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Objective: This study aimed to investigate the effect of dietary acid-base load on 
patients with chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM).

Design: A total of 300 patients with CKD were enrolled and divided into three 
groups according to DAL tertiles. Dietary intake was assessed using a 24-h 
dietary recall, and diet-based acidity was assessed using net endogenous acid 
production (NEAP), potential renal acid load (PRAL), and dietary acid load (DAL). 
Multivariable logistic regression models were used to determine the association 
between diet-based acid load scores and CKD and T2DM.

Results: Within the food category groupings, the DAL score was positively 
associated with poultry and eggs and negatively associated with fruits and 
vegetables. Regarding energy and macronutrients, the DAL score was positively 
correlated with the intake of protein, animal protein, monounsaturated fatty acids, 
saturated fatty acids, and fat, while it was negatively correlated with the intake 
of carbohydrates, plant protein, and dietary fiber. In terms of micronutrients, 
DAL scores were positively associated with phosphorus intake and negatively 
associated with potassium, magnesium, and copper intake. After adjusting for 
age, BMI, energy, and eGFR, and stratifying by sex, logistic regression analysis 
showed that DAL level (OR = 6.47, 95% CI 1.19–35.18, p = 0.031) was a related 
factor for CKD and T2DM in females.

Conclusion: DAL score is a related factor for patients with T2DM and CKD.
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1 Introduction

Chronic kidney disease (CKD) is a significant global public 
health concern due to its high morbidity, poor prognosis, and high 
mortality. In 2024, there were approximately 850 million patients 
with CKD worldwide, representing a global prevalence of about 
9.5% (1). The prevalence of CKD in China is 8.2% (2). CKD is 
characterized by structural and functional changes in the kidneys 
lasting more than 3 months (3). Clinically, it involves multiple 
systems, including the respiratory, circulatory, skeletal, and 
endocrine systems, and eventually progresses to end-stage renal 
disease (ESRD). Diabetes and hypertension are the leading 
contributors to the increased CKD burden. The rising prevalence of 
diabetes has led to a steady increase in the prevalence of CKD 
combined with type 2 diabetes mellitus (T2DM). Patients with both 
CKD and T2DM are at greater risk compared to patients with CKD 
alone. Early intervention can delay CKD progression and renal 
failure. Additionally, it has been suggested that diet is an important 
etiologic and prognostic factor of CKD.

The acid–base status of the body can be influenced by dietary 
intake, depending on the balance between the intake of acid and 
alkaline-inducing foods. Diet significantly affects the risk of CKD 
progression (4). Dietary modifications that reduce acid load may 
improve prognosis in CKD and T2DM.Potential renal acid load 
(PRAL), net endogenous acid production (NEAP), and dietary acid 
load DAL are common metrics used to assess dietary acid–base load 
(5). Higher PRAL and NEAP scores indicate a greater acidogenic 
potential of the food. A diet with a high acid load can lead to low-grade 
metabolic acidosis, which can result in insulin resistance (6), T2DM 
(7) and metabolic syndrome (7). Furthermore, there are sex-related 
differences in the prevalence of T2DM (8). Taking sex-related 
differences into account in the recognition, development, presentation, 
diagnosis, treatment, and prevention of T2DM can facilitate the 
development of more personalized diabetes care strategies in 
the future.

This study aimed to evaluate the association between dietary acid–
base load in patients with CKD and T2DM using PRAL, NEAP, and 
DAL scores, taking into account sex-related differences.

2 Materials and methods

2.1 Study population

This cross-sectional study, conducted between March 2022 
and October 2023, involved adult patients with CKD hospitalized 
at the Department of Nephrology of the First Medical Center of 
the Chinese People’s Liberation Army General Hospital. The 
inclusion criteria comprised: (1) diagnosis of CKD according to 
the 2024 KDIGO Clinical Practice Guidelines (3), (2) 
age ≥ 18 years. The exclusion criteria were as follows: (1) history 
of severe infection within the past month; (2) acute and severe 
diseases in the past 6 months; (3) malignant tumors; (4) pregnancy 
or lactation; (5) incomplete medical history or clinical examination 
results; and (6) incomplete dietary intake data or over-reporting 
(> 4,000 kcal) and under-reporting of energy intake (< 600 kcal). 
Ultimately, 300 non-dialysis patients with CKD were included in 
the analysis.

2.2 Dietary intake

Dietary intake was assessed through face-to-face interviews 
using 24-h dietary recall within 48 h of patient admission to the 
hospital. During the 24-h dietary review, the researchers directly 
queried the patients about their food consumption on the 
preceding day, detailing the variety and quantities of food aided 
by food pictures or models. Nutrient intake was calculated 
according to the Chinese Dietary Guidelines (2022 edition) (9) 
and Chinese Dietary Reference Intakes (2013 edition) (10). 
Adjustment for food and nutrient intake was performed using the 
residual energy method (11).

2.3 Dietary acid–base load

Common indicators of dietary acid–base load include NEAP, 
PRAL, and DAL. NEAP and PRAL were calculated based on the 
dietary intake of proteins and minerals. DAL was calculated using 
dietary protein, phosphorus, potassium, calcium, magnesium, height, 
and weight.

PRAL (mmol/d) = 0.49 × protein (g/day) + 0.037 × phosphorus 
(mg/day) − 0.021 × potassium (mg/day) − 0.026 × magnesium (mg/
day) − 0.013 × calcium (mg/day) (12);

NEAP (mEq/d) = 54.5 × [protein(g/day)/potassium intake (mEq/
day)] − 10.2 (13);

DAL (mmol/d) = PRAL + (body surface area 
[m2] × 41[mEq/d]/1.73 m2) (14);

The body surface area was calculated as follows = 0.007184 × height 
(cm) ^ 0.725 × weight (kg)^ 0.425 (15, 16).

2.4 Clinical data collection

General information collected included name, sex, height, weight, 
age, and medical history, including present illness, nephropathy, 
hypertension, and diabetes. Clinical laboratory parameters measured 
included white blood cell count (WBC), hemoglobin, total protein, 
albumin, haptoglobin, prealbumin, urea nitrogen, serum creatinine, 
estimated glomerular filtration rate (eGFR), serum cystatin C, 24-h 
urinary protein, serum uric acid, total cholesterol, triglycerides, 
fasting blood glucose (FBG), serum calcium, potassium, phosphorus, 
high-density lipoprotein cholesterol (HDL-C) and low-density 
lipoprotein cholesterol (LDL-C).

2.5 Statistical analysis

Measurement data with a normal distribution were presented 
as mean ± standard deviation, while non-normally distributed 
data were expressed as medians with interquartile ranges. 
Differences between different DAL tertiles were compared, and 
measurement data with normal distribution and homogeneity of 
variance were compared between groups using a one-way analysis 
of variance test. A non-parametric test was used for comparison 
between groups if the homogeneity of variance was not satisfied. 
Count variables were expressed as frequencies and percentages 
and analyzed using chi-square or Fisher’s exact tests. Logistic 
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regression analysis was used to analyze the relationship between 
the DAL score and CKD combined with T2DM after controlling 
for the confounding effects of age, body mass index (BMI), energy 
intake, and eGFR. Statistical analyses were performed using SPSS 
version 26.0 for Mac software (SPSS Inc., Chicago, IL, 
United  States). Statistical significance was set at p (or 
P-trend) < 0.05.

3 Results

3.1 Screening of the selected cases

A total of 321 patients with CKD hospitalized at the Department 
of Nephrology of the First Medical Center of the Chinese People’s 
Liberation Army General Hospital between March 2022 and October 
2023 were initially selected. After excluding seven patients due to 
incomplete dietary information, 13 patients with extreme energy 
intake (< 600 kcal/day or > 4,000 kcal/day), and one patient 
undergoing dialysis, 300 participants remained eligible for inclusion. 
Figure  1 provides a visual representation of the participant 
screening process.

3.2 General information on the study 
population

This study enrolled a total of 300 patients with CKD; 
approximately 63.7% were male. PRAL, NEAP, DAL, and BMI were 
significantly different in DAL tertiles, with an increasing trend 
(p < 0.001). Out of the total, 148 (49.3%) had T2DM, and significant 
differences appeared primarily between Q3 and Q1/Q2. No 
significant differences were observed in age, CKD course, or 
hypertension between the different DAL categories. Table 1 presents 
the characteristics of the 300 patients. Patients with T2DM were 
analyzed separately, Supplementary Table  1 shows baseline 

characteristics of patients combine CKD with T2DM by categories 
of DAL median.

3.3 Comparison of clinical characteristics 
of study participants

Blood urea nitrogen (BUN), cystatin C, uric acid, and FBG 
levels were significantly different in the DAL tertiles, with an 
increasing trend (p < 0.05). The participants assigned to the highest 
DAL category had significantly higher Serum creatinine levels, and 
significant differences appeared primarily between Q3 and Q1/Q2 
(p < 0.05). The participants assigned to the highest DAL category 
had significantly lower HDL-C levels. In HDL-C levels, significant 
differences were observed particularly between the highest tertile 
and lower tertiles (p < 0.05).There were no significant differences in 
WBC count, hemoglobin, total protein, haptoglobin, prealbumin, 
eGFR, 24-h urinary protein, total cholesterol, triglyceride, serum 
calcium, serum potassium, serum phosphorus, or LDL-C levels 
among the different DAL categories. Table 2 presents a comparison 
of the clinical characteristics of the participants based on the 
DAL category.

3.4 Distribution of dietary intake in the 
study population

Among the food groups, DAL was positively associated with meat 
and eggs (p < 0.001) but negatively associated with fruits and 
vegetables (p < 0.001). Regarding energy and macronutrients, DAL 
was positively associated with protein, animal protein, 
monounsaturated fatty acids (MUFA), saturated fatty acids, and fat 
intake (p < 0.05) while displaying a negative association with 
carbohydrate, plant protein, and fiber intake (p < 0.001). No significant 
association was found in polyunsaturated fatty acid (PUFA) intakes 
across the DAL tertiles.

FIGURE 1

Flow chart of participant screening.

https://doi.org/10.3389/fnut.2025.1581009
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Huang et al. 10.3389/fnut.2025.1581009

Frontiers in Nutrition 04 frontiersin.org

Concerning dietary micronutrient intake, DAL was negatively 
associated with sodium, potassium, calcium, magnesium, and iron 
while being positively associated with phosphorus and zinc intake. 
Specifically, DAL was negatively associated with potassium, 
magnesium, and copper intakes (p < 0.05), but it was positively 
associated with phosphorus intake (p < 0.05). Table 3 presents the 
dietary intakes of the participants in the DAL tertiles.

3.5 Logistic regression analysis was used to 
analyze the relationship between dietary 
acid–base load and CKD combined with 
T2DM

Regarding the association between dietary acid–base load and CKD 
combined with T2DM, odds ratios (ORs) and 95% confidence intervals 

TABLE 1 Baseline characteristics of study participants by categories of DAL.

Characteristics N = 300 Q1 (N = 100) Q2 (N = 100) Q3 (N = 100) p-value p-trend

PRAL (mEq/day) 14.31 (5.64, 21.05) 0.35(−6.31, 5.73) 14.71 (10.57, 17.53) 23.93 (19.85, 28.75) <0.001 <0.001

NEAP (mEq/day) 66.41 (51.88, 81.17) 44.62 (36.40, 53.26) 67.30 (59.70, 76.11) 83.88 (76.84, 101.30) <0.001 <0.001

DAL (mEq/day) 55.7 (47.4, 64.6) 42.76 (34.76, 47.61) 55.70 (52.78, 58.87) 68.17 (64.57, 74.01) <0.001 <0.001

Age (years) 54 (41, 61) 54 (43.25, 61) 54.5 (40, 62.75) 53.5 (42, 60) 0.801 0.509

Sex

Male, n (%) 191 (63.7%) 52 (53%) 52 (53%) 87 (87%) <0.001 –

Female, n (%) 109 (36.3%) 48 (48%) 48 (48%) 13 (13%)

BMI (kg/m2) 25.01 ± 3.69 24.3 ± 3.66 24.17 ± 3.56 26.57 ± 3.36 <0.001 <0.001

CKD course (months) 24.5 (11.25, 84) 22.5 (10.25, 59.75) 32.5 (12, 106.25) 25 (12, 96) <0.001 0.113

T2DM, n (%) 148 (49.3%) 45 (45%) 42 (45%) 61 (61%) 0.015 –

Hypertension, n (%) 226 (75.3%) 71 (71%) 74 (74%) 81 (81%) 0.242 –

PRAL, potential renal acid load; NEAP, net endogenous acid production; DAL, dietary acid load; BMI, body mass index; CKD, chronic kidney disease; T2DM, Type 2 Diabetes Mellitus.

TABLE 2 Comparison of clinical characteristics of study participants by categories of DAL.

Characteristics N = 300 Q1 (N = 100) Q2 (N = 100) Q3 (N = 100) p-value p-trend

WBC (×10^9/L) 6.61 (5.21, 8.00) 6.74 (4.93, 8.37) 6.56 (5.32, 8.03) 6.46 (5.67, 7.74) 0.978 0.969

Hemoglobin (g/L) 118.5 (102.25, 131) 116 (100, 130) 116.82 (102, 128.75) 122 (106.5, 137.5) 0.094 0.068

Total protein (g/L) 58.85 (51.33, 64.8) 58.45 (49.25, 64.98) 58.25 (51.33, 63.38) 59.4 (52.7, 65.8) 0.619 0.781

Haptoglobin (mg/dl) 134.88 (85.58, 162) 134.88 (92.53, 165.75) 125.5 (70.2, 157.75) 133.94 (92.85, 164.5) 0.256 0.87

Prealbumin (mg/dl) 29.84 (24.43, 33) 28.5 (23.8, 32.58) 29.84 (24.7, 32.4) 30 (25.03, 35.43) 0.172 0.063

BUN (mmol/L) 8.11 (5.77, 11.36) 7.37 (5.38, 10.54) 8.05 (5.48, 11.72) 9.33 (6.41, 11.56) 0.028 0.008

Serum creatinine (umol/L) 116.25 (81.25, 188.23) 109 (77.48, 173.18) 99.9 (77.23, 157.98) 147.85 (88.73, 221.85) 0.023 0.018

eGFR (ml/min/1.73) 55.70 (30.66, 88.08) 60.49 (36.64, 90.55) 61.51 (32.81, 89.34) 42.77 (27.92, 82.1) 0.151 0.086

Cystatin C (mg/L) 1.81 (1.21, 2.00) 1.65 (1.11, 1.87) 1.81 (1.2, 2.00) 1.81 (1.36, 2.22) 0.102 0.035

24-h urinary protein 

(g/24 h)

2.03 (0.63, 4.56) 1.48 (0.51, 4.56) 2.35 (0.87, 4.24) 2.14 (0.82, 4.68) 0.301 0.128

Uric acid (umol/L) 375.65 (303.98, 455.8) 361.4 (274.83, 420.45) 373.9 (306.45, 438.48) 389.55 (323.58, 467.6) 0.017 0.004

Total cholesterol (mmol/L) 4.52 (3.84, 5.44) 4.56 (3.82, 5.49) 4.49 (3.86, 5.47) 4.55 (3.86, 5.37) 0.94 0.727

Triglyceride (mmol/L) 1.8 (1.22, 2.56) 1.75 (1.21, 2.44) 1.59 (1.14, 2.38) 1.94 (1.45, 2.76) 0.011 0.065

FBG (mmol/L) 4.79 (4.29, 5.64) 4.59 (4.16, 5.25) 4.85 (4.38, 5.50) 4.87 (4.37, 6.32) 0.098 0.041

Serum calcium (mmol/L) 2.19 (2.06, 2.27) 2.21 (2.06, 2.28) 2.19 (2.07, 2.27) 2.17 (2.07, 2.26) 0.568 0.292

Serum potassium (mmol/L) 3.90 (3.62, 4.26) 3.91 (3.71, 4.31) 3.87 (3.61, 4.22) 3.90 (3.55, 4.26) 0.493 0.242

Serum phosphorus 

(mmol/L)

1.27 (1.13, 1.42) 1.27 (1.12, 1.41) 1.28 (1.14, 1.43) 1.26 (1.12, 1.43) 0.767 0.504

HDL-C (mmol/L) 1.1 (0.9, 1.32) 1.13 (0.92, 1.5) 1.15 (0.95, 1.43) 1.03 (0.86, 1.17) 0.001 0.003

LDL-C (mmol/L) 2.68 (2.08, 3.50) 2.73 (2.09, 3.62) 2.65 (2.12, 3.34) 2.69 (2, 3.50) 0.925 0.703

WBC, white blood cell; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 
lipoprotein cholesterol.
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(CI) for the association between dietary acid and base are shown in 
Table 4. In the crude model, the DAL score was significantly associated 
with higher odds in CKD combined with T2DM. Specifically, the risk of 
CKD combined with T2DM in the highest tertile of DAL was 91% 
greater than that in the lowest tertile (OR = 1.91, 95%CI 1.09–3.36, 
p = 0.024). After adjusting for age, BMI, the DAL score was significantly 
associated with higher odds of patients with CKD and T2DM. The risk 
of CKD combined with T2DM in the highest tertile of DAL was 2.07 
times greater than that in the lowest tertile (OR = 2.07, 95%CI 1.06–4.03, 
p = 0.033). Similarly, In Model 2, the odds of CKD combined with 
T2DM in the highest DAL tertile were 2.06 times greater than those in 
the lowest tertile (OR = 2.06, 95%CI 1.05–4.01, p = 0.035). Subsequently, 
in Model 3, when further adjusted for eGFR, no significant association 

was observed between DAL in CKD combined with T2DM. No 
significant association was observed between PRAL or NEAP levels in 
CKD combined with T2DM.

3.6 Logistic regression analysis models for 
the association between CKD combined 
with T2DM and tertiles of PRAL, NEAP, and 
DAL categorized by sex

The results of crude and multivariable adjusted ORs and 95% CI 
for the association between CKD combined with T2DM and tertiles 
of PRAL, NEAP, and DAL scores stratified by sex are presented in 

TABLE 3 Food groups, macronutrient, and micronutrient intake of study participants by categories of DAL.

Variables N = 300 Q1 (N = 100) Q2 (N = 100) Q3 (N = 100) p-value p-trend

Food groups

Grain (g/day) 327.5 (223.85, 487.15) 360 (230, 493.08) 303.55 (215.35, 445.3) 323 (222.2, 504.58) 0.297 0.715

Vegetables (g/day) 297.9 (175.75, 435.9) 398.9 (241.15, 586.5) 280.55 (188, 387.5) 241.45 (132.15, 328.75) <0.001 <0.001

Fruits (g/day) 100 (0, 207.83) 200 (40.55, 400) 105 (0, 200) 0 (0, 150) <0.001 <0.001

meat(g/day) 60 (14.25, 140) 37.5 (0, 95.48) 35 (10, 99.65) 130.45 (50, 199.7) <0.001 <0.001

Eggs (g/day) 60 (0,60) 39.5 (0, 60) 60 (0, 85.15) 60 (0, 90) 0.005 0.002

Dairy products (ml/day) energy 

and Macronutrients

0 (0, 250) 0 (0, 200) 0 (0, 250) 0 (0, 250) 0.947 0.767

Energy (kcal/day) 1320.30 (1021.89, 

1653.56)

1371.06 (1027.04, 

1659.27)

1180.68 (954.85, 

1524.49)

1413.85 (1142.26, 

1943.87)

0.001 0.116

Carbohydrates (g/day) 213.36 (186.96, 

238.91)

222.57 (203.37, 252.30) 213.08 (192.44, 238.44) 194.51 (163.95, 229.27) <0.001 <0.001

Protein (g/day) 59.50 (53.07, 68.11) 54.56 (49.86, 59.37) 59.82 (54.40, 66.40) 68.02 (59.08, 81.52) <0.001 <0.001

Plant protein (g/day) 31.50 (26.01, 36.55) 32.87 (28.67, 37.88) 30.48 (26.49, 37.01) 31.15 (22.87, 36.15) 0.099 0.032

Animal protein (g/day) 28.95 (18.85, 39.51) 22.26 (14.94, 30.26) 28.45 (19.83, 39.42) 37.91 (26.59, 53.40) <0.001 <0.001

Fiber (g/day) 8.01 (5.44, 10.95) 10.98 (8.10, 13.97) 7.88 (6.14, 9.78) 5.67 (3.60, 8.16) <0.001 <0.001

MUFA (mg/day) 11.57 (8.13, 16.39) 10.13 (6.06, 14.30) 11.49 (8.27, 15.24) 13.72 (9.37, 18.62) 0.002 <0.001

PUFA (mg/day) 3.93 (2.54, 5.20) 3.67 (2.28, 4.86) 4.09 (2.71, 5.31) 4.19 (2.73, 6.02) 0.155 0.055

Saturated fat (mg/day) 12.93 (8.54, 16.64) 11.11 (6.83, 14.72) 13.04 (8.44, 16.14) 14.76 (11.33, 19.99) <0.001 <0.001

Fat (g/day) 39.93 (29.95, 48.09) 37.56 (27.89, 46.15) 40.19 (29.97, 47.48) 44.13 (32.59, 54.05) 0.022 0.006

Micronutrients

Sodium (mg/day) 1018.09 (730.44, 

1708.44)

1031.89 (741.23, 

1721.05)

977.42 (734.15, 

1505.81)

1048.50 (722.85, 

1888.30)

0.709 0.522

Potassium (mg/day) 1721.50 (1414.87, 

2138.99)

2156.01 (1776.72, 

2460.72)

1612.03 (1404.79, 

1939.10)

1512.17 (1251.83, 

1823.32)

<0.001 <0.001

Calcium (mg/day) 369.18 (248.04, 

548.83)

418.711 (258.43, 

639.90)

348.19 (251.14, 534.64) 355.61 (203.41, 521.60) 0.017 0.005

Magnesium (mg/day) 261.61 (220.58, 

303.10)

293.54 (250.17, 357.17) 252.26 (221.97, 284.68) 230.45 (207.07, 275.50) <0.001 <0.001

Phosphorus (mg/day) 854.93 (754.41, 

1004.59)

831.30 (732.08, 986.92) 848.02 (761.21, 932.82) 919.70 (787.47, 

1082.90)

0.017 0.018

Iron (mg/day) 14.93 (11.84, 17.89) 15.22 (12.37, 18.72) 14.62 (11.98, 16.98) 14.59 (11.26, 17.50) 0.277 0.141

Copper (mg/day) 1.14 (0.87, 1.47) 1.33 (1.02, 1.74) 1.14 (0.92, 1.35) 0.98 (0.77, 1.22) <0.001 <0.001

Zinc (mg/day) 7.3 (6.09, 8.81) 7.42 (6.13, 9.06) 7.02 (6.04, 8.01) 7.64 (6.02, 10.06) 0.161 0.511

MUFA, mono-unsaturated fatty acids; PUFA, polyunsaturated fatty acids.
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Table 5. In males, no significant association was observed between any 
indices of dietary acid–base load and CKD combined with 
T2DM. However, in females, higher DAL scores were significantly 
associated with higher odds of CKD combined with T2DM. In Models 
1, 2, and 3, the risk of CKD combined with T2DM in the highest DAL 
tertile was 6.61, 6.57, and 6.47 times higher, respectively, than that in 
the lowest DAL tertile. 1. No significant modifications were observed 
between PRAL, NEAP, and DAL and CKD combined with T2DM 
(p > 0.05; Supplementary Table 2).

4 Discussion

4.1 Association between dietary acid–base 
load and CKD with T2DM

Metabolic acidosis occurs when the kidneys do not fully excrete the 
acid load generated by metabolism. Metabolic acidosis is a common 
complication in patients with CKD. The potentially deleterious effects 
of metabolic acidosis in CKD include muscle wasting, bone 
demineralization, hyperkalemia, and accelerated disease progression 
(17). One study showed that metabolic acidosis caused proteinuria and 
decreased eGFR, associated with the intrarenal renin-angiotensin 
system activation (18). Elevated dietary acid intake can also provoke 
tubular toxicity, triggering the complement pathway and boosting renal 
medullary ammonia levels (19). Diet plays a crucial role in generating 
nonvolatile acid loads. In an elderly Spanish population study targeting 
metabolic syndrome, higher PRAL and NEAP scores were associated 
with decreased eGFR and increased urine albumin creatine ratio 
(UACR) after 1 year of follow-up (20). A meta-analysis also confirmed 
the association between dietary acid–base load and renal function, with 
a high dietary acid load leading to decreased renal function (21). After 
adjusting for multiple confounders, a higher dietary acid load was 
associated with a higher prevalence of CKD or impaired renal function, 
as indicated by low eGFR (22–24). A large body of evidence links 
dietary acid load to renal outcomes.

Recent research has focused on the relationship between diet-
induced acid–base load, T2DM, and insulin resistance (6, 25–29). A 
pooled study of three prospective cohorts showed that a higher diet-
dependent acid load (including NEAP, PRAL, and animal protein-to-
potassium ratio) was associated with an increased risk of T2DM (25). 
Similarly, a prospective study in a middle-aged and elderly Korean 
population found that a higher PRAL score was associated with an 
increased risk of future insulin resistance (6). Additionally, a meta-
analysis of 14 studies demonstrated that participants with the highest 
PRAL and NEAP scores had a 19 and 22% increased risk of diabetes 
mellitus (DM), respectively, compared to those in the lowest category 
(30). Similarly, the DAL score was positively associated with CKD and 
T2DM in our study. The mechanisms by which DAL specifically affects 
the progression of T2DM pathophysiology may be as follows. Firstly, 
high DAL results in low interstitial fluid PH. Insulin receptors are found 
on the plasma membrane, particularly in insulin-targeted cells. When 
insulin hooks onto its receptor, it does so on the side that faces the 
surrounding interstitial fluid. Therefore, alterations in the 
microenvironments of interstitial fluids, particularly pH levels, influence 
the insulin’s binding strength with its receptor (31, 32). Secondly, High 
DAL enhance adrenal cortex cortisol production (33). Chronically 
elevated cortisol levels can lead to insulin resistance (34). DAL 
modification could be a feasible intervention target. The Mediterranean 
diet is mainly a plant-based diet and belongs to a low diet-based acidity. 
The Mediterranean diet is recommended by the National Kidney 
Foundation’s Kidney Disease Outcomes Quality Initiative (35). The 
study has shown that the Mediterranean diet can reduce FBG, glycated 
hemoglobin and LDL-C (36). There is evidence that adhering to a 
Mediterranean diet lowers the likelihood of developing T2DM (37, 38).

4.2 Association between dietary factors 
and risks of CKD and T2DM

In our study, the food groups in the highest tertile of DAL scores 
were characterized by low consumption of vegetables and fruits but 

TABLE 4 Logistic regression analysis models for the association between CKD combined with T2DM and tertiles of PRAL, NEAP, and DAL.

Variables PRAL NEAP DAL

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

T2DM Crude OR 1 0.79 1.17 1 0.82 1.27 1 0.89 1.91

95%CI 0.45–1.37 0.67–2.05 0.47–1.43 0.73–2.22 0.51–1.55 1.09–3.36

p 0.396 0.571 0.479 0.396 0.669 0.024

Model 1 OR 1 0.6 1.32 1 0.68 1.34 1 0.89 2.07

95%CI 0.31–1.15 0.69–2.53 0.35–1.31 0.71–2.55 0.46–1.72 1.06–4.03

p 0.124 0.404 0.251 0.371 0.736 0.033

Model 2 OR 1 0.601 1.317 1 0.69 1.33 1 0.90 2.06

95%CI 0.31–1.17 0.69–2.53 0.36–1.33 0.70–2.54 0.47–1.75 1.05–4.01

p 0.136 0.406 0.265 0.381 0.761 0.035

Model 3 OR 1 0.66 1.21 1 0.72 1.26 1 0.93 1.92

95%CI 0.33–1.31 0.62–2.37 0.37–1.43 0.65–2.45 0.47–1.85 0.96–3.82

p 0.23 0.572 0.354 0.492 0.845 0.064

Crude: unadjusted; Model 1: adjusted for age and body mass index; Model 2: adjusted for age, body mass index and energy intake; Model 3: adjusted for age, body mass index, energy intake 
and eGFR. DAL, dietary acid load; NEAP net endogenous acid production; PRAL, potential renal acid load.
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high consumption of meat and eggs. Food groups with high DAL 
scores are characterized by low consumption of vegetables and fruits 
and high consumption of dairy products, cereals, and eggs (39). 
Vegetables and fruits have excellent antioxidant properties that help 
eliminate free radicals and mitigate oxidative stress, thus protecting 
cells and structures from oxidative damage (40). A high intake of 
fruits and vegetables has long been associated with health benefits 
such as protecting against cancer, diabetes, neurodegenerative 
diseases, and cardiovascular diseases (41, 42). On the other hand, 
increased meat intake, particularly synthetic and processed meat, has 
been positively associated with proinflammatory substances (43). 
Animal proteins, rich in sulfur-containing amino acids such as 
methionine, homocysteine, and cysteine, contribute to the production 
of sulfate with an acidification effect during the metabolic process. 
This can lead to metabolic acidosis (44, 45).

In this study, in terms of energy and macronutrients, patients with 
CKD and T2DM in the highest DAL tertiles consumed more protein, 
including animal protein, as well as MUFA, saturated fatty acids, fat, 
and phosphorus. Conversely, their intake of carbohydrates, plant 
protein, dietary fiber, potassium, magnesium, and copper was lower. 
Some studies suggest that total and animal proteins can increase the 

risk of T2DM, while plant proteins can reduce the risk of T2DM (46, 
47). Hence, it is essential to consider both the type and food source of 
dietary proteins for the prevention of diabetes.

Several studies have provided evidence supporting an association 
between dietary fatty acids, especially saturated fatty acids, and the 
development of insulin resistance and T2DM. However, recent 
cohort studies have shown no association between saturated fatty 
acids and the incidence of T2DM (48, 49). Conversely, several 
prospective studies have demonstrated an inverse association 
between total MUFA intake and the risk of T2DM (50, 51). There 
may be the following reasons the negative association between DAL 
and MUFA in this study. Firstly, Traditional Chinese cooking, such 
as stir frying, pan frying, and deep frying, can lead to isomerization 
of unsaturated fatty acids (UFA), which in turn produces harmful 
substances such as trans fatty acids (52, 53). Secondly, 24-h dietary 
review do not represent long-term dietary intake habits. Higher 
concentrations of marine-derived omega-3 PUFA biomarkers have 
been linked to greater risks of T2DM, coronary heart disease, and 
total mortality (54). Conversely, another study reported that higher 
levels of omega-3 PUFA in seafood sources were associated with a 
lower risk of CKD (55). Whether fatty acids are risk factors or 

TABLE 5 Logistic regression analysis models for the association between CKD combined with T2DM and tertiles of PRAL, NEAP, and DAL categorized by 
sex.

Variables PRAL NEAP DAL

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Male Crude OR 1 0.59 0.95 1 0.65 0.94 1 0.58 1.07

95%CI 0.28–1.23 0.47–1.91 0.31–1.36 0.47–1.89 0.27–1.26 0.53–2.18

p 0.159 0.88 0.252 0.86 0.169 0.843

Model 1 OR 1 0.49 1.07 1 0.61 1.01 1 0.65 1.21

95%CI 0.21–1.13 0.49–2.36 0.26–1.43 0.46–2.19 0.26–1.59 0.55–2.68

p 0.095 0.863 0.254 0.983 0.342 0.632

Model 2 OR 1 0.45 1.07 1 0.6 1.01 1 0.63 1.20

95%CI 0.19–1.07 0.48–2.35 0.25–1.41 0.46–2.19 0.25–1.55 0.54–2.65

p 1 0.072 0.873 0.242 0.987 0.31 0.654

Model 3 OR 0.51 0.96 1 0.62 0.93 1 0.65 1.16

95%CI 0.21–1.25 0.42–2.20 0.26–1.50 0.41–2.10 0.26–1.65 0.51–2.65

p 0.14 0.931 0.287 0.855 0.361 0.722

Female Crude OR 1 1.4 1.23 1 1.32 1.59 1 1.48 2.31

95%CI 0.55–3.56 0.42–3.56 0.52–3.36 0.555–4.564 0.62–3.52 0.65–8.16

p 0.477 0.706 0.564 0.388 0.38 0.194

Model 1 OR 1 0.97 1.62 1 0.95 1.9 1 1.81 6.61

95%CI 0.31–3.06 0.45–5.85 0.30–2.99 0.53–6.80 0.59–5.53 1.25–35.09

p 0.959 0.463 0.933 0.326 0.3 0.027

Model 2 OR 1 0.99 1.61 1 0.96 1.87 1 1.81 6.57

95%CI 0.31–3.18 0.45–5.81 0.30–3.03 0.52–6.74 0.59–5.56 1.21–35.70

p 1 0.993 0.468 0.944 0.339 0.3 0.029

Model 3 OR 1.03 1.64 1 1.01 1.96 1 1.87 6.47

95%CI 0.32–3.36 0.46–5.92 0.32–3.24 0.54–7.11 0.60–5.81 1.19–35.18

p 0.957 0.45 0.987 0.305 0.279 0.031

Crude: unadjusted; Model 1: adjusted for age and body mass index; Model 2: adjusted for age, body mass index and energy intake; Model 3: adjusted for age, body mass index, energy intake 
and eGFR. DAL, dietary acid load; NEAP, net endogenous acid production; PRAL, potential renal acid load.
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protective factors for T2DM remains controversial, potentially 
influenced by differences in food sources and carbon chain lengths 
(48, 56).

4.3 Sex disparities in the dietary acid–base 
load and CKD with T2DM

Three distinct dietary acid–base load measures were employed 
in this study, each with its unique formula, limitations, and 
advantages. Consequently, utilizing these three indicators enhances 
the reliability of the results. In a cross-sectional study of 1945 
Iranian adults, participants in the highest quartile of PRAL, NEAP, 
and DAL had 42, 48, and 44% higher ORs for metabolic syndrome 
compared to those in the lowest quartile, respectively. Subsequent 
analysis of the population by sex showed that higher PRAL, NEAP, 
and DAL scores were significantly associated with increased odds 
of metabolic syndrome in the male population but not in the female 
population (7). Notably, no previous study has investigated the 
association between these three dietary acid–base load measures 
(PRAL, NEAP, and DAL) in patients with CKD and T2DM while 
considering sex differences. Further analysis by sex showed that in 
women in Models 1, 2, and 3, the risk of CKD with T2DM in the 
highest DAL tertile was 6.61, 6.57, and 6.47 times higher than that 
in the lowest DAL tertile. However, no significant association was 
observed among males.

Evidence suggests that sex differences play an important role 
in the pathophysiology, epidemiology, treatment, and prognosis 
of metabolic syndrome and DM. There are sex-related differences 
in the prevalence of T2DM. Globally, the prevalence of DM is 
higher in men, but more women are affected by T2DM than men 
(57). The sex difference in DM prevalence is reversed according 
to the reproductive life stage: prepubertal males exhibit higher 
rates of DM, whereas postmenopausal and older women have 
more DM. Gestational diabetes mellitus (GDM) is the most 
important risk factor for the development of T2DM in women 
(58). Additionally, premature menopause is associated with an 
increased risk of T2DM (59–61). This reason is caused by 
hormonal differences in metabolic responses between genders. 
Estrogen protects against insulin resistance by activating the ERα 
pathway in insulin-sensitive tissues (62). Estrogen decreases in 
women after menopause. Low estrogen levels increase 
inflammation and enhances fat accumulation in the body. Excess 
fat produces excess triglycerides and free fatty acids, which in 
turn impair insulin signaling and β-cell regulation, leading to 
T2DM (63). Estrogen influences microbiota in the gut, the gut 
microbiota regulates glucose homeostasis (64).Endogenous 
estrogens play a protective role in preventing females from 
developing type 2 diabetes. Men have small fluctuations in 
hormone levels throughout life compared with women. Androgen 
is converted into estrogen through the process of aromatization. 
Men with an androgen/estrogen ratio imbalance are at 
metabolic risk.

Taking gender differences into account in the recognition, 
development, presentation, diagnosis, treatment, and prevention of 
T2DM will facilitate the development of more personalized diabetes 
care in the future.

4.4 Strengths and limitations

This study is the first to use three measures (PRAL, NEAP, and 
DAL) to assess the association between dietary acid–base load and the 
risk of combined CKD and T2DM while considering disparities in sex. 
However, we excluded all subjects with extreme values of total energy 
intake and adjusted the intake of food and nutrients according to the 
energy residual method to control for reporting bias.

Nonetheless, this study has some limitations. Firstly, the dietary 
data of the patients did not encompass the use of supplements. 
Secondly, this was a cross-sectional, single-center study, and it was not 
able to determine cause and effect. Longitudinal design or 
interventional studies are recommended to further verify causality. 
The diversity and representativeness of the samples may be limited. 
Future studies be validated in a broader population, including patients 
with different regions, ethnicities, and medical backgrounds. Thirdly, 
the 24-h dietary review was used to assess dietary intake, which may 
be subject to recall bias. It is recommended that future studies use 
more accurate dietary assessment methods (such as food diaries or 
multiple 24-h reviews). Fourthly, despite accounting for potential 
confounding elements, other potential confounders may still exist, 
such as physical activity levels, medication use, or socioeconomic status.

5 Conclusion

In conclusion, our study revealed a positive association between 
the DAL scores and CKD with T2DM, particularly among women. An 
alkaline - rich diet, which is abundant in fruits and vegetables and 
lower in excessive meat, might be a modifiable factor in reducing 
DAL. Additional studies are required to ascertain the specific foods’ 
acidogenic potential to establishing specific dietary recommendations.
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