products, making this approach 
more efficient and sustainable than pharmaceutical supplementation 
in many settings. Countries that have implemented mandatory or 
voluntary fortification policies have reported substantial 
improvements in population-wide vitamin D status (175).

In terms of screening practices, current guidelines do not support 
universal screening for vitamin D deficiency in asymptomatic 
individuals, due to a lack of conclusive evidence demonstrating 
improved health outcomes from such an approach. Instead, targeted 
screening is recommended for high-risk populations. These include 
individuals with limited sun exposure, darker skin pigmentation, 
malabsorptive conditions (e.g., celiac disease, inflammatory bowel 
disease), chronic kidney or liver disease, and those living at higher 
latitudes where sunlight exposure is minimal for extended periods 
(19). Screening in these groups allows for early identification and 
personalized interventions to prevent complications related to 
severe deficiency.

4 Conclusion

Vitamin D₃ (cholecalciferol) exerts broad physiological effects that 
extend well beyond its classical role in calcium-phosphorus 
homeostasis and skeletal health. Evidence from epidemiological, 
mechanistic, and clinical studies suggests that adequate vitamin D 
status is associated with favorable outcomes across a wide range of 
systems, including cardiovascular, immune, gastrointestinal, 
metabolic, reproductive, and neurological domains. Deficiency in 
serum 25-hydroxyvitamin D has been linked to increased risks of 
cardiovascular disease, inflammatory bowel disease, insulin resistance, 
fractures, neurodegenerative disorders such as Alzheimer’s and 
Parkinson’s, pregnancy complications, and certain cancers.

Recent findings highlight vitamin D’s role in modulating immune 
responses, enhancing gut barrier integrity, regulating glucose 
metabolism, and potentially attenuating neuroinflammation and 
tumor progression. However, despite promising preclinical data, the 
results of large-scale randomized controlled trials remain inconclusive, 
particularly regarding its impact on cancer incidence and mortality, 
cognitive decline, and long-term metabolic outcomes.

These inconsistencies underscore the need for a cautious and 
evidence-based approach to vitamin D supplementation. While 
food fortification and targeted supplementation have proven 
effective in improving population-level vitamin D status, universal 
high-dose supplementation is not warranted and may pose risks, 
including hypercalcemia and nephrolithiasis. Personalized 
strategies—guided by serum 25(OH)D measurements and 
individual risk factors such as age, comorbidities, body mass index, 
and absorption capacity—are essential for optimizing therapeutic 
benefit while minimizing harm.

Vitamin D represents a promising yet complex component of 
preventive and therapeutic strategies in human health. Further 
well-designed, large-scale clinical trials are needed to clarify its 
efficacy in disease prevention and management, define optimal 
dosing regimens, and guide public health policies tailored to 
population needs.
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