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In the post-COVID-19 era, depression incidence has risen sharply, and a
healthy diet is confirmed to lower this risk. However, two critical gaps
remain: it is unclear whether nutrients alleviate depressive symptoms by
improving the gut microbiota, and existing evidence has notable limitations.
This study aimed to address these by exploring how deficiencies in key
nutrients (protein, lipids, sugars, vitamins, and minerals) affect gut microbiota
diversity—potentially a driver of early depression—and systematically evaluating
clinical/basic research on nutrients’ role in gut microbiota-mediated depression
intervention. Results showed nutrients enhance gut microbiota abundance and
diversity, regulate the gut-brain axis to boost short-chain fatty acid (SCFA)
and neurotransmitter synthesis, and reduce inflammation, thereby alleviating
depression. Thus, a healthy anti-inflammatory diet (rich in vegetables, fruits,
fish) may lower depressive symptom risk. Three key research gaps were
identified: 1. Mechanistic evidence relies heavily on animal studies (e.g., mouse
neurotransmitter experiments) with insufficient large-scale human randomized
controlled trials (RCTs) to confirm causality; 2. Conflicting findings exist [e.g.,
alpha-linolenic acid (ALA) has no antidepressant effect in some human cohorts];
3. The dose-response relationship (e.g., fiber needed to elevate SCFAs to
antidepressant levels) is unquantified. Future studies should quantify dietary
patterns and target gut microbiota metabolism to advance early depression
prevention and deepen understanding of diet-microbiota-depression links.
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Highlights

« This paper systematically reviews the relationship between nutrition, microbiota,
and depression.

o This paper proposes that microbial composition can be modulated by dietary
nutrients and improve depression-like symptoms.

o The review used the gut microbiota to establish links between dietary factors and
mental disorders.

o From the perspective of nutrition, this paper provides the basis for diet prevention
and early intervention of depression.
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GRAPHICAL ABSTRACT
This figure elucidates the intricate relationship between diet, gut microbiota,
including plant- and animal-based proteins, fats, and diverse mineral
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elements, influence depressive mood primarily through post-ingestive
regulation of gut microbiota. This occurs via three key mechanisms: modulation of short-chain fatty acid (SCFA) production, inflammation, and
neurotransmitter levels. The illustration underscores the complex physiological interplay between diet, gut microbiota, and mood, offering novel
insights into the underlying mechanisms of depression. These findings suggest that dietary modification and manipulation of gut microbiota may
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and depressed mood. It demonstrates that various dietary nutrients,
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1 Introduction

At present, depression has become a major mental illness
worldwide (1), especially since the COVID-19 pandemic, when the
incidence of depression has accelerated by 25% globally (2, 3). This
review focuses on “major depressive disorder (MDD)”—the most
common subtype characterized by persistent low mood, loss of
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interest, and impairment in social/occupational function—rather
than bipolar depression or situational depression, as MDD has the
strongest evidence linking to dietary and gut microbiota changes
(1, 4). According to the Global Burden of Disease Study 2023
[consistent with (2) but more precise], MDD affects approximately
280 million people globally, accounting for 3.6% of the total
population; in low- and middle-income countries, the 12-month
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prevalence of MDD reaches 5.9% (range: 3.8%—10.4%) (5), and
post-COVID-19, the incidence in adolescents and young adults
(18-25 years) increased by 40% compared with pre-pandemic levels
(2). However, existing medical methods (e.g., antidepressants)
have a response rate of only 50% in MDD patients (6), and
early clinical symptoms of depression (e.g., anhedonia, sleep
disturbance) are often ignored, further worsening health outcomes.
However, existing medical methods cannot be used to diagnose
and prevent depression early, and early clinical symptoms of
depression affect the health and function of the human body.
Therefore, new approaches are needed for early intervention
and prevention of depression. Recent studies have shown that
nutritional deficiencies are closely related to mental health (7-
9), and adhering to healthy dietary patterns (e.g., Mediterranean
diet) can reduce depression risk—yet these patterns exert effects
primarily through their core nutrients (e.g., omega-3 from fish,
fiber from vegetables) (10). We focus on nutrient deficiency
rather than “diet as a whole” for three reasons: 1. functional
specificity: diet is a complex mixture of components, while
nutrients (e.g., protein, vitamin D) are the functional units that
directly interact with gut microbiota and regulate physiological
processes linked to depression (e.g., neurotransmitter synthesis,
inflammation) (11, 12); 2. causal relevance: nutrient deficiency (e.g.,
tryptophan shortage) is a modifiable risk factor for early depression,
whereas “unhealthy diet” is a broad concept that includes non-
nutritional factors (e.g., food processing) (7, 9); 3. mechanistic
clarity: the link between nutrient deficiency, gut microbiota
dysbiosis (e.g., reduced Bifidobacterium), and depressive symptoms
is more directly measurable (e.g., via SCFA levels, neurotransmitter
concentrations) than the vague association between “overall diet”
and mood (11, 13). However, owing to the complex relationship
between mood and eating habits, people choose some favorite
junk food when they are depressed, such as high-fat and high-
sugar food (french fries, soda, and fried food); while so-called
“comfort food” (e.g., hot pot) and stimulating food (e.g., spicy
snacks, processed meats)—the latter share similar high-fat/high-
salt traits to the aforementioned unhealthy foods; although these
foods can temporarily regulate mood, long-term consumption
affects health. Therefore, it is difficult to explain the mechanism
by which nutrition regulates mood. This complexity stems from
three key aspects: 1. bidirectional interaction between mood
and diet: depressive mood may reduce intake of nutrient-dense
foods (e.g., vegetables, fish) and increase craving for junk food,
forming a “malnutrition-depression” cycle that confounds causal
inference (14, 15); 2. interindividual variability: gut microbiota
composition (e.g., Bifidobacterium abundance) and nutrient
metabolism capacity (e.g., omega-3 conversion efficiency) differ
by age, ethnicity, and lifestyle, leading to heterogeneous responses
to nutritional intervention (16, 17); 3. multilevel mediation of
the gut-brain axis: Nutrients act on mood not directly, but via
gut microbiota-derived metabolites (e.g., SCFAs), neurotransmitter
synthesis (e.g., tryptophan— 5-HT), and immune inflammation
regulation—these cascading pathways are difficult to disentangle in
human studies (13, 18).

The gut-brain axis—a bidirectional communication network
involving the central nervous system (CNS), enteric nervous
system (ENS), and gut microbiota—provides a key framework for
understanding “nutrition-microbiota-depression” interactions (13,
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18). Specifically, the gut microbiota acts as a “metabolic bridge™:
it ferment dietary nutrients to produce bioactive metabolites (e.g.,
SCFAs, tryptophan derivatives), which signal to the brain via three
pathways: 1. circulation [e.g., SCFAs enter the bloodstream and
cross the blood-brain barrier (19)]; 2. vagus nerve [ENS sensory
neurons transmit microbiota-derived signals to the CNS (20)];
3. immune system [microbiota regulate systemic inflammation,
which affects brain function (21, 22)]. Disruption of this axis (e.g.,
gut dysbiosis reducing SCFA production) is closely associated with
MDD, as shown by reduced SCFA levels and altered microbiota
composition (e.g., decreased Bifidobacterium) in depressed patients
(23, 24). In addition, the gut is the core part of the body’s nutrient
absorption system, and the microbiota is also involved in the
metabolic process of nutrition (13). Interestingly, the microbiota
in the gut can also intervene in the development of depression
(25). The metabolites of the gut microbiota may affect the synthesis
of neurotransmitters through the tryptophan metabolism pathway
and interfere with the brain’s regulation of emotions (18). However,
there is currently a lack of research on the correlations among
depression, the gut microbiota and nutrition. Therefore, in this
study, we focused on the impact of nutrient deficiency (proteins,
lipids, sugars, vitamins and minerals) on the diversity of the gut
microbiota, which may be one of the conditions underlying the
early occurrence of depression (7-9, 11).

2 Methods

2.1 Literature search strategy

This review followed a systematic approach aligned with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (26).

e Search databases: a systematic search will be conducted
across four major databases: PubMed, Web of Science Core
Collection, Embase, and Cochrane Library. Additionally, the
China National Knowledge Infrastructure (CNKI) database
will be included to ensure comprehensive coverage of relevant
Chinese literature.

o Keywords and search terms: the search strategy will integrate
both subject headings and free-text terms. Core keywords

include “dietary fiber; “gut inflammation,” “depression,”

“short-chain fatty acids,

polyunsaturated fatty acids,” “vitamins, and “minerals.”

“gut microbiota,” “omega-3
Boolean operators (AND/OR) will be used to construct
comprehensive search expressions, such as “(dietary fiber
OR resistant starch) AND (gut inflammation OR intestinal
barrier) AND (depression OR mood disorder).”

e Time period: studies published between January 2013 and
December 2023 will be included to ensure the retrieval of the
most recent evidence within the past decade. Foundational
studies published prior to 2013, such as those focusing on
SCFAs and the brain-gut axis, will also be considered.

e Language restriction: only peer-reviewed full-text articles
written in either Chinese or English will be included.
Abstracts, conference proceedings, and non-peer-reviewed
materials will be excluded.
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2.2 Study selection criteria

e Inclusion criteria:

1. study types: randomized controlled trials (RCTs), cohort

studies, case-control studies, and animal experiments with
clearly defined model construction methods;

2. Outcome indicators: studies reporting any association

related to the pathway “nutrients [e.g., dietary fiber, omega-

3 polyunsaturated fatty acids (PUFAs)] —

inflammation —

intestinal
depression,” including but not limited
to intestinal inflammation markers [e.g., interleukin-6
(IL-6), (TNF-a)],
assessment scores [e.g., Beck Depression Inventory-II (BDI-
II), Patient Health Questionnaire-9 (PHQ-9)], and changes in

gut microbiota composition;

Tumor necrosis factor-o depression

3. Sample size: human studies must include at least 50
participants, while animal studies must have a minimum of
six animals per group.

e Exclusion criteria:

1. Review articles, meta-analyses, and commentaries;

2. Studies involving patients with severe organic
diseases (e.g., cancer, chronic kidney disease) to avoid
confounding effects of underlying conditions on inflammation
or depression outcomes;

3. Studies with incomplete data or those lacking
extractable key outcome measures.

3 Proteins, gut microbiota, and
depression

3.1 Association between protein intake and
depression

Adequate protein intake is essential for human growth,
development, and health maintenance (12), and it is also
associated with the prevalence of depression (27-30). However,
current research on the relationship between protein sources
and depression risk remains limited. Existing studies have
only confirmed two key findings: first, milk and plant-derived
proteins can reduce the incidence of depression (29); second,
red meat and processed meat may increase the incidence of
depression (30). The mood-beneficial effect of milk/dairy and
plant proteins stems from their “high biological value™ they
contain complete essential amino acids (e.g., tryptophan, tyrosine)
that are critical for neurotransmitter synthesis—tryptophan is
the precursor of 5-hydroxytryptamine (5-HT, a key mood-
regulating neurotransmitter), and tyrosine is the precursor of
dopamine (related to motivation and pleasure) (31). In contrast,
red meat/processed meat has lower tryptophan content and may
induce gut microbiota dysbiosis [e.g., elevated Bacteroides (23)],
which exacerbates inflammation and depressive symptoms (30). In
addition, the impact of individual differences in eating habits on
mood has rarely been studied. These research limitations further
complicate the effort to clarify the relationship between protein
intake and depression. Therefore, this section focuses on exploring
the beneficial effects of protein intake.
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It is necessary to emphasize the synergistic role of both
“quality” and “quantity” when examining protein’s regulation
of depression: 1. in terms of quality, the antidepressant effect
of high-biological-value proteins (containing complete essential
amino acids, such as dairy and fish proteins) is significantly
superior to that of low-biological-value proteins (such as single-
grain proteins). A cohort study of American adults (27) showed
that individuals who consumed high-biological-value proteins
(accounting for more than 50% of total protein intake) daily
had a 28% lower risk of depression (OR = 0.72, 95% CI: 0.58-
0.89), while low-biological-value proteins did not provide such
a protective effect. This is directly related to the higher content
of tryptophan and tyrosine in high-biological-value proteins,
which support neurotransmitter synthesis (31); 2. in terms of
quantity, there is a “threshold effect”: a study of Indian middle
school students (28) indicated that when daily protein intake
was >1.2 g/kg body weight, intestinal tryptophan supply was
stable, 5-HT (5-hydroxytryptamine) synthesis was sufficient, and
depression scores decreased significantly (mean difference =
—1.8 points, P < 0.01); intake below this threshold increased
the risk of depression, while excessive intake (>2.0 g/kg body
weight) did not further enhance the antidepressant effect. Instead,
the increased metabolic burden of protein led to a higher
abundance of intestinal Bacteroides (23), which may induce
microbiota dysbiosis. Additionally, tryptophan supplementation
(500 mg/day) can temporarily improve mood in patients with
mild depression (reducing BDI-II scores by 2.5 points), but high
doses (>1,000 mg/day) may induce serotonin syndrome due to
excessive activation of 5-HT (31); tyrosine supplementation (1,000
mg/day) is effective for depressed patients with fatigue symptoms
(increasing energy scores by 15%), which is related to tyrosine
acting as a dopamine precursor to improve motivation (32); in
contrast, glutamine supplementation (2,000 mg/day) showed no
antidepressant effect due to its low blood-brain barrier penetration
rate (<10%) (33). These results suggest that single amino acids
need to be applied precisely to specific depression subtypes (such as
fatigue-type or low-5-HT-type depression) rather than being used
as a broad-spectrum intervention.

3.2 Material basis for proteins influencing
depression: amino acids and
neurotransmitters

Proteins are macromolecules composed of one or more long
amino acid chains, and most neurotransmitters are amino acid
derivatives. This material connection provides a key biological basis
for proteins to influence depression:

e Tryptophan and tyrosine are precursor substances of
serotonin,
(34, 35);

e Glutamate is the precursor of gamma-aminobutyric acid

dopamine, and norepinephrine, respectively

(GABA), an inhibitory neurotransmitter (33).
In terms of food sources, tryptophan and tyrosine are widely

distributed in different types of foods:
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e Tryptophan is abundant in plant-based foods (e.g., legumes,
oats, nuts, and whole grains) (32, 36);

e Tyrosine is rich in animal-based foods (e.g., milk, cheese,
meat, eggs, chicken, and fish) (32, 36).

Based on the aforementioned material connections, studies
have found that reduced protein intake in elderly mice leads to
abnormal neurotransmitter levels and impairments in cognitive
and behavioral functions (37). This result further confirms the close
link between protein intake, neural function, and mood regulation.

3.3 Two mechanisms by which proteins
influence mood

(1) Tryptophan-serotonin pathway: regulating
neurotransmitter synthesis

Notably, tryptophan entry into the CNS is competitively
regulated by L-amino acid transporter 1 (LATI1), which is
shared with branched-chain amino acids (BCAAs, e.g., leucine,
isoleucine). When dietary BCAA intake is high, they occupy
LAT1, reducing tryptophan uptake by the brain and subsequently
decreasing 5-HT synthesis (31, 38). Additionally, tryptophan
hydroxylase exists in two isoforms: Tryptophan hydroxylase 1
(TPHI1; predominant in gut enterochromaffin cells) and tryptophan
hydroxylase 2 (TPH2; specific to CNS neurons). TPH2 activity
in the brain is the rate-limiting step for 5-HT synthesis, and its
expression is downregulated by chronic stress—an effect reversed
by adequate tryptophan intake (31, 39). Serotonin is a potential
biological marker for depression; a decrease in serotonin levels in
the body can induce anxiety and depressive symptoms (40-42).
Notably, 90% of the body’s serotonin is produced by intestinal
enterochromaffin cells (ECs) (39), but this intestinal serotonin
cannot cross the blood-brain barrier (BBB). The BBB expresses L-
amino acid transporter 1 (LAT1), which preferentially transports
branched-chain amino acids (BCAAs) over serotonin—preventing
intestinal serotonin from entering the CNS (31). Instead, CNS
serotonin is synthesized de novo from tryptophan that crosses
the BBB via LAT1 (when BCAA competition is low) (31, 39).
This indicates that protein intake can regulate the synthesis of
serotonin by controlling tryptophan supply, thereby participating
in the process of mood regulation.

(2) Gut
bidirectional regulation of depression-related substances

microbiota-mediated protein metabolism:

The gut is the core site for protein absorption and
transformation, and gut microbiota, as a key component of
nutrient absorption, participates in the absorption, metabolism,
and transformation of dietary proteins in the gastrointestinal
tract. It mediates the effects of proteins on depression through
two pathways:

e Regulating intestinal serotonin synthesis

ECs in the gut are major epithelial chemical sensors and can
produce more than 90% of the serotonin in the human body
(39). SCFAs exert their mood-regulating effects primarily through
activating G protein-coupled receptors (GPRs) and inhibiting
histone deacetylases (HDACs). G protein-coupled receptors 41
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(GPR41) and G protein-coupled receptors 43 (GPR43; expressed
on intestinal epithelial cells and immune cells) are activated by
acetic acid and propionic acid, triggering downstream signaling
that upregulates the expression of tight junction proteins [e.g.,
occludin, zonula occludens-1 (ZO-1)] to enhance intestinal barrier
integrity (43, 44). Butyric acid, in particular, acts as a potent
histone deacetylase (HDAC) inhibitor in colonocytes and CNS
neurons: it increases histone acetylation at the promoter of the
BDNF (brain-derived neurotrophic factor) gene, promoting BDNF
transcription—BDNF is critical for neuronal survival and synaptic
plasticity, and its downregulation is linked to depression (23, 43).

Notably, both these protein-fermenting microbiota and
their metabolites (e.g., SCFAs) are closely associated with the
development of depression (45, 46). For example, the abundance
of Bacteroides increases in the gut of depressed patients, while the
abundances of Bifidobacterium, Lactobacillus, and Ruminococcus
decrease (23). The association between these microorganisms and
depression is determined by their metabolic functions:

e Bacteroides (increased in depression): excessive Bacteroides

accelerates abnormal protein fermentation, producing
pro-inflammatory metabolites (e.g., indole, p-cresol) that
disrupt the intestinal barrier and increase LPS-induced
inflammation—this exacerbates depressive symptoms via the
gut-brain axis (23, 30);

e Bifidobacterium/Lactobacillus (decreased in depression): these
are core SCFA-producing bacteria (acetate/propionate) and
can upregulate intestinal serotonin synthesis (23, 43). Their
reduction leads to SCFA deficiency and impaired gut barrier,
weakening neuroprotective and anti-inflammatory effects (20,
23);

e Ruminococcus (decreased in depression): as a key butyrate-
producing bacterium, Ruminococcus supports hippocampal
BDNF expression via butyrate (43). Its deficiency reduces
butyrate levels, compromising neuroplasticity and mood

regulation (23).
e Fermenting proteins to produce SCFAs

After dietary protein intake, specific gut microbiota (e.g.,
Bifidobacterium, Lactobacillus, Bacteroides, Roseburia, Coprococcus,
and Ruminococcus) can ferment the protein to produce short-chain
fatty acids, mainly including acetic acid, propionic acid, and butyric
acid (43, 47).

Notably, both these protein-fermenting microbiota and
their metabolites (SCFAs) are closely associated with the
development of depression (45, 46). For example, the abundance
of Bacteroides increases in the gut of depressed patients, while the
abundances of Bifidobacterium, Lactobacillus, and Ruminococcus
decrease (23).

3.4 The association between proteins, gut
microbiota, and depression

In summary, there is a close association between

microbiota, and
through  the

protein  absorption,  gut depression,

which is  primarily achieved following

two mechanisms:

frontiersin.org


https://doi.org/10.3389/fnut.2025.1581848
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Qiao et al.

e Influencing the synthesis of neurotransmitters (e.g., serotonin)
via the tryptophan metabolism pathway;

e Metabolites (e.g., SCFAs) produced by gut microbiota during
protein metabolism and absorption participating in the
regulation of depression;

The functions of gut microbiota directly involved in the
development of depression (see Figure 1).

3.5 Association between protein intake and
depression, and research limitations

However, the current evidence has critical limitations that
require balanced interpretation, including conflicting findings,
overreliance on observational data, and unclear causality.

e First, animal studies predominate over human clinical
data: the mechanistic link between protein deficiency and
neurotransmitter abnormalities relies heavily on elderly
mouse experiments (37), but human depression involves
psychosocial factors (e.g., stress, social isolation) absent in
animal models, and mouse neurotransmitter systems (e.g., 5-
HT turnover rate) differ from humans, limiting translational
value (37).

e Second, observational studies have inherent methodological
flaws: the cited surveys (27, 28) are cross-sectional or
prospective observational designs, which cannot rule out
reverse causation (e.g., depressed patients may reduce dairy
intake due to appetite loss) or confounding factors [e.g., high
dairy consumers often have healthier lifestyles, such as regular
physical activity, not fully adjusted in (27, 28)].

e Finally, correlation does not equal causation: the original
analysis implies protein intake “reduces depression risk;” but
current data only confirm an association—no RCT has directly
validated that increasing protein intake alleviates depressive
symptoms in humans (27, 28).

4 Omega-3 polyunsaturated fatty
acids, the gut microbiota, and
depression

4.1 Classification and main sources of
dietary fats

Lipids are essential macronutrients, and their dietary sources
relevant to depression intervention primarily include:

e Plant-derived unsaturated fatty acids: soybeans, wheat germ,
and certain vegetable oils are sources of alpha-linolenic acid
[ALA, a precursor of omega-3 polyunsaturated fatty acids
(PUFAs)] (48-52);

e Animal-derived omega-3 PUFAs: deep-sea fish (e.g., salmon,
mackerel) are excellent sources of eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA)—the two most biologically
active omega-3 subtypes for mood regulation (5);
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e Auxiliary lipid sources: egg yolks and liver contain
phospholipids, which support omega-3 absorption and
transport (53).

4.2 The link between lipids, brain function,
and depression

e The importance of lipids in the brain

Lipids and their metabolic intermediates are core components
of brain structure and function, accounting for approximately
50% of the brain’s dry weight (54). The fatty acid composition
of the brain is unique, being rich in long-chain polyunsaturated
fatty acids (LC-PUFAs), especially arachidonic acid (AA), EPA,
and DHA (55). Dietary fatty acid intake can affect the fatty acid
composition of different brain regions, thereby influencing mood
and behavior (56-58).

e Direct association between omega-3 polyunsaturated fatty
acids and depression

Numerous studies have confirmed that omega-3 PUFA
deficiency (especially EPA and DHA) may induce depression
(59-61). Deficiency is typically defined as serum EPA + DHA
accounting for <3% of total fatty acids (TFA)—a threshold
validated in clinical studies linking low omega-3 status to higher
depressive symptom severity (62, 63). As a lipid component
abundant in the brain (64), Omega-3 polyunsaturated fatty acids
are closely related to depression intervention:

Clinical evidence: patients with depression have lower levels of
Omega-3 polyunsaturated fatty acids (62); a meta-analysis covering
26 studies showed that supplementation with EPA (>1,000 mg/day)
+ DHA (>200 mg/day) can improve depressive symptoms (65).
For food sources: consuming 100-150g of deep-sea fish (e.g.,
salmon, mackerel; containing ~2,000 mg EPA 4 500 mg DHA per
100 g) daily meets the mood-beneficial intake (5, 66).

e Functional differences among different Omega-3 components:

DHA: DHA’s high concentration in the frontal cortex is critical
for maintaining the structure and function of neuronal membranes
(e.g., lipid rafts) and neurotransmitter receptors (e.g., 5-HT2A).
A reduction in frontal cortex DHA (not complete absence)
impairs 5-HT signal transmission and neuroplasticity—key factors
contributing to depressive symptoms, though not the sole cause
of depression (67, 68). Supplementation with 200-500 mg/day
of DHA (as adjuvant therapy) can improve mild to moderate
depression (66);

EPA: Constitutes less than 1% of total fatty acids in the brain,
but when supplemented at 1,000-2,000 mg/day (combined with
200-500 mg/day DHA), it can inhibit the reduction of neurogenesis
and decrease the secretion of inflammatory factors (69) [these
cytokines can induce apoptosis and neuroinflammation, and are
positively correlated with depressive symptoms (70)];

ALA: as a precursor of Omega-3 fatty acids, it can be converted
into DHA and EPA [the human body cannot synthesize it on its
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FIGURE 1
Relationships among protein, the gut microbiota, and mood. Dietary protein (milk/plant-derived protein preferred) is fermented by gut microbiota
(e.g., Bifidobacterium, Lactobacillus) to produce short-chain fatty acids (SCFAs) and regulate tryptophan metabolism—tryptophan enters the brain to
synthesize 5-hydroxytryptamine (5-HT), while SCFAs enhance intestinal barrier function and promote brain-derived neurotrophic factor (BDNF)
expression via the gut-brain axis. In contrast, excessive red/processed meat increases Bacteroides, inducing inflammation and exacerbating
depression. Key bacterial groups and their functions are labeled to clarify the regulatory cascade.
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own and must obtain it through foods such as deep-sea fish (52)]. A
longitudinal study showed that increased ALA intake can alleviate
depressive symptoms (71), but its antidepressant effect remains
controversial (62).

Serum metabolic association: serum levels of EPA and DHA
are negatively correlated with moderate to severe depression
(63, 72), further confirming the importance of dietary Omega-
3 supplementation.

4.3 Potential mechanisms of omega-3
polyunsaturated fatty acids affecting
depression

(1) Regulating neurotransmitter transmission

e Neuron membrane fluidity: DHA, as a major component
of neuronal membrane phosphatidylcholine, modulates the
structure of lipid rafts—specialized membrane microdomains
that concentrate neurotransmitter receptors. Increased DHA
incorporation into lipid rafts enhances the surface expression
and dimerization of 5-HT2A receptors, improving their
affinity for 5-HT (73, 74). Additionally, Omega-3 fatty
acids inhibit phospholipase A2 (PLA2) activity, reducing
the release of arachidonic acid (AA) from membranes. This
limits the synthesis of pro-inflammatory prostaglandins [e.g.,
ProstaglandinE2 (PGE2)], which otherwise impair dopamine
and 5-HT reuptake transporters (DAT and SERT) (75, 76).

e Interaction with the serotonin (5-HT) system: increased
binding of DHA to cell membranes can enhance 5-HT
sensitivity; the binding of 5-HT to the 5HT2A receptor can
also mobilize the supply of DHA to neurons (73); the levels of
EPA and DHA can affect the content and function of 5-HT in
the brain (74, 77);

e Interaction with the dopamine system: both 5-HT and
dopamine metabolism are regulated by Omega-3 fatty acids
(78, 79);

e Core role: supplementation with Omega-3 fatty acids can
exert antidepressant effects by enhancing neurotransmitter
transmission (76).

(2) Modulating immune and inflammatory responses

Depression is often accompanied by an excessive inflammatory
response of the immune system, characterized by increased levels of
pro-inflammatory cytokines and linoleic acid metabolites (80-82).
EPA and DHA are natural anti-inflammatory substances (83), and
their anti-inflammatory mechanisms include:

e EPA and DHA compete with AA for cyclooxygenase (COX)
and lipoxygenase (LOX) enzymes, leading to the production
of specialized pro-resolving mediators (SPMs) such as
resolvin E1 (RvE1) and protectin D1 (PD1) instead of pro-
inflammatory leukotrienes (83, 84). RvEI activates the GPR32
receptor on microglia, inhibiting the NF-kB pathway—this
reduces the transcription of pro-inflammatory cytokines
[IL-18 (Interleukin - 1f), IL-6, TNF-a) and suppresses
neuroinflammation (85, 86). Moreover, EPA/DHA improve
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the Omega-6/Omega-3 ratio, and a lower ratio reduces the
activation of toll-like receptor 4 (TLR4) on immune cells,
further attenuating inflammatory signaling (86, 87).
e Reducing arachidonic acid metabolism and lowering
pro-inflammatory
leukotrienes) (84, 85);

e Improving the Omega-6/Omega-3 fatty acid ratio: a higher

products (prostaglandins,

ratio is associated with higher levels of pro-inflammatory
cytokines (86, 87).

Therefore, Omega-3 fatty acids may achieve antidepressant
effects primarily by regulating the functions of immune cells and
pro-inflammatory cells.

4.4 The mediating role of gut microbiota
between lipid metabolism and depression

The intestine is the main site of lipid metabolism. Gut
microbiota can affect mood indirectly by transforming and
synthesizing lipids, decomposing dietary lipids to produce
regulatory metabolites (88-90). The specific pathways are
as follows:

(1) Association between gut microbiota and lipid metabolites

Some gut microbiota (such as Bacteroides, Clostridium,
Lactobacillus,  Bifidobacterium, and Ruminococcaceae) are
associated with lipid metabolites in the blood (89, 91-94).
Depression can disrupt the structure of gut microbiota (45), and
microbial metabolites [triglycerides, low-density lipoproteins,
high-density lipoproteins, phosphatidylcholine, etc. (89, 91-94)]
can affect human lipid metabolism (94-96), thereby influencing
mood and cognitive function (97-99).

(2) How do lipids influence SCFAs production?

SCFAs (acetate, propionate, butyrate, etc.) are the end
products of dietary fiber fermentation by gut microbiota, mainly
synthesized by genera such as Akkermansia, Bifidobacterium, and
Faecalibacterium (100-102). Lipids (especially omega-3 PUFAs) do
not directly participate in carbohydrate fermentation but indirectly
promote SCFA production by:

e Enhancing the abundance of SCFA-producing bacteria (e.g.,
Akkermansia, Roseburia) (88, 103)—these bacteria rely on
omega-3 PUFAs to maintain cell membrane integrity and
metabolic activity;

e Improving gut barrier function (via omega-3-mediated tight
junction upregulation), reducing LPS-induced damage to
SCFA-producing bacteria (44, 90);

e Modulating gut pH (via omega-3 metabolites), creating a
favorable environment for fiber-fermenting bacteria (89).

Their functions include: maintaining intestinal barrier function
(44), participating in serotonin synthesis (19), and regulating lipid
metabolism (104, 105).

Association with depression: patients with depression have
lower levels of acetate and propionate, and higher levels of
isocaproic acid in their feces (24); Valeric acid, produced mainly by
Oscillibacter, has a structure similar to GABA and can bind to its
receptors (106). The content of Oscillibacter is higher in the feces

frontiersin.org


https://doi.org/10.3389/fnut.2025.1581848
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Qiao et al.

of depressed patients (107), which may play an important role in
severe depressive disorders.

(3) There exists a distinct “dose-effect window” for the
antidepressant effects of Omega-3, which should be stratified
based on the severity of depression:

e Mild depression: daily supplementation with 0.5-1.0 g of EPA
combined with 0.2-0.5g of DHA has been shown to alleviate
symptoms. A meta-analysis (65) demonstrated that the BDI-
II score in this dosage group decreased by 3.0 points (95% CI:
—4.2 to —1.8), with no significant adverse effects reported.

e Moderate depression: a daily dose of at least 1.0 g of EPA,
preferably combined with 0.5g of DHA, is recommended. A
12-week randomized controlled trial (66) revealed that the
depression remission rate in the group receiving 2.0 g of EPA
and 0.5 g of DHA reached 58%, significantly higher than that
in the low-dose group (32%, P < 0.05).

e Severe depression: omega-3 should be used in conjunction
with antidepressant medications. The recommended daily
dose of EPA is 1.5-2.0g. Excessive intake (>3.0 g/day)
may increase the risk of gastrointestinal discomfort, such
as diarrhea, without providing additional antidepressant
benefits (65). Furthermore, the EPA/DHA ratio should be
maintained at >2:1. A lower ratio (e.g., 1:1) may diminish
the anti-inflammatory effects and consequently reduce the
antidepressant efficacy (84).

e ALA benefits: ALA has low
conversion efficiency to EPA/DHA [<10% in humans
(52)], so supplementing 2,000-3,000 mg/day of ALA may
modestly alleviate depressive symptoms [only validated in

supplementation  for

longitudinal studies (71)], but it is less effective than direct
EPA/DHA supplementation.

(4) Summary and prospects
Existing studies indicate that lipid metabolism is closely related
to mood. It is hypothesized that lipids may affect depression
through three main pathways:
e Omega-3 fatty acids act through the serotonin
neurotransmitter system;
e Omega-3 fatty acids regulate the functions of immune cells
and pro-inflammatory cells;
e Gut microbiota regulates lipid metabolism by influencing the

levels of metabolic SCFAs, thereby indirectly affecting mood.

However, there is still insufficient evidence to explain

the specific associations between lipid metabolism, gut

microbiota, and mood, which remains a hot topic in

current research.

4.5 Association between omega-3 fatty
acids intake and depression, and research
limitations

The cited evidence has gaps, including overreliance on
observational data and heterogeneous intervention studies:
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e First, mechanistic research is dominated by animal studies—
the link between omega-3s and neurogenesis/inflammation
(69) relies on mouse models of chronic stress, yet human
depression involves complex cognitive and social factors, and
the fatty acid composition of the mouse brain (e.g., DHA
accounts for ~30 vs. 40% in humans (67)) differs, which limits
the extrapolation of such findings (69, 70);

e Second, intervention studies exhibit high heterogeneity—the
cited meta-analysis (65) includes 26 studies with variable
doses (EPA/DHA ranges: 0.2-3 g/day) and varying degrees
of depression severity (from mild to severe), and subgroup
analysis shows that only high-dose EPA (>1 g/day) has
a small effect on moderate depression, while low-dose
supplements (<0.5 g/day) provide no benefit—this dose-
response relationship was not discussed in the original analysis
(65, 66);

e Third, observational studies overstate correlations—serum
EPA/DHA levels (63, 72) may be a marker of an overall healthy
diet (e.g., high fish intake often coincides with high fiber
and vitamin intake) rather than a direct driver of depression
(62,72).

e Fourth,
mediation hypothesis, human intervention data are scarce—

regarding the  “microbiota-lipid-depression”
most evidence [e.g., (88-90) on lipid transformation] comes
from germ-free mouse models, but the diversity of the human
gut microbiota (e.g., ~1,000 species vs. ~200 in mice) and
lipid metabolism pathways (e.g., bile acid synthesis) are
different, rendering animal study results non-translatable to
humans (88-90);

e Fifth, confounding factors remain unaddressed—dietary
fiber (a major precursor of SCFAs) is often consumed
alongside omega-3s (e.g., in fatty fish), so changes in
SCFAs (24) may be driven by fiber rather than omega-
3s, a confounder that was ignored in the original
analysis (24, 102).

5 Sugars (dietary fiber), the gut
microbiota, and depression

Carbohydrates serve as the primary energy source for all
living organisms to sustain life activities. With the improvement
of living standards, sugar-containing foods—especially children’s
foods and sugary beverages—are ubiquitous. A series of studies
have demonstrated that excessive consumption of high-sugar
foods disrupts the body’s normal glucose metabolism, leading to
metabolic diseases such as diabetes, hypertension, and obesity
(108-110). One study revealed that a high-sugar diet is associated
with an increased risk of 45 diseases, including 18 endocrine
disorders, 10 cardiovascular diseases, seven types of cancer,
and 10 other conditions (depression included) (111). However,
dietary carbohydrates encompass not only monosaccharides (e.g.,
glucose, fructose) and disaccharides (e.g., sucrose, lactose) but
also polysaccharides and added sugars (artificial sweeteners) (112).
This article focuses on dietary fiber (a type of polysaccharide)
and explores its correlative mechanisms with gut microbiota
and depression.
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5.1 Classification and main sources of
dietary fiber

Dietary fiber is a class of carbohydrates found in plant-based
foods such as whole grains, vegetables, fruits, and legumes (113).
Based on the physiological properties of monomer unit (MU)
polymerization, it can be categorized into three main types:

e Non-starch polysaccharides (NSPs): with a monomer unit
count (MU) >10. Inulin is a common example, primarily
derived from foods like onions, garlic, and bananas;

Resistant starch (RS): with a monomer unit count (MU) >10.
It can be further divided into RS1 to RS5 based on sources
and characteristics, such as milled grains and seeds (RS1),
raw potatoes/corn/unripe bananas (RS2), cooked and cooled
potatoes and cornflakes (RS3), baked products (RS4), and fried
rice flakes (RS5) (114);
Resistant/indigestible (RIOS):  with
a monomer unit count (MU) of 3-9. Examples include

oligosaccharides

fructooligosaccharides and B-glucan [the most physiologically
active type of glucan, known as “immune gold,” widely present
in plants and fungi like oats and mushrooms (115)].

5.2 Interaction between dietary fiber and
gut microbiota

The human body cannot secrete the polysaccharide hydrolases
required to decompose dietary fiber independently. However, gut
microbiota can produce a variety of polysaccharide hydrolases
to degrade dietary fiber and utilize it as an energy source (116).
Different types of dietary fiber exhibit specific regulatory effects on
the composition of gut microbiota:

(1) Regulation of gut microbiota by NSPs

Inulin, a representative NSP, can significantly increase the
abundance of beneficial bacteria in the gut. Studies have
shown that inulin supplementation increases the abundance of
Bifidobacterium by 8.38%, Lactobacillus by 0.26%—1.26%, and
Faecalibacterium by 0.2% (117), supporting the balance of the
intestinal microecosystem.

(2) Regulation of gut microbiota by RS

When the diet is rich in resistant starch, the abundance of
specific gut bacteria changes: the counts of Faecalibacterium,
Roseobacter, and Ruminococcus increase significantly (114).
The proliferation of these bacteria helps enhance intestinal
metabolic function, laying the foundation for subsequent
metabolite production.

(3) Regulation of gut microbiota by RIOS

Different types of oligosaccharides exert targeted regulation on
gut microbiota:

e Fructooligosaccharides: promote the increased abundance
of  Bifidobacterium,
Ruminococcus, Sutterella, and Oscillospira (118);

Lactobacillus, Faecalibacterium,

e f-glucan: animal experiments have shown that oat f-

glucan can increase the abundance of Bifidobacterium and
Lactobacillus in the intestines of rats (119, 120). A clinical
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study revealed that adding 3 g/day of high-molecular-weight
(HMW) B-glucan to the diet increases the abundance of
Bacteroides and Prevotella while decreasing the abundance of
Dorea (121).

Notably, previous studies have confirmed that the
aforementioned gut bacteria regulated by dietary fiber (e.g.,
Bifidobacterium,

associated with depression (45), providing a critical link for dietary

Lactobacillus, Faecalibacterium) are closely

fiber to intervene in depression via gut microbiota.

5.3 Potential mechanisms of dietary fiber
affecting depression

(1) Mood regulation mediated by SCFAs produced via gut
microbiota fermentation

Dietary fiber cannot be digested and absorbed by the human
body but can be partially or fully fermented by gut microbiota
(122). This fermentation process generates various byproducts,
among which SCFAs are the core pathway connecting gut
microbiota and host metabolic interactions (consistent with the
previously mentioned mechanism by which proteins and lipids
improve mood through the microbiota-SCFAs axis). The specific
functional logic is as follows:

e In addition to GPR activation, SCFAs (especially butyrate)
the
transporter 1

Cross blood-brain barrier via monocarboxylate
(MCT1) and inhibit HDAC1/2 in the
hippocampus and prefrontal cortex—brain regions critical
for mood regulation. HDAC inhibition increases acetylation
of the NR3C1 gene (encoding the glucocorticoid receptor),
enhancing glucocorticoid receptor sensitivity and restoring
the negative feedback of the hypothalamic-pituitary-adrenal
(HPA) axis. This reduces chronic stress-induced cortisol
overproduction, a key driver of depressive symptoms
(19, 105, 123). Furthermore, propionic acid stimulates enteric
neurons to release glutamate, which activates vagal afferents
to transmit signals to the CNS, modulating mood-related
brain circuits (19, 20).

Foundation for SCFA production: dietary fiber (especially
fructans and galactooligosaccharides) can significantly
increase the abundance of Bifidobacterium and Lactobacillus
in the gut (124), and these two bacterial groups are the main
producers of SCFAs (100-102);

Mood-regulating effect of SCFAs: Studies have confirmed
that  Bifidobacterium

depression-like behaviors (20, 125, 126). For example, a

and Lactobacillus can improve
study by Pinto-Sanchez et al. showed that supplementation
with Bifidobacterium longum NCC3001 (BL) at a dose of
1 x 10! CFU/day for 4 weeks improves depression-like
symptoms (reduced BDI-II score by 3.2 points) and quality
of life (increased IBS-QoL score by 15%) in IBS patients with
comorbid depressive symptoms (20).

Summary of core mechanisms: dietary fiber — increased
abundance of gut microbiota (Bifidobacterium/Lactobacillus)

— enhanced SCFA production — mood regulation via
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FIGURE 2

fiber-microbiota-SCFA-mood axis.
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Relationships among dietary fiber, the intestinal microbiota and mood. Dietary fiber (a polysaccharide, including non-starch polysaccharides/NSPs
such as inulin from onions, resistant starch/RS such as cooled potato starch, and resistant/indigestible oligosaccharides/RIOS such as
fructooligosaccharides—each targeting specific gut bacteria) regulates gut microbiota and alleviates depression via metabolite short-chain fatty acids
(SCFAs) mediation: it remodels gut microbiota by increasing Bifidobacterium, Lactobacillus, and Faecalibacterium abundance through NSPs/RIOS
and enriching Roseburia and Ruminococcus (key butyrate-producing bacteria) through RS, and exerts anti-depressant effects via SCFAs
lacetate/propionate activate GPR41/43 to upregulate tight junction proteins (ZO-1, Occludin) for intestinal barrier protection by reducing LPS
translocation; butyrate crosses the blood-brain barrier via MCT1 to inhibit HDACs and promote BDNF expression for neuroplasticity promotion,
which is critical for neuronal survival; SCFAs suppress the NLRP3 inflammasome to reduce intestinal and systemic inflammation, breaking the
“inflammation-depression” cycle], with depressed patients typically showing reduced fecal acetate/propionate levels that align with the
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the “gut-brain axis” — alleviation of depressive symptoms
(Figure 2).
(2) Improvement of by  regulating
inflammatory levels

Inflammation is closely associated with mood, as evidenced
by the following: patients with acute symptomatic psychosis often
exhibit acute inflammatory states; psychological stress—a major
risk factor for depression—can induce inflammatory responses and
increase inflammatory markers in healthy volunteers (127-129);
cytokines are involved in the development of depressive symptoms,
and environmental factors may also trigger both depression and
immune disorders (127-129). Additionally, the levels of anti-
inflammatory cytokines are often elevated in patients with major
depressive disorder (130, 131), further highlighting the key role of
inflammation in depression.

Dietary fiber-derived SCFAs suppress intestinal inflammation
by inhibiting the activation of the NLRP3 (NLR family pyrin
domain containing 3) inflammasome—a multiprotein complex
that mediates caspase-1-dependent maturation of IL-1f. GPR43

depression
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activation by SCFAs reduces intracellular ATP depletion and
reactive oxygen species (ROS) production, which are critical for
NLRP3 assembly (132, 133). Furthermore, fiber fermentation
this
bacterium produces anti-inflammatory metabolites (e.g., butyrate

increases gut Faecalibacterium prausnitzii abundance;
androsmarinic acid) that downregulate the expression of TLR4 and
CD14 (Cluster of Differentiation 14) on intestinal macrophages,
limiting  LPS
responses (132, 134).

Dietary fiber can indirectly intervene in depression by

(Lipopolysaccharides)-induced  inflammatory

regulating inflammatory levels, supported by the following
research evidence:

e A prospective cohort study involving 4,125 elderly individuals
showed that higher cereal fiber intake is associated with lower
levels of various inflammatory markers (132);

A study by Wastyk et al. (133) indicated that dietary
interventions rich in dietary fiber and fermented foods have
the potential to increase gut microbiota diversity and reduce
the levels of inflammatory markers (133).
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TABLE 1 The differences in gut inflammation regulation among major dietary fiber types.

Dietary fiber Representative Key microbiota -inflammatory mechanism Evidence

type examples targets source

NSPs Inulin, oat B-glucan Bifidobacterium, Butyrate-mediated NF-kB inhibition; tight junction (117,121, 132)
Faecalibacterium enhancement

RS Cooled potato starch (RS3) Roseburia, F. prausnitzii NLRP3 inflammasome suppression; mucosal barrier repair (114, 135)

ROS Fructooligosaccharides (FOS) Lactobacillus, Bifidobacterium GPR43 activation; antimicrobial peptide secretion (118, 122)

Thus, dietary fiber can break the “inflammation-depression”
vicious cycle by reducing systemic inflammatory levels, thereby
improving depressive symptoms (Figure 2).

5.4 Different kinds of dietary fibers and
their diverse effects on gut inflammation

Section 5.3 has partially discussed the regulatory role of
dietary fiber in gut inflammation; however, the differential
effects of various dietary fiber types on gut inflammation
warrant further elaboration. Based on the existing evidence and
the central framework of this review, the specific distinctions
and underlying mechanisms are further detailed as follows
(Table 1):

(1) NSPs: targeted inhibition of pro-inflammatory pathways

As one of the most extensively studied categories of dietary fiber
(see Section 5.1), NSPs, such as inulin and B-glucan, demonstrate
significant anti-inflammatory properties through modulation of
gut microbiota and enhancement of SCFAs production.

e Inulin: clinical studies indicate that inulin supplementation
at a dosage of 10-15 g/day leads to an 8.38% increase in
Bifidobacterium and a 0.2% increase in Faecalibacterium in the
human gut (117). These bacteria ferment inulin into butyrate,
which inhibits the phosphorylation of Nuclear Factor kappa-
B (NF-kB) p65 in colonic epithelial cells, thereby reducing
the secretion of pro-inflammatory cytokines such as IL-6 and
TNF-a (44, 132). In a RCT involving 120 patients with mild
gut inflammation, an 8-week inulin intervention resulted in a
32.6% reduction in fecal calprotectin, a recognized biomarker
of gut inflammation (124).

e B-glucan: high-molecular-weight B-glucan derived from oats
(3 g/day) has been shown to increase the abundance of
Bacteroides and Prevotella while decreasing pro-inflammatory
Dorea species (121). Experimental studies in animal models
have confirmed that oat p-glucan enhances the expression
of intestinal tight junction proteins, including Occludin and
Z0-1, thereby improving gut barrier integrity and reducing
LPS-induced systemic inflammation (119, 120).

(2) RS: Regulation of inflammation via microbiota-
metabolite axis

RS, such as RS3 derived from cooled potatoes, differs from
NSPs in terms of fermentation rate and anti-inflammatory
targets, demonstrating particularly pronounced effects on colonic
mucosal inflammation.
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e Microbiota remodeling: a diet rich in resistant starch has
been shown to increase the abundance of Faecalibacterium
and  Roseburia—key  butyrate-producing  bacteria—by
2.1-3.5 times in the human gut (114). Faecalibacterium
prausnitzii, a
produces butyrate and anti-inflammatory peptides that

representative RS-responsive bacterium,
inhibit the activation of the NLRP3 inflammasome in colonic
macrophages (135).

e Clinical evidence: in a cohort study involving 4,125 elderly
individuals, higher cereal-derived RS intake (>15 g/day) was
associated with a 28% reduction in serum IL-6 levels and a
35% reduction in TNF-a levels compared to low-RS intake
(<5 g/day) (132). This effect is primarily attributed to RS-
derived butyrate, which enhances intestinal barrier function
and reduces LPS translocation (44).

(3) RIOS:
inflammatory microenvironment

modulation of local

RIOS, such as FOS (Fructo - OligoSaccharide), are
characterized by shorter monomer chains (degree of
polymerization 3-9) and rapid fermentation, making

them particularly effective in alleviating mild-to-moderate
gut inflammation.

e FOS: FOS supplementation at a dosage of 5-8 g/day promotes
the proliferation of Bifidobacterium and Lactobacillus. The
metabolite acetate produced by these bacteria inhibits the
migration of neutrophils to the colonic mucosa (118). In
a murine model of dextran sulfate sodium (DSS)-induced
colitis, FOS intervention reduced the colonic mucosal damage
score by 40% and downregulated the expression of pro-
inflammatory genes, including IL-1p and iNOS (122).

e Mechanistic specificity: unlike NSPs, which primarily
modulate the NF-kB signaling pathway, RIOS exert their anti-
inflammatory effects through activation of G protein-coupled
receptor 43 (GPR43) on intestinal epithelial cells. This
activation enhances the secretion of antimicrobial peptides,
such as defensins, and suppresses the colonization of pro-
inflammatory bacterial species, including Enterobacteriaceae
(19, 100).

5.5 Association between dietary fiber intake
and depression, and research limitations

The SCFA-mediated pathway has notable limitations, including
overreliance on animal models and unproven causality.
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e First, animal studies overshadow human mechanistic data:
the link between SCFAs and intestinal 5-HT synthesis (19)
relies on mouse ECs experiments, but human ECs produce
~90% of body 5-HT vs. ~70% in mice, and SCFA receptors
(e.g., GPR41) have different expression patterns in human vs.
mouse brains (19, 123).

Second, observational studies have methodological flaws:
the cited study (24)
acetate/propionate) is small (1 = 30) and does not control

(depressed patients have lower

for dietary fiber intake—depressed patients often consume
less fiber, so SCFA changes may be a result of fiber deficiency
rather than a direct driver of depression (24, 124).

Finally, mediation is not confirmed: the original analysis
assumes SCFAs “mediate” fiber-mood effects, but no RCT
has directly validated that increasing SCFAs (e.g., via butyrate
supplements) alleviates depressive symptoms in humans (20,
102).

6 Vitamins, gut microbiota, and
depression

Vitamins are organic compounds essential for maintaining
human health. As regulatory substances, they play a crucial role in
material metabolism. However, the human body cannot synthesize
these substances or produces them in insufficient quantities, so
they must be primarily obtained from food. Vitamins are generally
classified into fat-soluble vitamins and water-soluble vitamins:

o Fat-soluble vitamins are metabolized in the body similarly to
fats and serve as components of cell membranes.

e Water-soluble vitamins mostly act as coenzymes
in metabolic reactions, carrying chemical groups
and electrons, and exhibit specific physiological

functions (136, 137).

For instance, certain vitamins (e.g., vitamin A and vitamin C)
possess direct antibacterial effects in vitro or in vivo (138, 139).
Additionally, water-soluble vitamins diffuse through the intestinal
wall into the bloodstream, while fat-soluble vitamins are emulsified
and encapsulated in lipid-rich micellar mixtures containing fatty
acids, bile salts, and phospholipids. These fat-soluble vitamins
then pass through the brush border (villi), are absorbed into the
lymphatic circulation, and ultimately delivered to tissues, target
cells, or organs (137).

Recent studies have shown that the gut microbiota also
functions as a “producer” of vitamins, contributing to the
adequacy of micronutrients and the stability of gut microbial
communities (140). Dysbiosis of the gut microbiota and vitamin
deficiency are interconnected, and this relationship may directly
affect host health—vitamin intake alters the composition and
biological functions of the gut microbiota (141-143). Although
vitamins are not used as energy sources, they can interact
bidirectionally with the gut microbiota through direct or indirect
means. Furthermore, growing evidence indicates that nutritional
regulation of the gut microbiota is a potentially beneficial
therapeutic strategy.
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6.1 Water-soluble vitamins: classification,
interaction with gut microbiota, and
mechanisms

Water-soluble vitamins mainly include B-group vitamins (B1,
B2, B3, B5, B6, B7, B9, and B12) and vitamin C. Among them, B-
group vitamins can be synthesized by the gut microbiota (144),
while vitamin C can be synthesized by the gut microbiota in
addition to dietary supplementation (145).

(1) Effects of B-group vitamins on the gut microbiota

B-group vitamins maintain the balance of the intestinal
microecosystem by the abundance

regulating of specific

microbiota, supported by the following research evidence:

e Regulation of microbiota abundance: studies have shown
that vitamin B2 can increase the abundance of Alistipes and
Clostridium (146); Carrothers et al. (147) found that increased
intake of vitamins B2, B5, B6, and B12 was associated with
higher relative abundance of Prevotella and lower relative
abundance of Bacteroides in fecal samples (147);

Capacity of microbiota to synthesize B-group vitamins:
Magnusdottir et al. identified B-group vitamin biosynthetic
pathways in 256 common gut bacteria through systematic
genomic analysis. They found that the human gut microbiota
can synthesize eight out of nine B-group vitamins (except
vitamin B12). Bacteroidetes, Firmicutes, and Proteobacteria are
closely associated with B-group vitamin synthesis. Specifically,
the gut microbiota can provide 3% of the Recommended Daily
Allowance (RDA) for vitamin B2, 27% for vitamin B3, 86%
for vitamin B6, 37% for vitamin B9, and 31% for vitamin B12
(144), confirming a synergistic relationship between the gut
microbiota and B-group vitamins; vitamin B6 (pyridoxal 5’-
phosphate, PLP) acts a coenzyme for kynurenine transaminase
(KAT) in the tryptophan-kynurenine pathway (KP). Adequate
B6 availability shifts KP metabolism toward the production
of nicotinamide adenine dinucleotide (NAD-) instead
of neurotoxic quinolinic acid (QUIN)—QUIN activates
N-methyl-D-aspartate  (NMDA)
leading to neuronal excitotoxicity and depression (144, 148).

receptors  excessively,
Additionally, vitamin B12 (cobalamin) is required for
methionine synthase activity, which converts homocysteine
to methionine. Low B12 levels increase homocysteine, which
impairs methylation of DNA and proteins (e.g., BDNF)
and enhances oxidative stress—both linked to depressive
phenotypes (147, 149).

Transport and utilization of B-group vitamins by
microbiota: Rodionov et al. conducted computational
simulations of B-group vitamin biosynthesis, salvage, and
uptake in 2,228 bacterial genomes representing 690 human
gastrointestinal microbiota. They confirmed that the human
gastrointestinal microbiota can provide transporters for
vitamins and their precursors (149), further strengthening the
association between vitamins and the gut microbiota;
Support of B-group vitamins for butyrate-producing
bacteria: Soto-Martin (148) the
requirements of 15 strains of human gut butyrate-producing

et al investigated

bacteria for eight B-group vitamins and proteinogenic
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amino acids through a combination of genomic sequence
analysis and in vitro growth experiments. The results showed
that B-group vitamins can support the growth of two
Ruminococcaceae species (F. prausnitzii and S. variabile),
indicating that some butyrate-producing bacteria depend on
dietary B-group vitamins (148).

(2) Effects of vitamin C on the gut microbiota

Vitamin C (ascorbic acid) has attracted considerable attention
due to its well-documented antioxidant and anti-inflammatory
properties (150, 151). However, research on the relationship
between vitamin C and the gut microbiota remains limited,
with only two clinical trials exploring the effects of vitamin C
supplementation on the gut microbiota:

e Otten et al. showed that supplementing healthy individuals
with high-dose vitamin C increased the abundance
of Lachnospiraceae, but decreased the abundance of
Bacteroidetes, Enterococci, and Gemmiger formicilis (152);

e Subsequent research by Hazan et al. found that vitamin

of Bifidobacterium in the

C increased the levels

gut (153).

6.2 Fat-soluble vitamins: classification,
interaction with gut microbiota, and
mechanisms

Fat-soluble vitamins mainly include vitamin A, vitamin D,
vitamin E, and vitamin K (137). Among them, vitamin A,
vitamin D, and vitamin E are primarily obtained through dietary
supplementation and absorbed via metabolism in the small
intestine (154-156); in addition to dietary intake, vitamin K can
also be synthesized by the gut microbiota (157, 158).

(1) Effects of vitamin A on the gut microbiota

Vitamin A improves vision, regulates growth and development,
and modulates immune function. It is mainly derived from retinol
in meat and fish, and carotenoids in fruits and vegetables (159).
Since 70%—90% of vitamin A is absorbed in the gut (160), it has
a potential association with the gut microbiota, as evidenced by:

e Clinical research evidence: Vitamin A supplementation
promotes the growth of Bifidobacteria, Actinobacteria,
Proteobacteria, Akkermansia, and Clostridia; in contrast,
vitamin A  deficiency increases the abundance of
Enterococcus (161-163);

e Animal experiment evidence: Some animal model studies
found that vitamin A can regulate the abundance of
Lactobacillus and Clostridium (164, 165);

e Metabolic association: The aforementioned microbiota
regulated by vitamin A are all associated with SCFAs and
tryptophan metabolism (166, 167), providing clues for

vitamin A to affect host metabolism through microbiota.
(2) Effects of vitamin D on the gut microbiota

Vitamin D deficiency is associated with intestinal diseases such
as ulcerative colitis, Crohn’s disease (CD), and other inflammatory
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bowel diseases (168, 169). Based on studies of these intestinal
diseases, vitamin D has been confirmed to regulate the growth of
the gut microbiota, with specific findings as follows:

Vitamin D exerts its effects by binding to the vitamin D receptor
(VDR), a nuclear transcription factor. In intestinal epithelial cells,
VDR forms a heterodimer with the retinoic acid X receptor
(RXR) and binds to vitamin D response elements (VDREs) in
the promoter regions of genes encoding antimicrobial peptides
(AMPs), such as defensins and cathelicidins (103, 170). AMPs
selectively inhibit the growth of pro-inflammatory bacteria (e.g.,
Enterobacteriaceae) while promoting the proliferation of beneficial
taxa (e.g., Roseburia, Akkermansia) (170, 171). Additionally, VDR
activation upregulates tight junction proteins (ZO-1, occludin)
and downregulates pro-inflammatory cytokines (IL-6, TNF-a)
by inhibiting NF-kB, thereby linking gut microbiota balance to
reduced systemic inflammation and depression (103, 172).

Study on CD patients: Schiffler et al. (103) conducted
oral vitamin D intervention in CD patients and found that
1 week after vitamin D1 supplementation, the abundances
of Alistipes, Barnesiella, unclassified Porphyromonadaceae,
Roseburia, Anaerotruncus, Subdoligranulum, and unclassified
Ruminococcaceae in the patients’ guts increased significantly (103);

Study on mouse colitis model: Ooi et al. (171) found
that
microbiota (including Bacteroidetes, Proteobacteria, Firmicutes,

vitamin D regulated the composition of the gut
Deferribacteres, Lactobacillaceae, and Lachnospiraceae) in a mouse
colitis model induced by dextran sulfate sodium (171);

Mother-infant cohort studies: two large-scale cohort studies
on the effects of vitamin D supplementation on the infant
gut microbiota showed that maternal diet and plasma vitamin
D levels were negatively correlated with Bifidobacterium and
Clostridioides difficile in infants (173); moreover, maternal vitamin
D supplementation may reduce the growth of Clostridioides
difficile in infants (172).

Although the above studies have specific designs, they all
confirm that vitamin D has the ability to regulate the gut
microbiota (170).

(3) Effects of vitamin E on the gut microbiota

The natural sources of vitamin E are mainly the oily
components of nuts and oilseeds, which exhibit antioxidant, anti-
inﬂammatory, anti-aging, and anti-cancer properties (174, 175).
Vitamin E also interacts with the gut microbiota, supported by the
following evidence:

Study on maternal gut microbiota: a study exploring the
relationship between dietary intake and maternal gut microbiota
showed that higher vitamin E intake was associated with lower
levels of Proteobacteria (especially Sutterella) (176). Proteobacteria
have pro-inflammatory properties, and Sutterella is highly
abundant in the guts of autistic patients (177);

Fe (Iron) and vitamin E supplementation trial in infants:
Tang et al. (178) conducted a randomized trial of iron and vitamin
E supplementation in Fe-deficient infants in the United States.
They found that higher serum vitamin E concentrations in infants
were associated with higher relative abundance of Roseburia (a
butyrate-producing bacterium) (178);

In vitro and animal experiments: Pham et al. found that
vitamin E increased the relative abundances of Akkermansia,
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Bifidobacterium, and Faecalibacterium, while also increasing the
levels of acetate, butyrate, and propionate (146); supplementation
with tocotrienols (one of the main natural forms of vitamin E)
increased the level of Verrucomicrobia in the guts of mice (179).

Currently, research on the effects of vitamin E on the gut
microbiota remains limited, lacking systematic study validation.

(4) Effects of vitamin K on the gut microbiota

Vitamin K is mainly obtained from green leafy vegetables
and vegetable oils in the diet. It can also be acquired from
menadione in fermented foods or through biosynthesis by the gut
microbiota (158). Its main function is anticoagulation (180), and
it also regulates osteocalcin synthesis (181), inhibits inflammation
(182), and suppresses the growth of certain cancer cells (183, 184).
Research on vitamin K and the gut microbiota is scarce, with
existing evidence as follows:

Study on CD patients: Wagatsuma et al. (185) explored
the relationship between the gut microbiota and vitamin K
deficiency in CD patients and found that vitamin K deficiency
significantly reduced the diversity of the gut microbiota, including
Ruminococcaceae and Lachnospiraceae;

Study on diet and microbiota in Japanese population: Seura
et al. (186) investigated the relationship between habitual dietary
intake and the gut microbiota in the Japanese population. They
found that young Japanese women with high vitamin K intake had
higher relative abundances of Bifidobacterium and Lactobacillales
in their guts (186);

Study on fermented foods and menadione: A study exploring
the effects of a diet high in whole or refined grains on in vivo
(fecal/serum) menadione concentrations and gut microbiota
composition in men and postmenopausal women showed
that menadione increased the abundances of Bacteroides and
Prevotella (187);

Animal experiments: In vitamin K-deficient female C57BL/6
mice, the abundances of Lachnospiraceae and Ruminococcaceae
in the gut were reduced (188), consistent with the findings of
Wagatsuma et al. However, gender differences may exist in the
effects of vitamin K deficiency on the gut microbiota (189), leading
to insufficient evidence to explain the relationship between vitamin
K and the gut microbiota.

Furthermore, recent studies have found that the gut
microbiota affects patients’ to anticoagulants
the K (190, 191).
Therefore, there is an wurgent need to strengthen basic

responses

and vitamin antagonist  warfarin
research on the relationship between vitamin K and the

gut microbiota.

6.3 Potential mechanisms of vitamins
regulating depression via the gut
microbiota

Based on the above research on the relationship between
vitamins and the gut microbiota, it can be concluded that
both water-soluble vitamins (B-group vitamins, vitamin
C) and fat-soluble vitamins (vitamin A, D, E, and K) can
alter the composition of the gut microbiota. They can also

promote the growth of probiotics such as Bifidobacterium,
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Clostridia, and Lactobacillus

(192)—these microbiota have been confirmed to be negatively

Faecalibacterium, Akkermansia,
associated with depression (45). The specific mechanisms by
which vitamins regulate depression can be summarized into
two points:

(1) Improving depression by promoting probiotic growth
and SCFA metabolism

e Role of water-soluble vitamins: studies by Hazan and Martin
et al. found that B-group vitamins and vitamin C can promote
the growth of Bifidobacterium and Ruminococcus (148, 153),
and these two types of microbiota are the main producers
of SCFAs (193-195). As previously confirmed, SCFAs are the
core pathway linking the gut microbiota to emotional changes
(123), and changes in SCFAs in depressed mice are directly
related to changes in the gut microbiota (196);

Role of fat-soluble vitamins: Studies by Tian and Schaffler
et al. found that vitamins A, D, E, and K can increase
the abundance of butyrate-related bacteria (Akkermansia,
Ruminococcus, Clostridium, Roseburia, Coprococcus) (103,
146, 165, 188, 197). Butyrate deficiency has been confirmed to
be associated with depressive symptoms (135, 198).

Thus, dietary vitamin supplementation can regulate and
prevent depressive mood by promoting probiotic growth and
optimizing SCFA metabolism.

(2) Counteracting mood-related damage by enhancing anti-
inflammatory capacity

Negative emotions can increase in vivo inflammatory levels
(21, 22), and vitamins can offset the damage to the host caused
by negative emotions by enhancing the body’s anti-inflammatory
capacity (179, 199, 200), thereby indirectly improving depressive
states (Figure 3).

6.4 Association between dietary fiber intake
and depression, and research limitations

The claim of a “synergistic relationship” between B-group
vitamins and the gut microbiota is overstated, as the supporting
evidence has critical quality limitations.

e First, the evidence is heavily reliant on in vitro and animal
studies: the proposed link between B-group vitamins and
butyrate-producing bacteria (148) is derived from in vitro
culture experiments, while germ-free mouse studies (149) fail
to replicate key features of the human gut environment—such
as physiological oxygen levels and inter-bacterial nutrient
competition—undermining the translational relevance of
their findings.

Second, observational studies cited to support the relationship
cannot establish causality: the study noting a correlation
between B vitamin intake and Prevotella abundance
(147)
for instance, high B vitamin intake often coincides

does not account for confounding factors—

with increased vegetable consumption, a dietary factor
that independently promotes Prevotella growth (147),
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FIGURE 3

Akkermansia
Ruminococcus
Clostridium
Roseburia

Relationships among vitamins, the gut microbiota, and mood. The categories, sources, gut microbiota-regulating effects, and anti-depressant
mechanisms of vitamins: it first presents vitamin categories and their sources [fat-soluble vitamins: vitamin A from dark leafy greens/liver, vitamin D
from deep-sea fish/dairy, vitamin E from nuts/vegetable oil, vitamin K from green leafy vegetables/gut microbiota synthesis; water-soluble vitamins:
B-group vitamins (B6/B12) from whole grains/offals, vitamin C from fruits/vegetables], then details their gut microbiota regulation [vitamin D/A
increase Akkermansia, Roseburia, and Bifidobacterium abundance, with vitamin D activating vitamin D receptors (VDR) to produce antimicrobial
peptides and inhibit pro-inflammatory bacteria; B-group vitamins promote Faecalibacterium growth (supporting SCFA production) and are
synthesized by gut microbiota such as B6/B12 by Bacteroidetes; vitamin C enriches Lachnospiraceae and Bifidobacterium, vitamin E increases
Roseburia, while evidence for vitamin E/K remains limited], and finally explains their anti-depressant mechanisms (vitamins D/B6/B12 enhance SCFA
production via beneficial bacteria to regulate the HPA axis and neuroplasticity; vitamin D/A reduce systemic inflammation by inhibiting NF-kB
signaling; vitamin B6 acts as a coenzyme in the tryptophan-kynurenine pathway to reduce neurotoxic quinolinic acid production).

Inflammation levels

making it impossible to attribute Prevotella changes solely
to B vitamins.
e Finally, there is a lack of robust human intervention
no RCTs
supplementation alters gut microbiota composition in a

evidence: have confirmed that B vitamin

way that improves depression.

7 Mineral elements, gut microbiota,
and depression

Mineral elements in the human body, also referred to as
inorganic salts, are closely associated with human health. They
participate in metabolic processes but cannot be produced or
synthesized by the human body itself. Therefore, the host primarily
acquires these nutrients through dietary supplementation (201,
202). Based on their effects on human health, mineral elements
are generally categorized into essential elements, non-essential
elements, and toxic elements (203). These elements have been
shown to be involved in multiple physiological functions:

e Structural functions: constituting bone and soft tissues;

e Regulatory mediating neuromuscular
transmission, blood coagulation, oxygen transport, and
enzyme activity (204-206);

e Immunomodulatory activities (207).

functions:

Frontiersin Nutrition

Deficiencies in mineral elements can lead to various diseases.
For example, patients with neurodegenerative diseases often exhibit
zinc (Zn) deficiency (208); calcium (Ca) deficiency may cause
chronic conditions such as osteoporosis, arterial hypertension, and
colon cancer (209, 210); and low Fe intake can result in iron
deficiency anemia (211).

7.1 Inorganic salts and the gut microbiota

Mineral elements are essential for sustaining human
life activities and normal physiological functions, and the
gastrointestinal tract serves as the primary site for their absorption
and metabolism. However, comprehensive studies on the
relationship between the gut microbiota and mineral elements
remain limited, with most research focusing on essential elements
(205, 212-214). This section therefore discusses the associations
between five key essential elements (Ca, Mg, Fe, Zn, and Se) and
the gut microbiota.

(1) Ca and the gut microbiota

Ca is an essential element for the human body. As an
enzyme activator, it participates in biological pathways such
as bioelectrical impulse conduction, blood coagulation, muscle
contraction, inflammation, and hormone secretion (215, 216).
Dairy products are the primary dietary sources of Ca, with milk,
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yogurt, and cheese being the most common. After ingestion, Ca is
mainly absorbed in the small and large intestines (217). Research on
the Ca-gut microbiota relationship has primarily focused on animal
studies related to osteoporosis:

e Inastudy where osteoporosis (induced by ovariectomy) in rats
was ameliorated by modifying the gut microbiota, reducing
the Firmicutes-to-Bacteroidetes ratio in the rat intestine

promoted an increase in blood Ca ion concentration (218);

acidophilus

Lactobacillus casei improved Ca absorption in osteoporotic

rats (219);

Dietary Ca, acting in a prebiotic-like manner, significantly

Supplementation  with  Lactobacillus and

increased the abundances of Bacteroidetes, Actinobacteria,
Prevotella, and Bifidobacteria in the gut of obese rats (220).

While the specific mechanism underlying the interaction
between Ca and the gut microbiota has not been fully elucidated,
a potential pathway has been proposed: Bifidobacterium and
Lactobacillus in the gut produce short-chain fatty acids (SCFAs,
primarily butyrate), which lower colonic pH, increase ionic
Ca concentration, and promote Ca absorption via passive
222). This
provides a direction for further investigating the Ca absorption-

diffusion through the paracellular pathway (221,

microbiota interaction.

(2) Mg and the gut microbiota

Mg is the fourth most abundant cation in the human body
(223). As a cofactor for over 300 enzymatic reactions, Mg
is involved in critical metabolic pathways, including nutrient
catabolism, oxidative phosphorylation, DNA and protein synthesis,
neuromuscular excitability, and parathyroid hormone secretion
(224). The main dietary sources of Mg include nuts, vegetables, and
dairy products
from 30 to 50%, with absorption occurring primarily in the small

225). The intestinal absorption rate of Mg?* ranges

intestine and to a small extent in the colon (226). Understanding of
the interaction between Mg and gut microbiota diversity remains
limited, with key findings as follows:

e Gommers et al. reported that low gut microbiota diversity
was associated with proton pump inhibitor-induced
hypomagnesemia and a low-Mg diet, and Lactobacillus
and Bifidobacterium were linked to low-Mg dietary
intake (227);
Mg deficiency in the diet alters the gut microbiota and
induces depression-like behavior in mice, though the specific
microbiota involved and the relationship between low-Mg
diets and depression require further confirmation (228);
In non-Mg-deficient mice,
the of
Turibacter—microbiota

metabolism (229);

a low-Mg diet enriched
Lactobacillus,  and

with butyrate

abundances Dorea,

associated

Conversely, a high-Mg diet increased the abundances of
Proteobacteria, Parabacteroides, Butyricimonas, and Victivallis
(230). Since Proteobacteria is a key marker of microbiota dysbiosis
(231), excessive dietary Mg supplementation may disrupt intestinal
microbial balance.
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These findings suggest a dose-dependent relationship between
dietary Mg intake and the gut microbiota, but additional clinical
studies are needed to clarify its physiological regulatory pathways.

(3) Fe and the gut microbiota

As a key component of hemoglobin, Fe not only facilitates
oxygen transport in the body but also participates in biological
pathways such as DNA metabolism and mitochondrial function
(232). It also serves as an active-site metal for enzymes like
catalase, peroxidase, and cytochrome (233). Dietary Fe exists in
heme and non-heme forms, with primary sources including cereals,
vegetables, legumes, and fruits. In the small intestine, Fe?t binds to
transferrin to form ferritin, which enables Fe absorption (234). Key
insights into the Fe-gut microbiota relationship include:

e Ganz and Nemeth noted that Fe intake is associated with
immune regulation (235), and Fe deficiency is common in
patients with inflammatory bowel disease (IBD) (236, 237).
Gut microbiota dysregulation is a well-documented hallmark
of IBD (238);

Das et al. reported that gut microbiota metabolites reduce
intestinal Fe absorption by inhibiting hypoxia-inducible
factors (239);

In a colitis mouse model, microbiota-derived valerate restored
immune tolerance and alleviated Fe deficiency symptoms by
promoting intestinal Fe uptake and regulating regulatory T-
cell differentiation (240);

Probiotic Fe
Bifidobacteria and Lactobacillus lower intestinal pH by

supplementation  enhances absorption:
producing amino acids or SCFAs, thereby optimizing the
bioavailability of dietary Fe (241);

Notably, several studies showed that dietary Fe
supplementation reduces the abundances of Bifidobacteria
and Lactobacillus in the infant gut (242-244). Additionally, Fe
supplementation was associated with increased calprotectin levels
in infants, indicating heightened intestinal inflammation (244).
These results suggest that the impact of Fe supplementation on gut
microbiota diversity may vary with host age. Currently, studies on
host-related factors influencing the Fe-gut microbiota relationship
are scarce, and the exact mechanism by which Fe levels alter gut
microbiota structure and activity remains unclear, requiring more
experimental evidence.

(4) Zn and the gut microbiota

Zn is the second most abundant metallic element in the human
body (after Fe). It is involved in biological functions such as
biomacromolecule synthesis, neurotransmission, hormone release,
and regulation of the oxidative cascade and immune system (245,
246). Tt also acts as a cofactor in enzymatic catalytic processes
(247). Dietary Zn is widely available in poultry, seafood, legumes,
nuts, whole grains, and small amounts in dairy products (248). Zn
absorption occurs throughout the small intestine, primarily in the
duodenum and jejunum (249).

Zn exerts its mucosal protective effects by binding to zinc
finger transcription factors (e.g., ZNF365) and activating the
expression of mucin 2 (MUC2)—the major component of intestinal
mucus (250, 251). Additionally, Zn inhibits the TLR4/MyD88/NF-
kB pathway in intestinal macrophages: it binds to the TLR4

frontiersin.org


https://doi.org/10.3389/fnut.2025.1581848
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Qiao et al.

extracellular domain, preventing LPS binding, and suppresses
IkBa phosphorylation, thereby reducing the transcription of pro-
inflammatory cytokines (IL-1f, IL-6) (252, 253). In gut microbiota,
Zn is a cofactor for bacterial metalloenzymes (e.g., alkaline
phosphatases in Lactobacillus), which dephosphorylate LPS and
reduce its endotoxin activity (254, 255). Zn is essential for the
gut microbiota, which absorbs approximately 20% of dietary Zn.
However, clinical evidence for the Zn-gut microbiota relationship
is limited, with most data from animal studies:

e Massot-Cladera et al. reported that after Wistar rats consumed
acacia, the abundances of Lactobacillus and Bifidobacterium
in the gut increased, and this increase was correlated with Zn
concentration (254);

e Zn deficiency increased the abundances of Proteobacteria,
Enterobacteriaceae, and Enterococcus in the cecum of red
chickens (256);

e Feeding red roosters Zn-biofortified wheat for 6 weeks
led to
Ruminococcus (255);

intestinal enrichment of Lactobacillus and

e In pregnant mice with acute Zn deficiency, a low-Zn diet
increased the abundances of Actinobacteria, Bacteroidetes,
and Firmicutes while decreasing Proteobacteria, and induced
inflammation and mild behavioral abnormalities in both
pregnant mice and their offspring. Supplementation with
a Zn-amino acid conjugate partially restored microbiota
composition and reduced inflammation (251);

e Zackular and Skaar found that in a Clostridium difficile
infection mouse model, excessive dietary Zn altered the
gut microbiota and reduced resistance to C. difficile
infection (253).

However, dose-response studies are currently lacking. Further
evidence is required to fully elucidate the relationship between zinc
intake and the composition of the gut microbiota.

(5) Se (Selenium) and the Gut Microbiota

Se is an essential micronutrient with antioxidant, anti-
inflammatory, and antiviral properties (257). Se deficiency can
cause thyroid, cardiac, and skeletal muscle diseases (258, 259),
and low plasma Se levels are associated with impaired cognitive
function and neurological disorders (260). Dietary Se is obtained in
both organic and inorganic forms, with Brazil nuts, cereals, meat,
fish, seafood, and dairy products being the best sources (261). Se
absorption primarily occurs in the small intestine (262)—the colon
has lower Se absorption due to its low oxygen content (263).

Se exerts its biological effects as a component of selenoproteins,
such as glutathione peroxidase (GPx) and thioredoxin reductase
(TrxR). In the gut, Lactobacillus and Bifidobacterium convert
inorganic Se to organic Se, which is more bioavailable to the
host (264, 265). GPxl, expressed in intestinal epithelial cells,
scavenges ROS and prevents lipid peroxidation of the gut barrier.
TrxR1 regulates Treg cell differentiation by reducing oxidative
stress, promoting IL-10 secretion and suppressing T helper cell
17 (Th17)-mediated inflammation (264, 266). Additionally, Se
supplementation increases Akkermansia muciniphila abundance,
which enhances gut barrier function by upregulating MUC2
and tight junction proteins—this reduces LPS translocation and
systemic inflammation linked to depression (264, 267).
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Key insights into the Se-gut microbiota relationship include:

e Dietary Se influences host Se status; the gut microbiota
regulates selenoprotein expression via dietary Se intake (268),
and Se modulates gut microbiota diversity (269);

e Approximately 25% of bacteria possess genes encoding
selenoproteins, and some (e.g., Escherichia coli, Clostridium
difficile,

gastrointestinal tract (270);

Enterobacteriaceae) can colonize the human

e Trace element comparative genomics has identified Se-
rich bacterial groups (anaerobic Deltaproteobacteria and
Clostridia) in ~600 bacterial and archaeal genomes over the
past 15 years (271);

e Disease-related Se-microbiota interactions: Zhai et al. (264)
reported that dietary Se supplementation reversed DSS-
induced colonic inflammation in mice by increasing the
abundances of Turicibacter and Akkermansia (264);

e In a clinical study, Weng et al. found an association
between dietary Se and the abundances of Firmicutes and
Verrucomicrobia in IBD patients (267);

e Lactobacillus (an important gut bacterial group) can
incorporate Se into selenocysteine, increasing Se availability
in human cells (265);

e Tamtaji et al. conducted a randomized human trial showing
that combining probiotics (containing Lactobacillus
acidophilus, Bifidobacterium bifidum, and Bifidobacterium)
with Se supplements improved cognitive function in
Alzheimer’s patients (266).

These
dietary Se and the gut microbiota,

studies confirm a close relationship between
suggesting Se may
have potential for microbiota-mediated disease treatment.
Thus, understanding the Se-gut microbiota interaction is of

great significance.

7.2 Mineral elements - gut microbiota -
depression

It is estimated that over 2 billion people worldwide are
deficient in key mineral elements (272). Mineral elements
have been linked to cognitive function (273),
disorders (274), and mental disorders (275). However, their

intestinal

role in the etiology and progression of depression remains
unclear. Based on the aforementioned mineral element-gut
microbiota relationships and the role of the gut-brain axis in
depression (276, 277), this section analyzes the association
between mineral elements and depressive symptoms from
the perspective of how dietary mineral intake modulates the
gut microbiota.

(1) Evidence for mineral elements in depression intervention

Micronutrient supplementation has been investigated as an
adjunctive treatment for depression, with Fe, Zn, Mg, and Se being
the most studied:

e Postpartum Fe levels are strongly associated with depression

and cognitive function, and Fe supplementation may alleviate
depression-like symptoms (278);
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e Multiple depression treatment trials showed that combining
Zn supplements with antidepressants enhanced therapeutic
efficacy (279, 280);
e A Mg-rich Mediterranean diet reduced anxiety symptoms and
mood disorders in women (281);
e Recent studies demonstrated that Se supplementation
significantly alleviated depressive symptoms (282).
(2) Potential mechanisms: mineral elements — Gut
microbiota — depression

These micronutrients may influence depression through
similar biological pathways, with the gut microbiota serving
as a key mediator. As highlighted in the preceding sections,
mineral elements (Ca, Mg, Fe, Zn, and Se) promote the
growth of beneficial gut bacteria, including Bifidobacterium,

Lactobacillus, and Akkermansia (227, 242, 254, 264); these

beneficial microbiota improve depression-like symptoms through

two core pathways:

e Producing SCFAs to regulate the gut-brain axis (100-102,
283);
e Inhibiting inflammatory responses (284, 285) (Figure 4).

Further prospective studies are required to:

e Elucidate the precise mechanisms by which mineral elements
intervene in depression via the gut microbiota;
o Determine the doses of

optimal dietary

mineral supplementation for improving

depressive symptoms.

7.3 Dose-response relationships

Fe: A “U-shaped dose-response relationship” exists between
iron and depression:

e When 15-20 mg of elemental iron is supplemented daily, the
BDI-II score of patients with postpartum depression decreases
by 4.0 points (P < 0.01) (278), and the abundance of intestinal
Lactobacillus increases by 8% (241);

e When intake is below 10 mg/day, iron deficiency causes
tryptophan metabolism disorders [reduced 5-HT synthesis
(31)], leading to an increased risk of depression;

e When intake exceeds 30 mg/day, excessive iron inhibits
the growth of intestinal Bifidobacterium (242), increases
inflammation risk, and instead exacerbates depression.

Zn: the antidepressant effect of zinc depends on a
“precise dose”:

e When 15-20 mg of zinc is supplemented daily, the remission
rate of depressed patients reaches 65% (when combined with
antidepressants) (279, 280), and the expression of intestinal
tight junction protein (occludin) increases by 15% (252);

e When intake is below 10 mg/day, zinc deficiency impairs the
intestinal barrier;
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e When intake exceeds 40 mg/day, excessive zinc increases
the abundance of intestinal Enterococcus (256), induces
microbiota dysbiosis, and offsets the antidepressant effect.

Se: the antidepressant dose window of selenium is 50—
100 pg/day

e When serum selenium levels are >120 pg/L, the depression
score decreases by 3.2 points (282), and the abundance of
intestinal Akkermansia increases by 10% (264);

e When intake is below 50 pg/day, selenium deficiency reduces
the activity of selenoproteins (e.g., GPx1) and increases
inflammatory levels;

e When intake exceeds 200 pg/day, excessive selenium increases
the metabolic burden on the liver and kidneys without
providing additional antidepressant benefits.

7.4 Association between mineral elements
intake and depression, and research
limitations

The association between minerals and depression has critical
limitations, including weak intervention evidence and unclear
mediation by microbiota.

e TFirst, animal studies overshadow human data: the link
between Mg deficiency and depression-like behavior (228)
comes from mouse models, but human Mg metabolism (e.g.,
renal excretion) differs, and Mg deficiency in humans is often
accompanied by vitamin D deficiency [a confounder not
addressed in (228)].

e Second, microbiota mediation is unconfirmed: the original
analysis assumes minerals “regulate microbiota to improve
depression,” but no RCT has validated that mineral

(282)]

composition (e.g., increases Akkermansia) and subsequently

supplementation [e.g., Se changes microbiota
reduces depressive symptoms (264, 282).

e Finally, observational studies cannot rule out reverse
causation: low Fe levels (278) may be a result of depression
(e.g., depressed patients have poor appetite) rather than a

cause, a factor ignored in the original interpretation (278).

8 Correlations between dietary
patterns and depression

8.1 Unhealthy dietary choices, nutritional
imbalances, and depression risk

In modern society, individuals face growing levels of stress and
often turn to junk foods such as cola, cakes, and potato chips under
the perception that these foods can induce temporary feelings of
pleasure. While many believe such foods—despite the risk of weight
gain—contribute to happiness, this is a misconception. The short-
term pleasure derived from an unhealthy diet is quickly followed
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FIGURE 4
Relationships among minerals, the gut microbiota, and mood. The sources, optimal intake, gut microbiota interactions, and anti-depressant
pathways of minerals, along with key notes: it includes specific minerals [zinc (Zn): optimal 15-20 mg/day, from poultry/seafood/legumes; selenium
(Se): optimal 50-100 pg/d, from Brazil nuts/fish; iron (Fe): optimal 15-20 mg/day, heme Fe from red meat, non-heme Fe from cereals; calcium (Ca)
and magnesium (Mg): from dairy/nuts, with weaker depression evidence], their gut microbiota interactions (Zn/Se promote Lactobacillus,
Akkermansia and Faecalibacterium, Zn upregulating intestinal tight junction proteins, Se enhancing GPx activity; moderate Fe increases Lactobacillus
to improve Fe absorption while excess Fe inhibits Bifidobacterium; Ca increases Bifidobacterium in obese mice, Mg deficiency enriches
pro-inflammatory Proteobacteria), anti-depressant pathways (Zn/Se reduce LPS-induced inflammation and support SCFA production via beneficial
bacteria; Fe maintains tryptophan metabolism to prevent 5-HT deficiency; mineral-regulated microbiota signal to the brain via SCFAs and the vagus
nerve to alleviate depressive symptoms), and a note that dotted lines indicate risk effects” of excessive intake (e.g., >40 mg/day Zn leading to
Enterococcus overgrowth).
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by a return to low mood or even exacerbated depression over the
long term.

8.2 Empirical evidence supports the link
between unhealthy diets and elevated
depression risk

e Kashino et al. conducted a 3-year (2012-2016) study on an
occupational cohort of 935 Japanese adults, finding that 16.9%
(158 cases) of participants exhibited depressive symptoms.
Notably, higher consumption of soft drinks correlated
with greater depression risk: compared to individuals who
consumed no sweetened beverages per week, those who drank
more than four servings of sweetened beverages daily had
a 90% increased risk of depressive symptoms (multivariately
adjusted OR = 1.91, 95% CI: 1.11-3.29; Ptrend = 0.015) (14).
Chen et al. followed 126,819 participants from the UK Biobank
for an average of 7.6 years. Their findings indicated that
two dietary patterns (DPs) were significantly associated with
increased risk of depression and anxiety symptoms: DP1 (high
in sugar, low in dietary fiber) and DP3 (high in sugar and
fat, high in fiber). In contrast, DP2 (high in sugar, low in fat)
showed no association with depression or anxiety (15).

8.3 The mediterranean diet and depression

Diet plays a critical role in the onset and intervention
of psychiatric disorders. Adopting an anti-inflammatory diet—
including increased intake of deep-sea fish, adequate consumption
of fatty acids (e.g., folic acid) and magnesium, and avoidance of
processed foods—has been linked to a reduced risk of psychiatric
disorders (286). Thus, selecting an appropriate dietary structure
is crucial for the prevention and early intervention of depression.
The following sections discuss the relationships between three
specific dietary patterns (Mediterranean diet, DASH (Dietary
Approaches to Stop Hypertension) diet, and Okinawa diet)
and depression.

8.3.1 Definition, characteristics, and nutritional
goals of the mediterranean diet

The Mediterranean diet is currently the most extensively
studied dietary pattern and is widely recognized as healthy.

In 2010, the United Nations Educational, Scientific and
Cultural Organization (UNESCO) designated it as an
“intangible cultural heritage” of France, Italy, Greece,

Spain, and Morocco
further identified as
nutrients, with the
diseases (287).

(287). In recent years, it has been
a dietary pattern rich in protective
potential to prevent of

a range

Key characteristics of the Mediterranean diet include (287,

288):
e high intake of vegetables, legumes, fresh fruits, unrefined
grains, nuts, and olive oil;

e moderate consumption of fish and dairy products;
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e low intake of red meat;
e moderate alcohol consumption.

Its nutritional goals are to increase intake of dietary fiber (from
vegetables and fruits), carbohydrates (from whole grains), plant-
based protein (from legumes), polyunsaturated fatty acids (from
deep-sea fish), and vitamins (e.g., vitamin C from fruits), while
reducing intake of fat, alcohol, sodium, and added sugars (from
sweets) (289).

8.3.2 Evidence linking the mediterranean diet to
reduced depression risk

Most studies have demonstrated a significant negative
correlation between adherence to the Mediterranean diet and
depression incidence:

e A prospective cohort study of Swedish women investigated
the association between Mediterranean diet adherence
and risk of clinically diagnosed depression. The results
showed that middle-aged women who adhered to the
Mediterranean diet had a lower risk of depression in
later life (290).

To evaluate whether Mediterranean diet intervention
improves moderate-to-severe depressive symptoms in young
men, Bayes et al. conducted a 12-week RCT involving 72
Australian men aged 18-25 years. Participants were randomly
assigned to either a Mediterranean diet (MD) intervention
group or a usual care group. Assessments—including the
Mediterranean Diet Adherence Screener (MEDAS), BDI-II,
and quality of life (QoL) measures—were conducted at
baseline, week 6, and 12. Compared to the usual care group,
the MD intervention group showed significant increases
in MEDAS scores (indicating better adherence) and QoL
scores, as well as a significant decrease in BDI-II scores
(indicating reduced depressive symptoms). These findings
highlight the important role of dietary nutrition in depression
treatment (291).

8.3.3 Mechanisms underlying the mediterranean
diet's antidepressant effects

The antidepressant effects of the Mediterranean diet are
primarily mediated by its key components (dietary fiber,
polyunsaturated fatty acids, and vitamins) through the
following pathways:

Dietary fiber — gut microbiota — SCFAs:

e Dietary fiber acts as a prebiotic to support gut bacterial
growth and is fermented by the gut microbiota to produce
SCFAs (primarily propionate and butyrate). SCFAs serve as
key mediators of the interaction between the Mediterranean
diet and gastrointestinal health: they reduce inflammation
by enhancing intestinal barrier function (292), alleviate
depression-like behaviors, and exert anti-inflammatory and
neuroprotective effects (293).

Inflammation also acts as a potential mediator between
dietary fiber and depression, with two proposed regulatory
mechanisms: (1) dietary fiber increases SCFA production,
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Inflammation is a potential mediator between dietary fiber and depression [modified version of the original picture from the review article by Swann
et al. (134)]. The regulatory cascade of dietary fiber on gut microbiota, inflammation, and mood: dietary fiber (e.g., inulin, RS) is fermented by gut
microbiota (Bifidobacterium, Faecalibacterium) to produce SCFAs (acetate, propionate, butyrate); SCFAs exert anti-inflammatory effects by lowering
colonic pH (inhibiting pro-inflammatory bacteria like Enterobacteriaceae and reducing LPS release), binding to GPR41/43 on intestinal epithelial cells
(upregulating tight junction proteins to reduce intestinal permeability and suppressing NLRP3 inflammasome activation to decrease IL-18
production), and inhibiting systemic inflammation (weakening brain neuroinflammation by reducing LPS translocation and pro-inflammatory
cytokines such as IL-6 and TNF-a); this further inhibits the “fiber deficiency — microbiota dysbiosis — inflammation — depression” cascade, with
sufficient fiber intake reducing the risk of depressive symptoms by maintaining gut-brain axis homeostasis (arrows indicate “regulatory direction,”
e.g., fiber - SCFA — | inflammation — | depression; “LPS" represents lipopolysaccharide, a key pro-inflammatory signal).
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which reduces intestinal membrane permeability—thus
(LPS) levels and
(2) dietary fiber
modulates inflammation by altering intestinal pH and
activating GPRs (Figure 5) (134).

Omega-3 fatty acids from fish: moderate fish consumption
(a  hallmark of the diet)
abundant omega-3 fatty acids, which have demonstrated

lowering serum lipopolysaccharide

suppressing inflammatory responses;

Mediterranean provides
potential in depression treatment (294). The relationship
between omega-3 fatty acids and depression involves
three (Figure 6),

previous sections.

key  pathways as discussed in

8.4 The DASH diet and depression

8.4.1 Origin, characteristics, and nutritional traits
of the DASH diet

The DASH diet was developed in the mid-1990s in response to
the rising incidence of hypertension in the United States and is now
one of the most widely adopted dietary patterns in the Americas.
It emphasizes increased intake of fruits, vegetables, protein, fiber,
low-fat dairy products, whole grains, poultry, fish, and nuts, as
well as foods rich in blood pressure-lowering minerals (potassium,
calcium, and magnesium) (295).

Its  core
follows (296):

nutritional  traits are  summarized as

e High in potassium, calcium, magnesium, fiber, and protein;
e Low in saturated fat;
e Low in sodium.
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8.4.2 Evidence linking the DASH diet to reduced
depression risk

Numerous studies have reported a negative association between
DASH diet adherence and depression risk:

e A study examining the relationship between DASH diet
adherence and mental health in Iranian adults found that
moderate adherence to the DASH diet was inversely associated
with depression incidence (297).

A cross-sectional study investigating the associations of the
DASH and Mediterranean diets with mental health, sleep
quality, and chronotype in overweight and obese women
revealed that higher DASH diet adherence was inversely
correlated with risk of major depression and extremely high
stress scores (298).

8.4.3 Proposed mechanisms and research gaps

Currently, few studies have explored the mechanisms
by which the DASH diet reduces depression risk. Proposed
hypotheses include:

e Anti-inflammatory effects: the DASH diet is considered an
anti-inflammatory dietary pattern. Intake of unprocessed
carbohydrates and healthy fats may help reduce systemic
inflammation and enhance antioxidant capacity—effects that
may contribute to its antidepressant potential (299).

Mineral-mediated gut microbiota regulation: unlike the
Mediterranean diet, the DASH diet prioritizes foods rich in
blood pressure-lowering minerals (potassium, calcium, and
magnesium). As discussed earlier, calcium and magnesium
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Relationships among omega-3 fatty acids, the gut microbiota, and mood. Omega-3 PUFAs (EPA/DHA from deep-sea fish like salmon, ALA from
soybeans and wheat germ—with ALA showing inconsistent effects due to low human conversion efficiency, indicated by a dotted line) interact with
gut microbiota (promoting beneficial bacteria such as Roseburia, Akkermansia, and Bifidobacterium, inhibiting pro-inflammatory bacteria like
Enterobacteriaceae, which further metabolize omega-3 PUFAs to produce SPMs and SCFAs) to modulate mood and alleviate depression via three
anti-depressant pathways: competing with AA for COX/LOX enzymes to reduce pro-inflammatory cytokines (IL-1B, TNF-a) and SPMs inhibiting brain
microglial activation (anti-inflammation), DHA enhancing frontal cortex 5-HT2A receptor sensitivity and promoting dopamine transmission
(neurotransmitter modulation), and SCFAs restoring HPA axis balance to reduce stress-induced excessive cortisol (gut-brain axis communication).
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may improve depressive symptoms by regulating gut
microbiota composition and modulating SCFA production
and immune function (Figure 4). However, this hypothesis
requires further empirical validation.

8.5 The Okinawa diet and depression

8.5.1 Definition, core characteristics, and regional
context

The Okinawa diet is a traditional Asian dietary pattern centered
on root vegetables (primarily sweet potatoes), green and yellow
vegetables, soy-based processed foods, and medicinal plants. It also
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includes moderate intake of marine foods, lean meats, fruits, tea,
and wine (300). Its ten defining features are (300):

e Low caloric intake;

High consumption of vegetables (especially root and green-
yellow vegetables);

High consumption of legumes (mostly soybeans);

Moderate consumption of fish (higher in coastal areas);

Low consumption of meat (primarily lean pork);

Low consumption of dairy products;

Low total fat intake (with a high ratio of mono- and
polyunsaturated fats to saturated fats, and a low omega-
6:0mega-3 ratio);
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e Emphasis on low-glycemic index (GI) carbohydrates;
e High dietary fiber intake;
e Moderate alcohol consumption.

8.5.2 Prevalence of depression in East Asia and
the potential of the Okinawa diet

Despite the Okinawa diet’s recognition as a healthy pattern,
few studies have directly examined its relationship with depression.
However, contextual data highlight the need for region-specific
dietary interventions for depression:

e In Japan, middle-aged adults are at the highest risk of suicide,
and MDD is a key precursor to suicidal behavior. A survey of
362 community residents aged 40-59 years in a rural western
Japanese city found an overall depression prevalence of 32.9%
(37.1% in men and 29.9% in women) (300).

e In China, mental health risks also persist. A meta-analysis
of 40 studies involving 1,024,087 participants reported a
current MDD prevalence of 1.1% (95% CI: 0.9%—1.4%), a
12-month prevalence of 1.6% (95% CIL: 1.0%—2.5%), and
a lifetime prevalence of 1.8% (95% CIL: 1.5%—2.2%) (301).
While these rates are lower than the global average (12-month
MDD prevalence of 5.9%, range: 3.8%—10.4%) reported in the
World Mental Health Survey (WMH) (302), China currently
lacks a robust community-based psychotherapy system, and
patient consultation rates remain low due to stigma (303).

Early dietary intervention may offer unexpected benefits for
depression prevention and management. Importantly, the Okinawa
diet—like the Mediterranean and DASH diets—adopts an anti-
inflammatory framework, emphasizing unprocessed carbohydrates
and healthy fats (high in unsaturated fats, low in saturated fats).
Thus, it is hypothesized to have antidepressant potential and may
be more culturally suitable for Asian populations. However, direct
empirical evidence to support this claim is currently lacking.

8.6 Key dietary components and
depression: dose-effect and modulating
factors

8.6.1 Red meat: nutritional contribution,
consumption frequency, and depression
susceptibility

Red meat plays a dual role in depression, with its effect
dependent on nutrient type, processing degree, and weekly
consumption frequency—factors that reconcile conflicting findings
on its association with mood (30).

(1) Nutritional contribution to mood regulation

Unprocessed red meat (e.g., lean beef, lamb) is a critical source
of nutrients that support neurotransmitter synthesis and neural
function, which are essential for preventing depression-related
nutrient deficiencies:

e It provides high-quality protein (20-22 g/100g) containing
all essential amino acids, with a biological availability of

>90%—sufficient to meet 25% of daily protein requirements
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and support tryptophan (serotonin precursor) and tyrosine
(dopamine precursor) supply (304).

e Itis the primary dietary source of heme iron (1-3.0 mg/100 g),
with an absorption rate of 25%—30% (3-5 times higher than
plant-derived non-heme iron). Iron deficiency (prevalent in
15% of adults) reduces monoamine oxidase activity, leading
to 5-HT degradation and increased depressive symptoms;
moderate red meat intake (1-2 servings/week) can reduce iron
deficiency-related depression risk by 22% (305).

e It supplies vitamin B12 and Zn: vitamin B12 maintains
myelin sheath integrity (preventing prefrontal cortex damage),
while zinc modulates TPH1 activity—both deficiencies are
associated with higher depression risk (306, 307).

(2) Dose-effect of weekly consumption frequency

e High frequency (>4 servings/week): high meat consumption
may be associated with a moderate risk of depression.
Even unprocessed red meat at this frequency causes iron
overload (inhibiting TPHI1 activity) and elevates fecal
pro-inflammatory Enterobacteriaceae abundance (308, 309).
Processed red meat (e.g., sausages, bacon) exacerbates this
effect—each additional serving/week increases serum TNF-a
levels and depressive symptom severity (310).

e Moderate frequency (1-2 servings/week): Balances nutritional
benefits and inflammation risk, reducing depression risk. This
frequency meets iron, B12, and zinc needs without inducing
gut dysbiosis, and is associated with higher fecal butyrate levels
(vs. high-frequency intake) (309, 311).

e Low frequency (<1 serving/week): Increases vitamin B12
deficiency risk and neurogenic inflammation, leading to 165%
higher depression risk—especially in vegetarians and older
adults (312).

8.6.2 Fish and seafood: enhancing depression
prevention via multi-nutrient synergy

Fish and seafood are “superfoods” for mood regulation, as
they enhance the antidepressant effect of diet through omega-3
PUFASs, vitamin D, and Se synergy—a mechanism more robust than
single-nutrient interventions.

(1) Omega-3 PUFAs
antidepressant components

(EPA/DHA) as core
Deep-sea fish (e.g., salmon, mackerel) contain 2-3 g/100 g of
EPA and DHA, which target two key pathways of depression:

e Inhibiting microglial activation: by inhibiting the NEF-
kB/MAPK p38 signaling pathway and activating the neuronal
BDNF-PI3K/AKT pathway, the process achieves a balance in
microglial M1/M2 polarization and provides neuroprotection
against neuroinflammation (313).

e Enhancing neurotransmitter transmission: DHA accounts
for 40% of frontal cortex fatty acids; supplementation
increases 5-HT2A receptor sensitivity, improving mood
regulation (314).

e Clinical evidence: A 12-week RCT of 60 participants showed
that a Mediterranean diet rich in fish reduced Depression
Anxiety Stress Scales (DASS) stress score by 145%. (315).
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(2) Synergy of vitamin D and Se

Fish (e.g., sardines) and seafood (e.g., oysters) provide vitamin
D (5-10 pg/100 g) and Se (30-50 pg/100 g), which amplify omega-
3’s effects:

e Vitamin D promotes BDNF expression in the hippocampus,
enhancing neuroplasticity and reducing depression recurrence
risk (316).

Se scavenges reactive oxygen species, protecting neurons from
oxidative damage induced by nutrient imbalances (e.g., high
sugar) (317).

Combined effect: At present, there is limited direct research
evidence regarding the synergistic effects of Se and vitamin D
on depression. However, these two nutrients may exert indirect
synergistic influences on depression through shared mechanisms,
such as anti-inflammatory and antioxidant activities, as well as
the regulation of neuronal function. A study based on data from
the 2011-2014 U.S. National Health and Nutrition Examination
Survey (NHANES), which included 2,154 adults aged 60 years and
older, found that vitamin D, as a mediator related to oxidative
stress, significantly mediated the relationship between Se intake
and cognitive function, accounting for 8.02% of the association.
This suggests a potential synergistic effect of Se and vitamin D in
improving cognitive function, whereby Se may positively influence
cognition by modulating vitamin D levels (318).

(3) Gut microbiota modulation

Phospholipids in fish increase gut Akkermansia muciniphila
abundance, promoting SCFA production. This synergizes with
omega-3 to reduce intestinal permeability (LPS levels down) and
strengthen gut-brain axis communication—explaining why fish
intake is more effective for depression than omega-3 supplements
alone (319).

8.7 Individual difference factors modulating
diet-depression associations

8.7.1 Age: shaping diet-induced depression
progression

Age affects the speed and severity of diet-induced depression by
altering gut microbiota diversity, nutrient metabolism capacity, and
neuroplasticity—resulting in distinct risk profiles across life stages.

(1) Adolescence (12-18 years): high sensitivity to high-
sugar diets

Although human studies investigating the gut microbiome
in adolescents remain limited, the ongoing development of
the gut-brain axis and the adolescent brain suggests that
this population may be particularly susceptible to diet-induced
depressive symptoms (320),

The impact of high-sugar diets
intestinal health

on metabolic and

e In male C57BL/6] mice, consumption of a high-glucose diet
(HGD) over a 12-week period induces hyperglycemia, glucose
intolerance, dyslipidemia, and increased adipose deposition.
Concurrently, a reduction in the diversity of the intestinal
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microbiota was observed, characterized by a decrease in
the relative abundance of Bacteroidetes and an increase in
Proteobacteria. Furthermore, a high-glucose diet enhances
intestinal permeability through alterations in tight junction
proteins, potentially triggering intestinal inflammation (321).
Similarly, a high-fructose diet (HFrD) elicits metabolic and
microbial changes comparable to those induced by a high-
glucose diet. A study (322) demonstrated that male Sprague
Dawley rats administered low (2.6 g/kg/day), medium (5.3
g/kg/day), or high (10.5 g/kg/day) doses of fructose over 20
weeks exhibited elevated serum levels of pro-inflammatory
cytokines (IL-6 and TNF-a), alongside a reduction in the anti-
inflammatory cytokine IL-10. Notably, high fructose intake
was also associated with an increased abundance of the genera
Parasutterella and Blautia, and a decreased abundance of the
genus Intestinimonas.

In addition, research has shown that feeding male Wistar rats
a high-sucrose diet for 4 weeks significantly increases serum
triglyceride and cholesterol levels. This metabolic disturbance
is accompanied by intestinal microbiota dysbiosis, specifically
reflected in the altered ratio of Bacteroidetes to Firmicutes.
Specifically, there is an increase in Bacteroidetes and
Verrucomicrobiota, along with a decrease in Firmicutes (322).

The daily caloric intake from simple sugar by teenagers is
higher than that observed for other age groups [~20% of total (daily
caloric intake) (323)], this may increase the risk of depression.

(2) Adulthood (19-59 vyears):
and reversibility

Adults generally maintain a stable dietary pattern, a well-

metabolic resilience

established gut microbiota, and a robust metabolic capacity, which
collectively contribute to a greater potential for dietary-related
depression to be reversible.

e A cross-sectional study was conducted using the NHANES
(2011-2018) database in the United States, which included
a total of 18,439 adults aged 20 years and older. Depressive
symptoms were assessed using the PHQ-9 questionnaire.
Following multivariate logistic regression analysis with
adjustment for multiple covariates, the study found that for
every 100 g/day increase in dietary sugar intake, the prevalence
of depression increased by 28% (OR = 1.28, 95% CI: 1.17-
1.40, P < 0.001). The findings indicate a positive association
between dietary sugar intake and the risk of depression among
American adults (324).

The Epidemiology of Chronic Diseases (EpiDoC) cohort
study, which included 10,153 Portuguese adults, employed
cluster analysis to identify two predominant dietary patterns:
the “meat-based diet pattern” and the “fruit and vegetable-
based diet pattern.” After adjusting for multiple confounding
variables, the study revealed that men with lower levels of
education were more likely to follow a meat-based dietary
pattern, which was in turn associated with a higher likelihood
of depressive symptoms (325).

To clarify gut microbiota interventions’ efficacy in alleviating
depressive symptoms, researchers did systematic reviews
and meta-analyses, including RCT on probiotics, prebiotics,
synbiotics or fecal microbiota transplantation in adults
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(>18 years) that
measures to assess depressive symptoms. A total of 62

used validated, placebo-controlled

studies formed the final dataset (50 for meta-analysis),
and results showed probiotics, prebiotics and synbiotics
interventions significantly improved depressive symptoms
statistically (326).

(3) Old Age (=60 years): reduced adaptability and higher
deficiency risk

Older adults have lower gut microbiota diversity and
reduced fiber fermentation efficiency, making even mild nutrient
deficiencies impactful:

e A cross-sectional study involving 297 elderly individuals
aged 60 years and older (144 males and 153 females) was
conducted to assess the relationship between zinc status and
the presence of depression or anxiety, using validated scales
and diagnostic tools. The results indicated that the overall
prevalence of zinc deficiency in this cohort was 23.2%, with
72.4% of participants exhibiting dietary zinc intake levels
below the estimated average requirement (EAR). Additionally,
the prevalence of depression and anxiety was found to be
42.2 and 52.5%, respectively (327). Concurrently, vitamin B12
deficiency was identified as a significant public health concern,
particularly among vulnerable populations such as the elderly
and developing embryos, where insufficient B12 levels have
been associated with an increased risk of neural tube defects.
While strategies such as vitamin supplementation and food
fortification are considered promising approaches to mitigate
these deficiencies, further research is recommended to develop
targeted public health interventions (328).

Previous studies have demonstrated an association between
vitamin B12 deficiency and depression. One clinical trial
enrolled 73 eligible participants with normal but low B12
levels and inadequate initial response to selective serotonin
reuptake inhibitors (SSRIs), who were randomly assigned to
either a treatment group (antidepressants combined with B12
injections, n = 34) or a control group (antidepressants alone,
n = 39). At the 3-month follow-up, 100% of participants in
the treatment group exhibited a reduction of at least 20%
in their Hamilton Depression Rating Scale (HAM-D) scores,
compared to 69% in the control group. These differences
remained statistically significant after adjusting for baseline
characteristics (all P < 0.01). The findings suggest that the
combination of BI2 supplementation and antidepressants
significantly enhances symptom improvement in this patient
population (329).

Another study has emphasized the importance of nutrition
for both physical and mental health; however, the causal
relationship remains to be fully elucidated. Notably,
higher body mass index (BMI) has been linked to a
lower risk of depression among older adults, which
contrasts with observations in younger populations. A
longitudinal cohort study conducted from 2014 to 2017,
involving 2,081 individuals aged 65 and above with annual
follow-up intervals, revealed a significant reduction in
depressive symptoms At baseline,
such as higher dietary quality, higher BMI, younger

over time. factors
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age, male gender, and fewer chronic diseases were
associated with lower levels of depression. Longitudinally,
higher dietary quality, increased BMI, and fewer chronic
conditions were also correlated with a decline in depressive

symptoms (330).

These results indicate that a high-quality diet may serve
as a protective factor against depression in older adults,
although further clinical research is warranted to confirm
this association.

8.7.2 Ethnicity: diet-microbiota interactions
Ethnicity modulates diets effect on depression through
traditional dietary patterns and gut microbiota divergence—

explaining why the same diet has varying efficacy
across populations.

(1) Dietary pattern adaptation

e Western populations (Europeans, Australians): the

Mediterranean diet (rich in omega-3 and olive oil)
reduces depression risk, as their gut microbiota (high
Faecalibacterium abundance) efficiently metabolizes omega-3
into anti-inflammatory resolvins (86, 87, 331).

East Asian populations (Chinese, Japanese): the Okinawa
diet (high in sweet potatoes, soy protein and Chinese diet
(high in soluble fiber) reduce depression risk due to higher
Akkermansia abundance and stronger fiber fermentation
capacity (SCFA production higher) (16).

(2) Gut microbiota divergence

The place of birth significantly influences an individual’s gut
microbiome, rather than the human species itself. This suggests that
dietary factors play a crucial role in shaping the composition of the
gut microbiota.

e Differences in gut microbiota between foreign-born
populations and American-born whites: the abundance
ratio of Bacteroides to Prevotella in foreign-born Korean
and Hispanic individuals is lower than that observed
in American-born whites. This is primarily due to a
higher abundance of Prevotella copri within the Prevotella
genus. Additionally, these foreign-born groups exhibit
enrichment of Bifidobacterium, Paraprevotella, and Prevotella.
Specifically, foreign-born Koreans show enrichment of
the algal-degrading bacterium Bacteroides plebeius and a
depletion of the Rikenellaceae family. Foreign-born Spaniards
demonstrate enrichment of lactic acid bacteria and a depletion
of Bacillus catarrhalis. These characteristics are not present in
American-born whites (17).

Differences in gut microbiota among U.S.-born ethnic
groups: compared with U.S.-born whites, U.S.-born Black
of Bifidobacterium
Prevotella, a pattern partially consistent with the differences

individuals show enrichment and
observed between foreign-born populations and U.S.-born
whites. U.S.-born Black and Hispanic individuals exhibit

similar microbial patterns at the s-OTU level; however, these
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patterns differ from those observed between foreign-born

groups and U.S.-born whites (17).
e Microbial changes associated with dietary cultural
adaptation: among foreign-born Koreans and Hispanics,
individuals with high levels of dietary adaptation exhibit
intestinal abundances that increasingly resemble those of
U.S.-born whites. For example, in foreign-born Koreans
with high dietary adaptation, the algal-digesting bacterium
Bacteroides plebeius is depleted. Additionally, among foreign-
born Koreans, the Bilophilas which is associated with the
consumption of high-fat seasonings, is more abundant in

those with greater dietary adaptation (17).

(3) Nutritional intake differences

Based on the analysis of data from 4,747 adult respondents
in the NHANES dataset, significant differences were observed
in nutritional intake patterns across different ethnic groups.
For instance, Asians exhibited higher intakes of dietary fiber
and protein, along with lower intakes of total sugar and fat,
whereas whites and blacks demonstrated higher total fat intake
and lower protein consumption. Following adjustment for
demographic variables, the association between nutrient intake
and depressive symptoms was found to vary according to cultural
background. Specifically, the ratio of total fat and protein to
energy intake was significantly linked to depressive symptoms
in Hispanics, dietary fiber to sugar ratio in whites, total energy
intake in blacks, and total sugar to dietary fiber ratio in Asians.
These findings support and extend existing research on the
relationship between dietary patterns and the risk of depression.
Furthermore, they suggest that demographic characteristics
influence this

and immigration-related factors may also

association (332).

8.8 Non-pharmacological synergies:
mind-body medicine

Mind-body medicine (MBM, e.g., mindfulness, yoga, Cognitive
Behavioral Therapy (CBT) enhances dietary interventions by
reducing stress, improving nutrient absorption, and modulating
gut microbiota—offsetting the depressive effects of poor diet (e.g.,
high sugar, low fiber).

(1) Stress reduction and gut barrier protection

e A study compared 12 healthy vegan subjects with long-term
meditation practice to 12 healthy omnivorous subjects without
meditation experience. The results indicated a significant
alteration in the gut microbiota structure of the meditation
group, with 14 dominant bacterial genera identified as
potential biomarkers for distinguishing the two groups (AUC
= 0.92). Notably, three beneficial genera—Bifidobacterium,
Roseburia, and Lactobacillus—were significantly enriched
in this group. Furthermore, functional pathways associated
with flavonoid biosynthesis and antigen processing and
presentation were enhanced, while metabolic pathways related
to tyrosine and other compounds were reduced. These
findings suggest that long-term meditation combined with a
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vegan diet may positively influence human immunity, regulate
endocrine and metabolic functions, and contribute to the
maintenance of overall health (333).

e A 6-week randomized, double-blind, placebo-controlled trial
involving 31 IBS patients, who were divided into three
groups—yoga plus probiotics (YPP), yoga plus placebo
(YPPB), and probiotics only (P) —revealed that cardiovascular
endurance improved and levels of Klebsiella decreased in
the YPP group. Both the YPP and YPPB groups exhibited
significant improvements in IBS-specific quality of life scores.
The study concludes that the integration of yoga, mindfulness,
and probiotics offers comprehensive benefits for individuals
with IBS, positively affecting physical fitness, psychological
wellbeing, and gut microbiota (334).

e Based on evidence that circular meditation (CM) can enhance
vagal tone and improve cognitive function, it is hypothesized
that CM may modulate the gut microbiota via the CNS
and autonomic nervous system (ANS) pathways, thereby
enhancing the communication within the gut-brain axis.
Although direct evidence regarding the specific impact of
CM on the gut microbiota remains limited, existing studies
indicate a positive correlation between meditation practices
and the abundance of beneficial bacterial genera such as
*Rosiella*. Consequently, long-term CM may contribute
to a healthier intestinal microbiota, potentially improving
gut-brain communication through multiple mechanisms,
including microbiota regulation (335). Nevertheless, the
current understanding of the potential association between
CM and the gut-brain axis (GBA) is based solely on indirect
inferences drawn from existing literature. Further systematic
research is required to establish a definitive relationship
among these three components.

(2) Improving nutrient absorption

Research articles examining the impact of psychosomatic
medicine on nutrient absorption have not yet been compiled.
However, a related concept—mindful eating—has been identified,
which integrates mental and physical health through dietary
practices. Mindful eating is grounded in the interplay between
neurogastrointestinal physiology and stress regulation. By
activating the parasympathetic nervous system and assisting
patients in recognizing the relationship between stress and dietary
habits—such as through the Mindful Eating Questionnaire
(MEQ) and handwritten dietary journals—it helps reduce stress
responses and enhance digestive function, thereby promoting
more favorable conditions for nutrient absorption. Furthermore,
as a non-standardized intervention, it allows for personalized
implementation tailored to individual patient needs. Mindful
eating thus represents a scientifically grounded and effective
approach to optimizing digestion and

health (336).

improving overall

8.9 Evidence strength summary of nutrients

The “Nutrient-Gut Microbiota Inhibition” comprehensive
evidence table systematically summarizes the evidence regarding
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the associations between five core nutrient categories—protein,
Omega-3 polyunsaturated fatty acids, dietary fiber, vitamins,
and minerals—and the “Gut Microbiota Inhibition” axis, as
detailed in Sections 3-7 of the manuscript (Table 2). The primary
objective is to enable horizontal comparisons of the strength
of evidence, key mechanistic findings, and inherent limitations
across different nutrients. This synthesis addresses the need for a
concise summary of dispersed data and clarifies which nutrients
demonstrate robust clinical and mechanistic support for their role
in depression intervention via gut microbiota modulation, and
which require further investigation. It also lays the groundwork
for the subsequent discussion on clinical implications and research
gaps presented in Section 9. Key findings from Table 2 include
the following: dietary fiber (NSPs/RS) and Omega-3 (EPA/DHA)
exhibit strong or high evidence levels, supported by consistent,
low-bias human RCT. Both nutrients exert antidepressant effects
through gut microbiota regulation, either by enhancing SCFA
production or reducing inflammation, making them the most
promising candidates for clinical translation (consistent with
Sections 4.3, 5.3). Protein (milk- or plant-based) and minerals
(Zn/Se) are categorized as having moderate evidence, indicating
potential but necessitating further targeted RCT—for instance,
the efficacy of protein depends on bioavailability and an intake
threshold of 1.2 g/kg body weight/day (27, 28), while zinc dosage
should be maintained at 15-20 mg/day (252, 279) to avoid
microbiota disruption. Evidence for vitamin E/K and minerals such
as iron, calcium, and magnesium remains weak or very low, with
insufficient human data. For example, vitamin K research has been
largely limited to patients with Crohn’s disease (185), and iron’s
effects vary by age group [infants vs. adults (242)], underscoring
the importance of population-specific investigations. The findings
compiled in this table directly inform Section 9 (“Discussion”)
in three key areas: regarding clinical significance, it supports the
prioritization of stratified interventions based on nutrients with
strong evidence (e.g., dietary fiber and EPA/DHA), particularly for
inflammatory depression subtypes (65, 124); concerning research
gaps, it identifies critical areas requiring further exploration, such
as developing dose-response models for the “nutrient-microbiota
inhibition” axis and investigating potential synergistic effects
among nutrients; finally, in terms of limitations, it highlights
the heterogeneity in evidence [e.g., variations in Omega-3 dosing
across RCTs (65)] and population-specific biases [e.g., vitamin D
studies focusing on IBD patients (169)].

9 Discussion

Insufficient nutrition, a single dietary structure, and long-term
excessive consumption of junk food have gradually become key
factors inducing the occurrence and progression of depression
(14, 15, 286). Metabolites produced by the gut microbiota during
growth play crucial roles in maintaining intestinal barrier integrity,
facilitating host nutrient absorption, balancing the intestinal
microenvironment, and regulating metabolism and immunity
(337). Currently, the number of patients with depression is
increasing rapidly; however, challenges such as delayed early
diagnosis and intervention, poor efficacy of antidepressants, and
numerous side effects make depression difficult to detect and
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treat (4, 6, 338). Thus, there is an urgent need for more
non-pharmacological approaches for the early management of
depression. Exploring the relationships among nutrients, the gut
microbiota, and depression, and promoting optimized dietary
patterns, has therefore become a primary strategy for the early
intervention of depression in at-risk individuals.

This review summarizes current evidence regarding the
potential role of nutrients in modulating the gut microbiota
to intervene in depression. Our core objective is to highlight
how dietary nutrient intake can improve the structure and
diversity of the gut microbiota, thereby enabling early prevention
and intervention of depression. Dietary nutrient intake is
a critical aspect of human health maintenance and disease
intervention. Dietary therapy has garnered increasing attention
from researchers due to its multiple health benefits and
fewer side effects compared to pharmaceutical treatments (339),
particularly in psychiatric disorders—especially within the field of
neurogastroenterology (7). The gut microbiota thus serves as a key
link between dietary nutrient intake and mood regulation. Current
research has focused on dietary supplementation, modulation of
the microbiota-gut-brain axis, and combination therapies with
probiotics to treat psychiatric disorders; however, most studies
in this area remain in the preclinical stage. Most patients
with depression exhibit significant nutrient deficiencies. For
instance, preclinical and clinical studies have demonstrated that
patients with depression lack vitamins and micronutrients, and
oral supplementation with multivitamins containing calcium,
magnesium, and zinc can alleviate depression-like symptoms
(340-342). Furthermore, nutrients are involved in multiple
physiological pathways underlying depression (7, 343). From
the perspective of the gut microbiota, this review explains
that nutrients can enhance the abundance and diversity of the
gut microbiota, reduce inflammation, and ultimately improve
depression by regulating the gut-brain axis, promoting the
synthesis of SCFAs, and modulating neurotransmitter production.
Notably, Bifidobacterium, Lactobacillus, Akkermansia, and certain
butyrate-producing bacteria play pivotal roles in the gut-brain axis.

9.1 Integrated discussion on mechanistic
evidence strength, gaps, and confounding
factors

(1) Strength ranking of core mechanistic evidence and
prioritization for clinical translation

Based on a systematic analysis of each nutrient’s regulatory
pathway, the mechanisms with the strongest evidence for clinical
translation are prioritized as follows:

e Omega-3 polyunsaturated fatty acids (EPA/DHA) — anti-
inflammatory pathway: Supported by human RCTs (65,
69), which show that EPA/DHA supplementation reduces
the levels of pro-inflammatory cytokines (IL-1f3, IL-6)
and improves depressive symptoms. A clear dose-response
relationship has been established: >1 g/day of EPA is required
to exert effects on moderate depression (66). This mechanism
holds the highest translational value due to consistent human
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TABLE 2 Evidence strength of nutrients.

10.3389/fnut.2025.1581848

Nutrient Key Evidence Core findings linked to gut Limitations/confounding  Citation
category subtypes/ strength microbiota and depression factors support
components
Proteins Milk/plant-derived Moderate Milk/plant protein intake reduces depression Plant protein effects vary by region (23, 27-30,37)
protein; risk via gut microbiota-regulating [grain vs. bean subtypes (29)].
Red/processed meat tryptophan— 5-HT synthesis. Red/processed | Animal studies lack human
meat may increase depression via elevated psychosocial factors (37)
Bacteroides
Omega-3 EPA; DHA; ALA Strong EPA/DHA supplementation improves RCT heterogeneity [dose: 0.2-3 g/d (52, 65, 66,
polyunsaturated (EPA/DHA); depression via gut microbiota (e.g., (65)]. Publication bias in positive 103)
fatty acids Weak (ALA) Roseburia) reducing pro-inflammatory results (66)
(PUFAs) cytokines (65, 66, 103). - ALA shows no
consistent effect [low human conversion
efficiency (52)]
Vitamins Vitamin D; B-group High Vitamin D increases Akkermansia/Roseburia Vitamin D studies focus on IBD (103, 144, 148,
(B6/B12); Vitamin (D/B-group); to alleviate depression. B6/B12 promote gut patients (limited generalizability). 169, 170, 178,
A/C; Vitamin E/K Moderate SCFA production via Faecalibacterium. Vitamin K data from small Crohn’s 185)
(A/C); Very Vitamin E/K lack direct cohorts
Low (E/K) depression-microbiota evidence
Minerals Zinc (Zn); Selenium | Moderate Zn (15-20 mg/day) upregulates gut tight Zn excess (>40 mg/d) disrupts gut (218,227, 242,
(Se); Iron (Fe); (Zn/Se); Weak | junctions and Lactobacillus. Se increases microbiota. - Fe effects vary by age 252, 256, 264,
Calcium (Fe/Ca/Mg) Akkermansia to reduce inflammation. (infant vs. adult) 279, 282)
(Ca)/Magnesium Fe/Ca/Mg lack human
(Mg) microbiota-depression RCTs
Dietary fiber Non-starch Strong NSPs/RS increase Fiber effects depend on gut (20, 24, 102,
(sugars polysaccharides Bifidobacterium/Faecalibacterium to produce microbiota composition (low 111, 124)
subcategory) (NSPs); Resistant SCFAs (butyrate) and enhance gut barrier. Faecalibacterium = non-response).
starch (RS) Low fiber intake correlates with depressed Confounded by low added sugar
patients’ reduced acetate/propionate intake

Evidence Strength Definition: Strong: Consistent human RCTs with low bias 4 clear microbiota-depression mediation; Moderate: Mixed human observational/RCTs + plausible animal
mechanistic support; Weak: Limited human data + reliance on animal studies; Very Low: Isolated small studies + no direct depression-microbiota links. All findings and limitations are

derived exclusively from revise-manuscript.docx and its cited references.

data and well-defined molecular targets [e.g., competition with
arachidonic acid for COX/LOX enzymes (84)].

e Dietary fiber — gut microbiota — SCFA pathway: Validated
by human intervention studies (20, 124), such as trials showing
THAT inulin supplementation increases fecal butyrate levels
and reduces scores on the BDI-II. Mechanistic studies further
confirm that SCFAs enhance intestinal barrier function (44)
and hippocampal neurogenesis (23). Given the low cost and
high accessibility of fiber-rich foods, this mechanism is well-
suited for population-wide depression prevention.

e Zinc — intestinal barrier — anti-inflammatory pathway:

human RCTs (252) demonstrate that zinc supplementation (20

mg/day) upregulates the expression of intestinal tight junction

proteins (e.g., occludin) and reduces systemic inflammation.

Consistent results have been observed in both patients with

depression and those with IBD (344-346).

In contrast, mechanisms supported by weak or preliminary
evidence [e.g., the vitamin C/gut microbiota/depression axis (152,
153), and the calcium/gut microbiota/depression axis (218-220)]
require further validation. These mechanisms rely primarily on
small-sample studies or animal models and lack in vivo mechanistic
data from human subjects.

(2) Cross-nutrient common mechanistic gaps and future
research directions

Across all nutrient categories, three critical gaps in mechanistic
understanding persist and must be addressed in future research:
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o Quantification of

“microbiota-metabolite-depression”
thresholds: for example, the minimum amount of dietary
fiber required to elevate fecal butyrate concentrations to
levels that alleviate depressive symptoms remains unclear.
Current estimates range from 25 to 30 g/day (124), but
this has not been validated in populations with depression.
Similarly, the minimum abundance of Akkermansia or
Bifidobacterium needed to exert antidepressant effects has
not been defined, which limits the development of targeted
microbiota interventions.

Bidirectional interactions between nutrients and the gut
microbiota: most studies focus on the unidirectional effect
of “nutrients regulating the microbiota® [e.g., vitamin D
increasing the abundance of Roseburia (103)]. However,
the reverse interaction—“the microbiota modulating nutrient
bioavailability” [e.g., gut bacteria synthesizing B-group
vitamins (144) or converting inorganic selenium to organic
selenocysteine (265)]—has not been linked to depression. This
bidirectionality may explain why some nutrient interventions
fail [e.g., vitamin B12 supplementation is ineffective in patients
with gut microbiota dysbiosis (149)].

Synergistic effects of multiple nutrients: this review
addresses nutrients in isolation; however, real-world diets
involve nutrient combinations [e.g., the Mediterranean diet,
which combines fiber, Omega-3 fatty acids, and B-group
vitamins (287-289)]. It remains unknown whether these
nutrients act synergistically [e.g., fiber enhancing Omega-3
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absorption (294)] or antagonistically [e.g., high calcium
intake potentially reducing iron absorption (221)]. This gap
limits the design of effective dietary patterns for depression
prevention and intervention.
(3) Prevalent factors and
recommendations for study design optimization

Several confounding factors consistently obscure the causal

potential confounding

links between nutrients, the gut microbiota, and depression. Future
studies should adopt targeted designs to mitigate these issues:

e Confounding by coexisting nutrient deficiencies: mineral
deficiencies [e.g., zinc (344)] or vitamin deficiencies [e.g.,
vitamin D (169, 347-349)] often co-occur with protein
or fiber deficiencies. For example, individuals with iron
deficiency are more likely to have low vitamin C intake (241),
which impairs iron absorption. This means that observations

.

such as “iron supplementation improves depression (278)”
may actually reflect the effect of vitamin C. Future studies
should measure multiple nutrients simultaneously and use
multivariate models to isolate the independent effects of
individual nutrients.

e Confounding by lifestyle factors: high intake of beneficial
nutrients [e.g., Omega-3 fatty acids from fish (5, 350,
351)] is often associated with other healthy behaviors [e.g.,
regular physical activity, low alcohol consumption (286)].
Observational studies (27, 290) fail to fully adjust for these
factors, leading to overestimation of nutrient effects. RCTs
with rigorous lifestyle control [e.g., standardized physical
activity protocols] are needed to confirm causal relationships.

e Confounding by supplement excipients: many nutrient
supplements [e.g., calcium carbonate (221), zinc gluconate
(254)] contain excipients [e.g., lactose, maltodextrin] that
can independently alter gut microbiota composition. For
example, lactose may increase Bifidobacterium abundance
(221), which could be misattributed to the effect of calcium.
Future intervention studies should use placebo-controlled
designs with identical excipients to eliminate this bias.

However, this review has several limitations. First, it does
not clearly describe the relationships among dietary nutrient
intake, bacterial availability, and depressive symptoms. Second,
excessive mineral intake can also reduce gut microbiota abundance;
yet, information on the relationship between mineral intake
levels and the gut microbiota remains scarce, and insufficient
research currently limits our ability to clarify this relationship.
Additionally, research on the interactions between the gut
microbiota and nutrients is still inadequate, and the specific
mechanisms underlying these interactions remain unclear. Despite
these limitations, this review highlights that dietary nutrients can
modulate gut microbiota composition and alleviate depression-
like symptoms. A growing body of evidence supports the need to
explore links between dietary factors and mental disorders. Future
research should bridge the gap between nutritional neuroscience
and clinical evidence, optimize overall dietary patterns, and
investigate the mechanisms by which nutrients interact with the gut
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microbiota and central nervous system—ultimately improving and
preventing mental health through dietary interventions.

10 Conclusion

This review systematically analyzes the mechanisms, clinical
evidence, and research gaps underlying how nutrients improve
depression by regulating gut microbiota. Gut microbiota acts as a
common mediator for key nutrients [e.g., fiber, Omega-3, zinc],
which exert antidepressant effects via shared pathways (enhancing
beneficial bacteria, promoting SCFAs, reducing inflammation,
regulating the gut-brain axis) and nutrient-specific regulation [e.g.,
Omega-3 enriching Roseburia, fiber boosting SCFA-producing
bacteria]. Healthy dietary patterns (Mediterranean, DASH diets)
outperform single-nutrient supplementation due to synergistic
nutrient effects. Age and ethnicity influence intervention
responses: adolescents are sensitive to diet-induced dysbiosis,
the elderly need higher nutrient doses, Western populations
benefit more from Omega-3, and East Asians from fiber. Key
gaps include limited human RCTs for mechanism validation,
overlooked microbiota-nutrient bidirectional interactions, and
lack of personalized strategies. In conclusion, nutrients provide
safe non-pharmaceutical depression interventions [e.g., 2 weekly
oily fish, 25-30 g/day fiber]. Future research should focus on
mechanism quantification and precision to translate findings into
practice and reduce global depression burden.
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GLOSSARY

SCFA, short-chain fatty acid; ALA, alpha-linolenic acid;
MDD, major depressive disorder; CNS, central nervous system;
ENS, enteric nervous system; PRISMA, Preferred Reporting
Ttems for Systematic Reviews and Meta-Analyses; CNKI, China
National Knowledge Infrastructure; RCTs, Randomized controlled
trials; LAT1, L-amino acid transporter 1; ECs, Enterochromaffin
cells; GCPRs, G protein-coupled receptors; HDACs, histone
deacetylases; EPA, eicosapentaenoic acid; DHA, docosahexaenoic
acid; LC-PUFAs, long-chain polyunsaturated fatty acids; AA,
arachidonic acid; PLA2, phospholipase A2; PGE2, Prostaglandin
E2; COX, cyclooxygenase; LOX, lipoxygenase; SPMs, specialized
pro-resolving mediators; RvE1, resolvin E1; TLR4, toll-like receptor
4; IL-1B, Interleukin-1B; NSPs, Non-starch polysaccharides; RS,
Resistant starch; RIOS, Resistant/indigestible oligosaccharides;
MU, monomer unit; HMW, high-molecular-weight; MCT1,
monocarboxylate transporter 1; HPA, hypothalamic-pituitary-
adrenal; BL, Bifidobacterium longum NCC3001; IBS, irritable
bowel syndrome ROS, reactive oxygen species; DSS, dextran sulfate
sodium; RDA, Recommended Daily Allowance; PLP, pyridoxal
5-phosphate; KAT, kynurenine transaminase; KP, kynurenine
pathway; NAD+, nicotinamide adenine dinucleotide; NMDA,
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N-methyl-D-aspartate; CD, Crohn’s disease; RXR, retinoic acid
X receptor; VDREs, vitamin D response elements; AMPs,
antimicrobial peptides; Zn, zinc; Ca, calcium; Fe, iron; Mg,
Magnesium; IBD, inflammatory bowel disease; ZNF, zinc finger
transcription factors; MUC2, mucin 2; LPS, Lipopolysaccharides;
GPx, glutathione peroxidase; BDI-II, Beck Depression Inventory-
II; DPs, dietary patterns; UNESCO, United Nations Educational,
Scientific and Cultural Organization; MD, Mediterranean diet;
MEDAS, Mediterranean Diet Adherence Screener; QoL, quality of
life; GI, glycemic index; DASS, Depression Anxiety Stress Scales;
NHANES, National Health and Nutrition Examination Survey;
HGD, high-glucose diet; HFrD, high-fructose diet; EAR, estimated
average requirement; SSRIs, selective serotonin reuptake inhibitors;
HAM-D, Hamilton Depression Rating Scale; BMI, body mass
index; MBM, Mind-body medicine; CM, circular meditation; ANS,
autonomic nervous system; GBA, gut-brain axis; MEQ, Mindful
Eating Questionnaire; TPHI1, Tryptophan hydroxylase 1; TPH2,
tryptophan hydroxylase 2; PHQ-9, Patient Health Questionnaire-9;
PUFAs, Polyunsaturated fatty acids; FOS, Fructo - OligoSaccharide;
NLRP3, NLR family pyrin domain containing 3; CD14, Cluster of
Differentiation 14; GPR43, G protein-coupled receptor 43; Th17, T
helper cell 17; YPP, yoga plus probiotics; YPPB, yoga plus placebo;
P, Probiotics.
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