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Fermented foods are a good source of nutrition, with microbiota and metabolites 
that can positively influence consumer health. With the increasingly negative 
health outcomes from using low-quality diets like processed diets, functional 
products like fermented foods are getting more attention than ever. All cultures 
of the world consume some kind of fermented foods. Extensive literature outlines 
positive health and clinical outcomes associated with fermented foods, yet most 
data are associative and lack longitudinal studies. This review explores the role 
of fermented foods during pregnancy and its subsequent impact on maternal 
and infant health, especially in the first 1,000 days of life. In this review, we have 
summarized the literature on fermented foods from preclinical and clinical studies 
that evaluated the impact of maternal consumption of fermented foods on mothers 
and offspring microbiota, immune system, and brain health outcomes. We also 
discussed existing knowledge gaps on maternal-child dyads and mechanistic 
studies needed to provide better scientific evidence to promote fermented foods 
consumption.
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1 Overview

A broad range (~5,000 varieties) of traditionally produced fermented foods are consumed 
worldwide (1, 2). Though in recent years there has been a resurgence in the consumption of 
fermented foods due to proposed health benefits, advantages as a low-tech, resource-efficient 
processing, and concerns about food waste and environmental impact (3, 4), expansion in 
processing technologies, industrialization, and commercialization of food production has 
reduced the consumption of fermented foods overall, especially in Western countries (5). 
Many types of fermented foods are made and consumed, including dairy, plant, cereal, 
vegetable-based and alcoholic beverages (2, 6). Though alcoholic beverages fall under the 
larger umbrella of fermented foods, they are detrimental to maternal health. Given that the 
objective of our review is to explore the potential beneficial effects of maternal consumption 
of fermented foods, we exclude alcoholic beverages from our review.

During pregnancy, nutritional needs increase to support the growth and development 
of the fetus and to improve the tissue reserves and metabolic demands of the mother. These 
increased needs include energy, macronutrients, and specific micronutrients (7). Fermented 
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foods can offer greater nutritional benefits than their unfermented 
counterparts as the microorganisms involved can break down 
complex compounds to produce multiple byproducts, such as 
vitamins and other micronutrients. For example, fermented grains 
are nutritionally superior to unfermented grains, as fermentation 
releases nutrients trapped within plant structures and cells (8). In 
addition, even after cooking, some nutrients trapped in food may 
remain inaccessible to the human digestive system (9). This can 
be  countered by fermentation, which can break down the 
indigestible coatings and cell walls chemically and physically, 
thereby releasing essential nutrients. Cellulose, hemicellulose, and 
related polymers are indigestible by humans. During fermentation, 
enzymes from microorganisms can split complex carbohydrate 
molecules, breaking them down into more digestible simple sugars 
and sugar derivatives (10). Moreover, fermented dairy products 
serve as a source of probiotics, prebiotics, and bioactive compounds 
and are actively promoted as functional foods for their nutritional 
and therapeutic values (11). In addition to increasing nutrient 
accessibility, fermentation can also reduce the presence of 
antinutrients such as phytic acid, trypsin inhibitors and tannins, 
enhancing the bioavailability of essential minerals such as iron, 
protein, and simple sugars (12). Phytic acids can reduce the 
bioavailability of minerals and significantly impact pregnant 
women, lactating mothers, and infants, especially when large 
amounts of cereal-based foods are consumed (11, 13).

David Barker’s assertion that “Much of human development is 
completed during the first 1,000 days after conception” laid the 
foundation for a significant shift in our understanding of early life 
influences on long-term health (14). This concept evolved into the 
more comprehensive Developmental Origins of Health and Disease 
(DOHaD) theory (15, 16). “The first 1,000 days” are considered to 
impact a child’s health and future disease risk. In recent years, there 
has been a growing focus among policymakers on the critical 
importance of early childhood development. Specifically, two key 
periods have garnered significant attention: the “first 1,000 days” and 
the “0–3 years” age range. These timeframes are increasingly 
recognized as crucial windows of opportunity for positively shaping a 
child’s future health outcomes. Maternal nutrition, dietary behavior’s, 
and environment also play a vital role in shaping the first 1,000 days 
of life, resulting in “nutritional programming” (17). While 
micronutrient, mineral, and probiotic supplementation have recently 
gained increased attention in maternal nutrition, there is immense 
potential in focusing on traditional nutrient-dense foods to meet these 
dietary needs during pregnancy without increasing economic and 
accessibility burdens on the families. The maternal microbiome plays 
a critical role in modulating the infant gut microbiome, immune 
system and its subsequent role in the gut-brain axis, and fermented 
foods inherently act as probiotics. Given the critical role of nutrition 
during pregnancy, the influence of the maternal microbiome on infant 
development, and the promising potential of fermented foods to 
improve health outcomes, this review aims to highlight the existing 
literature on the role of fermented foods in modulating gut 
microbiome, immune function, and brain health. Further, this review 
evaluates the existing evidence and addresses gaps in the gut-immune-
brain triad in mother and offspring with respect to maternal fermented 
foods intake. We also propose that the utilization of fermented foods 
during pregnancy may increase beneficial health outcomes in both 
mothers and infants, especially during the first 1,000 days of life.

2 Methodology

2.1 Objectives and review design

We evaluate the current knowledge of fermented food’s impact on 
maternal and infant health. We relate maternal fermented food intake 
with alteration in the mother’s and offspring’s gut microbiome and 
subsequent effects on the infant’s immune functions and brain health. 
For this review, we searched literature databases using the following 
terms: “fermented foods/gut microbiota,” “infant microbiome/
fermented foods,” “fermented foods/maternal outcomes,” “pregnancy 
complications/fermented foods,” “infant brain/fermented food,” 
“fermented foods/immune functions” in “humans,” “mice,” “porcine,” 
and “primate” in different combinations, focusing on studies published 
from the year 2000 until December 2024. This comprehensive 
literature search was conducted across multiple academic databases, 
including PubMed, Google Scholar, Web of Science, Scopus, 
Cochrane, and Science Direct. Both observational and experimental 
study designs were included in this review. Since the first 1,000 days 
are considered the “Golden Opportunity” (18, 19) to stimulate a child’s 
development and growth, we  limit our inclusions to infant health 
during the first 1,000 days (<3 years) alone. We also limit our literature 
search to whole fermented foods, not the individual components 
within fermented foods, such as metabolites or nutrients. Further, 
we discussed the existing knowledge gap on the role of fermented 
foods in maternal-child health. This review addresses the research 
question, “Can incorporating fermented foods in the maternal diet 
produce positive health outcomes in mothers and infants?.” With this 
review, our objective is not to narrate the existing literature in the 
adult population but to contribute to a better understanding of the 
areas within maternal fermented food intake and infant gut, immune 
and brain outcomes where there is a knowledge gap.

2.1.1 Inclusion criteria
Studies published in peer-reviewed journals, cohort studies in 

humans reporting consumption of traditional, homemade, or 
commercially available fermented foods during pregnancy using food-
frequency questionnaires including 24-h dietary recall and self-
reported formats; intervention studies in humans where pregnant 
women were fed specific fermented foods; clinical studies examining 
the effects of maternal fermented food consumption on offspring’s 
health; animal studies involving intervention with specific fermented 
foods during pregnancy, and studies exploring the outcomes based on 
the transition from normal diet to maternal fermented food diet.

2.1.2 Exclusion criteria
Studies focusing on fermented foods in addition with any 

probiotic, micronutrients or mineral supplementation, with exercise, 
and vaccine as these factors could confound the specific nutritional, 
immunological and microbial effects of fermented foods, influence 
biomarkers such as serum insulin affecting gestational diabetes 
independently of diet, or interfere with the immunomodulatory 
effects; intervention studies in humans on the effect of fermented 
foods without any direct relationship to pregnancy or maternal diet; 
animal studies examining fermented foods outside the context of 
maternal nutrition or offspring health; longitudinal studies focusing 
on maternal consumption of fermented foods and health outcomes in 
children extending beyond 3 years of the child’s age; review articles, 
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opinion pieces, or non-empirical publications; studies with significant 
methodological flaws or insufficient data reporting.

3 Role of fermented foods in 
ameliorating pregnancy-related 
complications

Nutritional inadequacy in the form of malnutrition can lead to 
pregnancy-related complications such as infertility, gestational 
diabetes, maternal hypertension, preterm birth, and asthma (20), so it 
is not surprising that most maternal-related deaths occur in regions 
and groups facing increased food insecurity (21, 22). With 
inconclusive and contradictory evidence from supplementation 
studies during pregnancy (23, 24), the ideal scenario would be  to 
strengthen nutritional intake through foods. Fermented foods, rich in 
bioavailable nutrients and probiotics, could offer a practical dietary 
strategy to address these deficiencies, especially in low-income and 
middle-income countries. Fermented foods such as miso soup, yogurt, 
cheese and fermented soybeans have been shown to reduce the risk of 
pre-term birth (25). In this regard, it is essential to explore the role of 
fermented foods in ameliorating pregnancy-related complications. 
Enterobacterial microbiota differences found between groups of 
pregnant women consuming fermented foods and control groups, 
respectively, were hypothesized to reduce pre-term birth cases, by 
reducing pro-inflammatory Enterobacteriaceae associated with 
infection or immune dysregulation (25). In another study, Mexican 
women who reported consuming yogurt during the last 3 months of 
pregnancy had a decreased risk for pre-term birth, suggesting that 
prenatal yogurt consumption may reduce the risk of pre-term birth 
among non-overweight pregnant women. The authors suggest this 
effect could be  due to probiotic strains in yogurt with anti-
inflammatory properties (26). However, this was a questionnaire-
based prospective study and entirely observational thus, observations 
should be interpreted cautiously.

Though the global prevalence of anxiety and depression during 
pregnancy varies between studies, especially across developing and 
developed countries (27), it is now widely accepted that maternal 
anxiety, stress and depression can have a lasting effect on both the 
mother and the baby (28). In addition, the impact of prenatal stress is 
further exacerbated by nutrient restriction (29). A high-quality 
maternal diet, as defined by the presence of fruits, vegetables, fishes 
and whole grains, has been shown to lower the risk for prenatal 
depressive symptoms as compared to the consumption of other food 
groups such as refined grains, fast foods, and energy drinks (30, 31). 
Only a few studies have explored the consumption of fermented foods 
in maternal depressive symptoms and stress. In a Japanese cohort, 
consumption of seaweed, yogurt, tofu, fermented soybeans and miso 
soup was found to be negatively associated with depression during 
pregnancy, which could mitigate the impact of maternal stress on the 
offspring (32). On the contrary, a Japanese cohort of around 9,030 
pregnant women showed no association between maternal fermented 
food diet and psychological distress (33). Also, the mechanisms 
behind these effects have not been identified.

Gestational diabetes (GDM) is another widely prevalent 
pregnancy complication. According to the Centers for Disease Control 
and Prevention (CDC), the percentage of mothers with gestational 
diabetes in the United States increased from 6% in 2016 to 8.3% in 

2021 (34). Recent clinical studies have shown substituting higher 
complex carbohydrates for simple carbohydrates can help control 
maternal glycemia and reduce postprandial glucose. In a randomized 
crossover study, two distinct diets, one rich in complex carbohydrates 
with less fat, and the other lower in carbohydrates with more fat were 
evaluated by continuous glucose monitoring (CGM) over 72 h in 16 
women with gestational diabetes mellitus (GDM). The results 
indicated that the diet higher in complex carbohydrates and lower in 
fat maintained blood glucose levels below established treatment goals 
while also reducing postprandial free fatty acid concentrations (35). 
Fermented foods derived from grains, legumes, or starchy vegetables 
can be sources of complex carbohydrates. Further, the ingestion of 
fermented foods, especially plant-based, can increase the digestibility 
of complex carbohydrates by degrading starch into more digestible 
oligosaccharides (36). For example, sourdough-leavened breads are 
more digestible than conventionally made breads due to the 
pre-breakdown of gluten by lactic acid bacteria (LAB) through 
proteolysis during fermentation (37). Among pregnant women, 
soy-bean oligosaccharides were found to alleviate insulin resistance 
among those with gestational diabetes (38), and several studies have 
suggested fermented food supplementation can reduce the risk of 
diabetes through antioxidant and anti-inflammatory properties (39). 
In a study involving 70 pregnant women of singleton pregnancy, 
subjects who consumed probiotic yogurt had higher levels of 
erythrocyte glutathione reductase (GR), an enzyme linked with 
insulin sensitivity, than those who consumed conventional yogurt 
(40). Another study reported that daily consumption of probiotic 
yogurt by pregnant women for 9 weeks stabilized serum insulin levels, 
suggesting potential prevention of pregnancy-induced insulin 
resistance (41). A study comparing patients with gestational diabetes 
mellitus and healthy pregnant women found that consumption of 
white wheat bread resulted in 45.5% higher insulin secretion and a 
9.6% increase in first-hour postprandial blood glucose levels compared 
to sourdough whole grain bread in both groups (42). Among women 
with gestational diabetes, probiotic yogurt containing the probiotic 
strains Lactobacillus acidophillus and Bifidobacterium animalis 
(formerly known as Bifidobacterium lactis), reduced the risk of 
gestational diabetes (41, 43–45).

Gestational hypertension is considered a risk factor for 
preeclampsia, preterm birth, and low birth weight. Dietary strategies, 
including consumption of fermented foods to prevent hypertension, 
have yielded positive results. Fermentation of milk by lactic acid 
bacteria can produce various bioactive peptides with hypotensive 
properties (46). These peptides maintain their activity throughout the 
digestive process and can be absorbed into different organs and tissues 
via the bloodstream. One group of these peptides is angiotensin-
converting enzyme inhibitory peptides (ACE-I), which has garnered 
significant interest for their potential use in managing hypertension. 
Both clinical and animal studies have demonstrated the blood 
pressure-lowering effects of certain fermented milk products 
containing these peptides (47). Among yeasts, two strains, namely 
Pichia kudriavzevii KL84A and Kluyveromyces marxianus KL26A 
from Kumis, a traditional fermented Colombian milk, showed the 
presence of these ACEI peptides (48). In one study, lactic acid bacteria 
with high ACEI activity, Lactiplantibacillus plantarum B (formerly 
known as Lactobacillus plantarum), Lactobacillus gasseri A, 
Lactiplantibacillus plantarum R5 (LPR5), and Lactiplantibacillus 
plantarum R7 (LPR7), showed antihypertensive effect in rat models 
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with pregnancy-induced hypertension (49). In general, though large 
cohort studies and countable intervention studies have found a link 
between maternal fermented foods consumption and reduced risk of 
pregnancy complications, more in-depth clinical studies with 
fermented foods intervention among pregnant women would inform 
preventive strategies for reducing pregnancy-related complications.

4 Can maternal consumption of 
fermented foods modulate the gut 
microbiome of mothers and offspring?

Human gut microbiota has gained much attention due to 
increasing evidence of compositional and structural changes of gut 
microbiota playing a vital role in various aspects of human health, 
including immune, metabolic, and neuro-behavioral traits (50). 
Multiple factors, such as environment, genetics, infection, and mode 
of delivery, can influence gut microbiome composition. However, diet 
is also one of the most important variables in modulating gut 
microbiota composition throughout life (51).

Fermented foods can modulate the gut microbiota across the 
human lifespan due to the microbial strains present in the fermented 
foods (Table 1). Published literature suggests that one of the reasons 
for the beneficial health effects of fermented foods could be attributed 
to the promotion of probiotic strains and reduction in “pathobionts”—
microorganisms that are non-pathogenic under ideal gut conditions 
but can turn pathogenic under adverse conditions (52). In a study, 
consumption of fermented milk (250 g/d) for 4 weeks improved 
irritable bowel syndrome status in women by increasing the short-
chain fatty acids (SCFA) production and decreasing the abundance of 
the pathobiont Bilophila wadsworthia (53). Animal studies have 
shown that consumption of fermented milk products, such as Kefir, 
increased the abundance of beneficial gut bacteria, such as 
Lactobacillus, Lactococcus, and Bifidobacterium (54, 55). Furthermore, 
kefir may help reduce intestinal permeability and improve tight 
junction function of the gut in adults and older populations (56). 
Similarly, a dose-dependent response of S. thermophilus and 
B. animalis abundances was observed with yogurt consumption in the 
older human population. It was observed that high yogurt 
consumption (more than 5 times/week) showed higher levels of 
Bifidobacterium animalis and Streptococcus thermophilus than low 
yogurt consumption (1–5 times/week) (57). Similarly, the abundance 
of Bacteroides, Dorea, Prevotella, and Faecalibacterium prausnitzii was 
higher in the fecal samples from healthy adults consuming grain and 
vegetable-based fermented food compared to the non-consuming 
group (58). Among these microbes, Bacteroides, Dorea and 
Faecalibacterium are known to have positive health effects such as 
immune modulation, short-chain fatty acids production, better 
response to immunotherapy, and improved glucose homeostasis (59–
62). In a cohort of Korean women, the abundance of 34 microbial 
species in the gut significantly differed between groups with low (15 g/
day) and high (150 g/day) Kimchi consumption. The abundance of 
beneficial bacteria, such as L. acidophilus, Levilactobacillus brevis 
(formerly known as Lactobacillus brevis), Bifidobacterium breve, 
Lactobacillus amylolyticus, Companilactobacillus mindensis (formerly 
known as Lactobacillus mindensis), Limosilactobacillus reuteri 
(formerly known as Lactobacillus reuteri), and L. mesenteroides was 
significantly higher in the high Kimchi group (63).

Though, as outlined above, it is known that grain and vegetable 
fermented foods can modulate gut microbiome across age groups, 
very few studies have reported on alterations of gut microbial 
composition during pregnancy and infancy. One study reported an 
increase in the fecal levels of the beneficial microbe Bifidobacterium 
and a decrease in pathogenic Enterobacteriaceae in infants born to 
mothers who consumed 250 g of yogurt (6 days/week) during 
pregnancy (between 12 and 24 weeks of gestation), and up to 1 
month postpartum (64). Similarly, a study conducted in Wistar rats 
showed a higher abundance of Bacteroides in the offspring’s (21 days 
old) gut, following maternal Kefir supplementation (65). The effects 
of fermented mulberry (FM) supplementation in pigs revealed 
microbial shifts in both sows and their offspring (66). FM-fed sows 
exhibited an increased relative abundance of Bacteroides compared 
to the control group, while piglets (offspring) from FM-supplemented 
sows demonstrated a higher relative abundance of Firmicutes than 
piglets from the control group, suggesting that maternal dietary 
intervention with fermented food can influence the gut microbiome 
composition, not only in the mothers themselves but also in their 
progeny (66). This finding was supported by another study carried 
out in mice where supplementation with milk fermented with 
Lacticaseibacillus casei DN-114001 (formerly known as Lactobacillus 
casei) showed higher levels of Bifidobacteria in the intestine of 
mothers during the suckling period and in the newborns after 
weaning, suggesting a potential transgenerational modulation of the 
gut microbiota due to fermented food (67). Figure 1 summarizes the 
role of fermented foods in modulating gut microbiome and 
ameliorating pregnancy related complications.

5 Do fermented foods play a role in 
modulating maternal and infant 
immune systems?

The perinatal nutrition status of both mothers and offspring 
impacts the immunological response and functional maturation of 
the immune system, and proper dietary patterns and interventions 
benefit both maternal and offspring’s immune homeostasis. Studies 
on fermented foods and their effect on modulating the maternal and 
infant immune system are limited but encouraging. In an intervention 
study, consuming fermented milk with L. casei as a starter culture 
during the post-partum period decreased milk TNF-α levels and 
reduced the frequency of gastrointestinal symptoms in infants at 
2–6 months of age (68). Similarly, in a porcine model, the sows’ 
consumption of a fermented diet ameliorated the offspring’s colonic 
inflammation (69). In a study conducted in mice, maternal yogurt 
intake significantly increased offspring Innate lymphoid Cells 3 
(ILC3). It was found that yogurt-derived indole compounds can 
activate the aryl hydrocarbon receptor (AhR) signaling pathways, 
promote ILC’s differentiation and proliferation which in turn 
produces cytokines essential for gut barrier function and protection 
against infection (70). These findings suggest maternal consumption 
of fermented foods could benefit offspring’s intestinal immune 
function. In another preclinical study, when pregnant Swiss albino 
mice were fed fermented milk containing Lacticaseibacillus 
rhamnosus 5,897 (formerly known as Lactobacillus rhamnosus), 
serum IgG, which neutralizes pathogens and provides passive 
immunity against infections during early years was significantly 
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TABLE 1 Commonly consumed fermented foods, their origin and microbial strains present in ethnic foods.

Fermented food Microbiome present Region of origin References

Budu (anchovy sauce) Micrococcus luteus, L. delbrueckii, Pediococcus pentosaceus, P. acidilactic and 

Staphylococcus arlettae

Malaysia (98)

Cultured buttermilk Lactococcus, Lactobacillus, Streptococcus, and Leuconostocs India (99)

Greek Yogurt L. delbrueckii subsp. bulgaricus and S. thermophilus Middle East (100)

Jiang Gua (pickled 

cucumbers in soy sauce)

Lactobacillus paraplantarum, L. pentosus, L. plantarum, Leuconostoc mesenteroides, 

Leuconostoc lactis, L. lactis subsp. lactis, Weissella hellenica and W. cibaria

Taiwan (101)

Kimchi (fermented 

vegetables)

Lactobacillus acidophilus, Leuconostoc mesenteroides, L. plantarum and L. sakei Korea (102)

Kefir Lactobacillus kefiranofaciens subsp. Kefirgranum, Streptococcus thermophilus, L. 

delbrueckii subsp. bulgaricus, L. kefiranofaciens subsp. kefiranofaciens, L. helveticus, L. 

acidophilus; Lactococcus lactis subsp. lactis, and L. lactis subsp. cremoris

North Caucasus (103)

Sauerkraut (fermented 

cabbage)

Lactobacillus plantarum, Leuconostoc. mesenteroides subsp. Mesenteroides, L. brevis China (104)

Suan Tsai (Chinese 

sauerkraut)

Tetragenococcus halophilus and Pediococcus pentosaceus Taiwan (105)

Sian Sianzih (fermented 

clams)

Lactococcus lactis, Lactobacillus sakei, and Weissella Hellenica Taiwan (106)

Tempeh (fermented 

soybeans)

Rhizopus oligosporus, Lacticaseibacillus casei (formerly known as Lactobacillus casei) and 

Streptoccocs fuecium

Indonesia (107)

Miso and Koji (fermented 

rice and soybeans)

Aspergillus oryzae, Tetragenococcus halophilus, Zygosaccharomyces rouxii, Bacteroides 

dorei, L. delbruekii, L. pentosus, Candida prapsilosis and Staphylococcus succinus

Japan (108)

Sourdough L. plantarum, L. fermentum, L. paralimentarius, and Lactococcus lactis Egypt (109)

Natto (fermented 

soybeans)

Bacillus subtilis var. natto (110)

Gochujang (fermented red 

chili)

Bacillus velezensis, Zygosaccharomyces rouxii, Candida lactis, Z. rouxii and Z. bailii Korea (111)

Meju (fermented 

soybeans)

Bacillus sonorensis, Enterococcus darans, and E. darans Korea (112)

Cheese Bifidobacterium infantis, B. longum, B. animalis ssp. lactis, B. bifidum, Lactobacillus 

acidophilus, L. paracasei, L. plantarum, L. casei, L. rhamnosus, Lactobacillus gasseri

Inconclusive evidence on 

origin

(113)

Idli (rice cake) Streptococcus faecalis, Leuconostoc mesenteroides, Lactobacillus coryneformis, L. 

fermentum, L. lactis, L. delbrueckii, and Pediococcus cerevisi

India (114)

Koozh (millet porridge) Weisella paramesenteroides and L. fermentum India (115)

Fermented rice Lactobacillus helveticus, L. delbrueckii ssp. Delbrueckii, L. pentosus and L. curvatus ssp. 

curvatus,

Asia (116)

Kombucha (fermented 

black tea)

Komagataeibacter kombuchae, Gluconacetobacter sacchari, Acetobacter liquefaciens, Z. 

lentus and Z. bisporus

China (117)

Airag (fermented horse 

milk)

L. helveticus, L. kefiranofaciens, Bifidobacterium mongoliense, Kluyveromyces marxianus Mongolia (118)

Yan Jiang (fermented 

ginger)

Weissella cibaria, L. mesenteroides, Lactobacillus plantarum, L. sakei, Leuconostoc citreum, 

Leuconostoc garvieae, Pediococcus stilesii, Enterococcus sulfureus and Lactococcus lactis 

subsp. lactis

Taiwan (119)

Meekiri (fermented buffalo 

milk)

Limosilactobacillus fermentum, L. curvatus, L. acidophilus, Lactobacillus planatarum, L. 

helviticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus and L. casei subsp. 

casei, S. thermophiles and S, lactis, Micrococcus spp., Saccharomyces cerevisiae and 

Bacillus spp.

Sri Lanka (120)

Poko (rice) Candida versatilis, S. cerevisiae, Pediococcus spp., Lactobacillus spp., and Rhizopus spp. Nepal (121)

(Continued)
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FIGURE 1

Role of fermented foods in ameliorating pregnancy-related complications. Red color text indicates reduction and blue color text indicates 
improvement or amelioration due to maternal consumption of fermented foods.

TABLE 1 (Continued)

Fermented food Microbiome present Region of origin References

Kinema (fermented 

soybeans)

Bacillus subtilis, B. licheniformis, B. thermoamylovorans, B. sonorensis, B. cereus, 

Ignatzschineria larvae, Brevibacillus borstelensis, Corynebacterium casei, Proteus vulgaris, 

Thermoactinomyces vulgaris, L. fermentum and Ignatzschineria indica, Wallemia 

canadensis, Rhizopus arrhizus Penicillium spp., Mucor circinelloides, Aspergillus 

penicillioides, A. spp., Exobasidium spp., Arthrocladium spp., and Mortierella spp.

Nepal (122)

Cheonggukjang (fermented 

soybeans)

B. subtilis, B. licheniformis and B. amyloliquefaciens Korea (123)

Oshikundu (fermented 

millet)

L. delbrueckii ssp. delbrueckii, L. curvatus ssp. Curvatus, L. plantarum, L. pentosus, L. 

fermentum, L. lactis ssp. lactis

Namibia (124)

Cauim (fermented cassava) Corynebacterium. vitarumen, C. amylocolatum, C. xerosis, Paenibacillus macerans. Bacillus 

cereus, B. circulans B. licheniformis, B. pumilus, and Lactobacillus pentosus, and L. plantarum

Brazil (125)
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elevated in offsprings during the suckling and post-weaning periods 
(71). Similarly, maternal supplementation of fermented milk with 
L. casei DN-114001 as starter culture, showed significant 
downregulation in immune cell markers related to macrophages and 
dendric cells in offsprings, suggesting passive immunity provided by 
the mother (67). Interestingly, dietary restriction of fermented foods 
has shown negative effects on the innate immune response, which 
was reversed partially by the consumption of yogurt (72). These 
reports suggest the potential of maternal fermented food 
consumption to modulate offspring’s innate and adaptive 
immune response.

The global prevalence of allergic diseases in newborns is on the 
rise, often linked to early-life immune system development (73). 
Several human and preclinical studies emphasize the importance of 
gut microbiome during the first 1,000 days of life, both maternal 
and infant, in shaping immune development in childhood (74). To 
exemplify, maternal microbiome influences offspring’s immune 
tolerance, reducing allergic disease and asthma risks at birth (75). 
Food Protein-Induced Allergic Proctocolitis (FPIAP) has been 
associated with lower consumption of fermented foods, such as 
yogurt, cheese, and tarhana, during pregnancy, highlighting the 
potential protective role of these foods (76). In a case–control study 
conducted in Turkey, it was observed that mothers of healthy 
children had a significantly higher frequency of daily yogurt 
consumption during pregnancy compared to mothers of children 
diagnosed with atopic dermatitis between the ages of 2 and 
24 months (77). Similarly, a large cohort study from Norway 
reported an association between the reduction in the risk of atopic 
eczema in infants at 6 months of age with the maternal consumption 
of probiotic milk and yogurt during pregnancy, although no clear 
dose–response relationship was identified (78). Also, in a study 
conducted in China, both the frequency and quantity of maternal 
yogurt intake were associated with a dose-dependent reduction in 
the risk of eczema in infants aged 3 to 6 months. This study reported 
nearly a 50% decrease in the risk of eczema in infants whose 
mothers consume yogurt more than three times per week and more 
than 50 g per day (79). The underlying mechanism is that probiotics 
promote microbial stimulation, modulating the immune system 
that supports a balance between T helper 1 (Th1) and Th2 cells, 
which reduces Th2 cytokines, IgE concentrations, and increases 
C-reactive protein and IgA levels to prevent inflammation and 
allergy-related processes (80). Additionally, the anti-inflammatory 
properties of yogurt, through metabolites like SCFAs produced by 
intestinal microbiota, further contribute to its protective effect 
against allergies (81). Though observational, these studies hint at 
the importance of the maternal intake of fermented foods in 
preventing allergy outcomes in infants. Figure 2 summarizes the 
role of fermented foods in modulating the immune system during 
pregnancy and infancy.

6 Can fermented foods positively 
impact maternal and infant brain 
health?

Fermented foods are also psychobiotics due to their impact on 
brain outcomes (82, 83). The External Fermentation Hypothesis 
proposed by Bryant, Hansen and Hecht suggested that external 

fermentation practices could be the reason for the reduction of the 
human colon and expansion of brain volume due to decreased 
energy expenditure and increased accessibility of nutrients to the 
brain (84). Studies have suggested that fermented food can impact 
brain health throughout life, including early life brain 
development. Gut microbiota communicates with the central 
nervous system through three pathways, collectively comprising 
the “gut-brain axis” (85). In the first pathway, metabolites cross the 
blood–brain barrier and directly influence the central nervous 
system. In the second, they follow the same path but act by 
modulating the brain-resident immune cells. The third pathway is 
through the release of hormones from enteroendocrine cells 
(EECs) such as I cells, K cells and N cells during their interaction 
with microbes (86). During the early stages after birth, human 
milk feeding emerges as the most prominent and effective 
nutritional approach to support optimal brain development in 
infants and hence factors that determine the human milk 
composition play vital role (18). It is imperative to suggest that the 
gut microbiome modulating effect of fermented foods and its 
cascade effect on human milk components and infant gut 
microbiota assembly may be a precursor for early brain health in 
infants. Though this hypothesis sounds reasonable, most of the 
studies concerning the benefits of fermented foods on brain health 
were observed in adults and aging rodent models of neurological 
diseases, not in models of pregnancy.

Studies in adults and the aging population have shown that 
fermented foods can promote cognition, memory, learning, 
neurotransmitter production and overall brain health (87). In a 
randomized control trial, healthy women aged between 18 and 
55 years were given fermented milk products in combination with 
four probiotics: B. animalis, S. thermophiles, L. bulgaricus and 
L. lactis daily for 4 weeks. In this study, the midbrain regions of 
women (that control emotion) were impacted, including reduced 
reactivity during emotional attention tasks (88). In clinical studies, 
consumption of L. helveticus fermented milk was reported to 
improve sleep efficiency, reduce wake episodes, and improve 
cognitive performance during cognitive fatigue tests in elderly 
subjects (89, 90). Similarly, fermented food also improved attention 
and memory in middle-aged Japanese subjects, potentially via a 
peptide, lactononadecapeptide (91). Other varieties of fermented 
foods, such as seaweed, yogurt, tofu, fermented soybeans and miso 
soup, were also found to be negatively associated with depression 
during pregnancy, which could mitigate the impact of maternal 
stress on the offspring (32).

Though limited, published literature has suggested the 
beneficial effect of maternal intake of fermented foods on 
offspring neurodevelopment (92, 93). For example, in a Japanese 
cohort, maternal consumption of fermented soybeans and miso 
soup from the beginning of pregnancy to the third trimester had 
a lower risk of fine motor development delay and communication 
skills delay in the 1-year-old offspring (93). In the same study, 
yogurt consumption by the mothers was associated with reduced 
personal and social skills delay in the offspring (93). In another 
Japanese study, consuming cheese during pregnancy was linked to 
a lower risk of developmental delays in children (92). Consuming 
miso soup during the second and third trimester of pregnancy was 
shown to reduce the risk of lower sleep hours in 1-year-old infants 
(94). A study on mother–child pairs indicated consuming 
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fermented foods like cheese during pregnancy could reduce the 
risk of sleep deprivation in infants at 3 years of age (95). In a 
prenatal valproic acid-induced autism spectrum disorder mouse 
model, supplementation with Lactiplantibacillus plantarum 
fermented milk ameliorated some autism-like symptoms 
(improved locomotor behavior, sociability, anxiety) in male mice 
but not in female mice (96). Figure  3 summarizes the role of 
fermented foods in maternal and infant brain health. However, 
mechanistic studies on how maternal consumption of fermented 
foods program fetal brain and impact offspring’s brain 
development and cognitive measures are lacking. Similarly, studies 
on maternal and offspring consumption of fermented food during 
the postnatal period and the resulting behavioral and brain 
outcomes are limited. In summary, these reports underscore the 
benefits of fermented foods in alleviating brain-related disorders 
in adults and the aging population, but it is unknown whether 
fermented foods would have similar effects in pregnancy and these 

effects would be transgenerational. Exploring this would require 
placental and transgenerational animal models, especially to 
understand the role of maternal fermented food intake on the first 
1,000 days on infant’s brain health and outcomes. Table  2 
summarizes studies on consumption of fermented foods and the 
health outcomes during pregnancy and postnatal period.

7 Concluding remarks and future 
directions

The contemporary global health paradigm emphasizes a 
holistic approach to child development, shifting from mere 
survival to overall well-being, which is heavily influenced by 
maternal nutrition. The functional components of fermented 
foods, especially microbiome, can alter gut microbiota 
composition during pregnancy and in infants, thereby modulating 

FIGURE 2

Role of fermented foods in modulating the immune system during pregnancy. Red color text indicates reduction and blue color text indicates 
improvement or amelioration due to maternal consumption of fermented foods.
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their immune system and aiding brain outcomes. However, it is 
also important to note that though short-term dietary intervention 
can alter microbiota composition, changes are transient and do 
not last longer than a few days (97). This warrants an important 

question, “Which period during pregnancy should supplementation 
of fermented foods begin to optimize positive health outcomes?” 
Since most of the reported studies on the impact of fermented 
food are short-term, more long-term and longitudinal studies are 

FIGURE 3

Role of fermented foods in aiding mother’s and infant’s brain health. Red color text indicates reduction and blue color text indicates improvement or 
amelioration due to maternal consumption of fermented foods.
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TABLE 2 The role of fermented foods during pregnancy and infant’s first 1,000 days in relation to modulating gut microbiome, immune function and 
brain health.

Study details Fermented food 
consumed

Study outcome and proposed 
mechanism

References

In humans

Prospective cohort study conducted among pregnant 

women at risk for pre-term birth (n = 77,667)

Miso, natto, yogurt, 

fermented soybeans

Reduced risk of preterm birth due to lower composition of 

Enterobacteria associated with inflammation and immune 

dysregulation

(25)

Prospective cohort study conducted among pregnant 

women during mid-pregnancy (n = 965)

Yogurt Reduced risk of preterm delivery due to plausible anti-

inflammatory properties of probiotics

(26)

Cohort study among pregnant women between 5th and 

39th week during pregnancy (n = 1,745)

Seaweed, yogurt, tofu, 

fermented soybeans and 

miso soup

Lowered depressive symptoms during pregnancy due to 

effects of soy isoflavones

(32)

Prospective cohort study conducted among women 

who gave birth (n = 9,030)

Miso, Natto, Yogurt, 

Fermented soybeans, 

Pickled vegetables

No strong association was observed between consumption 

of fermented foods and prevalence of psychological distress 

during pregnancy

(33)

Randomized controlled clinical trial (RCT) conducted 

among women during their third trimester (n = 70)

Yogurt Prevention of pregnancy induced insulin resistance by 

stabilization of serum insulin levels

(41)

Observational case–control study among pregnant 

women (n = 123)

Yogurt Reduced risk of gestational diabetes (GDM) via lowered 

blood glucose

(43)

Randomized crossover clinical trial among women with 

GDM (n = 62)

Whole grain sourdough 

bread

Lower postprandial blood glucose level with consumption 

of sourdough bread useful for dietary management of GDM

(42)

Randomized controlled clinical trial (RCT) among 

pregnant women (n = 84)

Yogurt containing L. 

acidophillus and B. lactis

Significant reduction in fasting plasma glucose levels (44)

Prospective cohort study conducted among pregnant 

women (n = 56)

Yogurt Higher relative abundance of fecal Bifidobacterium and a 

decrease in Enterobacteriaceae in infants; lowered blood 

glucose and HbA1c post-supplementation

(64)

Randomized, double-blind, placebo-controlled trial 

conducted among lactating mothers and their infants 

(n = 142)

Fermented milk Increased CD4+ T-cell counts at week 6 in the treatment 

group compared to placebo; higher IL-10 production at 

weeks 3 and 6 in the treatment group; reduced TNF-α levels 

at week 6; higher sIgA concentrations in breast milk

(68)

Retrospective case-control study among infants aged 

0–12 months and their mothers (n = 207)

Yogurt, cheese and 

tarhana

Lower consumption of yogurt, cheese, and tarhana were 

associated with increased FPIAP risk

(76)

Prospective cohort study in pregnant women and their 

infants aged 2 months to 2 years (n = 84)

Yogurt, cheese, kefir and 

pickles (olive)

Frequent consumption (≥3 times/week) of yogurt was 

associated with lower atopic dermatitis risk

(77)

Prospective cohort study conducted among mother and 

children aged till 36 months (n = 40,614)

Probiotic milk Frequent maternal consumption reduced the risk for atopic 

dermatitis among infants

(78)

Prospective cohort study conducted among mothers 

and infants aged 6 months (n = 2,114)

Yogurt Higher maternal yogurt consumption during pregnancy 

was associated with a reduced risk of infantile eczema 

(dose-dependent) through SCFA or anti-inflammatory 

properties of probiotics

(79)

Prospective cohort study conducted among pregnant 

women (n = 103,060)

Miso, Natto, Yogurt, 

Cheese

Cheese intake during pregnancy reduced developmental 

delay risk in offspring; miso and yogurt aided 

communication skills.

(93)

Prospective cohort study among mother–child pairs 

(n = 73,228)

Miso, Natto, Yogurt, 

Cheese

Cheese had the strongest protective effect against risk of 

developmental delay

(92)

Prospective cohort study among mother–child pairs 

(n = 72,626)

Miso, Natto, Yogurt, 

Cheese

Maternal miso consumption during pregnancy was 

independently linked to longer infant sleep duration at 

1 year

(94)

Prospective cohort study among mother–child pairs 

(n = 68,255)

Miso, Yogurt, Cheese Miso consumption during pregnancy was linked to longer 

child sleep duration at 3 years

(95)

(Continued)
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needed to determine how long fermented food dietary 
intervention is required to alter the long-lasting microbial 
composition. Studies should also account for other potential 
confounding variables that may impact both microbiome 
composition and pregnancy outcomes. Our review highlights the 
benefits of maternal fermented foods intake on the offspring’s 
microbiota, immune system, and brain health. However, studies 
on fetal health, another critical period of development, are lacking 
which limits knowledge of causality. The review also highlights 
key pregnancy-related complications and the possible benefits of 
maternal consumption of fermented foods. However, the 
mechanistic pathways through which these effects are exerted 
need to be further examined, particularly considering risk factors 
like maternal age and pre-existing medical conditions. Further, 
the transgenerational effects of maternal intake of fermented 
foods on offspring remain largely unexplored. While 
methodological challenges in human cohort studies pose 
significant complexities, using animal models could bridge this 
knowledge gap. Finally, it should also be noted that considering 
the safety, demographic differences, cultural differences, dietary 
patterns and food systems, cost-effectiveness and broader 
economic feasibility of such interventions, we must be mindful of 
the “one size fits all” approach of touting fermented foods as a 
unique and gold standard intervention without having clear 
scientific consensus.
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TABLE 2 (Continued)

Study details Fermented food 
consumed

Study outcome and proposed 
mechanism

References

In experimental animals

Experimental animal trial in pregnant hypertensive rats 

(n = 16)

Buffalo yogurt Mitigation of pregnancy-induced hypertension via ACE 

Inhibitory Peptides

(49)

Experimental animal trial in lactating Wistar rat dams 

(n = 24)

Kefir Pups from kefir-fed dams exhibited a higher abundance of 

Lactobacillus and Bifidobacterium via vertical transmission 

from breast milk

(65)

Experimental animal study conducted in BALB/c mice 

(n = 60)

Fermented milk Higher lactobacilli count in the intestines of pups whose 

mothers received fermented milk compared to controls; 

increase in lactobacilli population in intestine post-weaning

(67)

Experimental animal study conducted in pigs (n = 20) 

and C57BL/6 mice (n = 24)

Fermented corn & 

soybean

Reduced inflammatory response due to correlation with 

showed higher SCFA levels in colon

(69)

Experimental animal study conducted in germ-free 

C57BL/6 mice (n = 12)

Yogurt Potential infection reduction through higher ILC3 

populations in offspring intestines

(70)

Experimental animal study in Swiss albino mice 

(n = 12)

Fermented milk Higher splenic IL-10 and IFN-γ; higher CD4 + T cells and 

CD19 + B cells post-weaning; elevated serum IgG in the 

treatment group

(71)

Experimental animal trial in offspring mice (n = 48) 

with induced autism

L. plantarum fermented 

milk

Improvement in autistic-like behaviors via the gut-

microbiota-brain axis and SFCA production

(96)
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