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Osteoporosis, characterized by reduced bone density and increased fracture

risk, faces limitations with conventional therapies due to adverse effects and

poor gut microbiota modulation. Emerging strategies leveraging probiotics

and bacterial extracellular vesicles (BEVs) offer novel therapeutic potential

by targeting the gut-bone axis. Engineered probiotics and next-generation

formulations enhance osteoprotection via immunomodulation, metabolite

production (e.g., SCFAs), and neuroendocrine regulation. BEVs, as biocompatible

nanocarriers, enable targeted delivery of osteogenic factors while circumventing

colonization challenges. Synthetic biology advances facilitate precision

engineering of probiotics and BEVs, improving therapeutic efficacy and

scalability. This review highlights pre-clinical and clinical progress, challenges

in standardization and safety, and future directions for microbiome-

based interventions to revolutionize osteoporosis management. Integrating

engineered probiotics with BEV technology promises transformative approaches

for bone health restoration.
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1 Introduction

Osteoporosis (OP) is a chronic bone disease that is characterized by a decrease in
bone mineral density and a deterioration in bone structure, leading to an increased risk
of fractures, especially in postmenopausal women (1). While conventional treatments,
including bisphosphonates, selective estrogen receptor modulators (SERMs), and calcium
and vitamin D supplementation, have been shown to effectively reduce fracture risk, they
are often associated with adverse side effects, such as gastrointestinal disturbances, atypical
fractures, and osteonecrosis of the jaw (2, 3). Moreover, these treatments do not address the
gut dysbiosis commonly observed in individuals with osteoporosis (4–6). This highlights
the urgent need for the accelerated development of novel pharmacological interventions
that minimize side effects. Such advancements have the potential to reshape the treatment
landscape for osteoporosis in the near future.
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Live beneficial bacteria, known as probiotics, are often used
as a complementary therapy (7). Over 1,000 clinical trials
have investigated probiotics for diverse pathologies, including
gastrointestinal, metabolic and chronic diseases (colorectal cancer
(8), multiple sclerosis (9); rheumatoid arthritis (10)), with mixed
therapeutic outcomes. Currently, probiotics such as Lactobacillus
reuteri (11), Lactobacillus paracasei (12), Bifidobacterium longum
(13) and Akkermansia muciniphila (AKK) (14) have been
shown to be potential targets for the treatment of osteoporosis.
While promising, clinical efficacy is often constrained by poor
gut colonization, inter-strain variability, dosage inconsistencies,
and dynamic host-microbe interactions (15). To address these
limitations, synthetic biology has emerged as a pivotal tool
for engineering probiotics with enhanced therapeutic precision
and functionality.

Next-Generation Probiotics (NGPs) leverage synthetic circuits
to sense microenvironmental cues and dynamically deliver
therapeutic payloads, such as enzymes for metabolic disorders
(e.g., phenylketonuria, hyperammonemia) or anti-inflammatory
molecules (16–18). These engineered systems also serve as in situ
diagnostics, secreting therapeutic proteins in response to disease
biomarkers (19).

Bacterial-derived extracellular vesicles (BEVs), phospholipid
bilayer nanostructures measuring 40−200 nm in diameter (20),
represent emerging nanoscale delivery platforms in biomedicine
due to their tiny structure, mild toxicity and good biocompatibility
(21). They are engineered to target bone tissue and can carry a
variety of substances, including miRNAs, DNA, proteins, cytokines
and other factors that regulate the progression of osteoporosis
(22). In contrast to the low productivity of mammalian EVs
(MEVs), BEVs derived from high-density batch-cultured probiotics
possess a rapid proliferative capacity, allowing them to be mass-
produced and tailored to synthetic biology (23). Particularly
within the gut-bone regulatory network, BEV-mediated therapeutic
strategies show remarkable capacity to modulate the onset and
progression of OP.

We summarize the progress of both key common and rare
probiotics in pre-clinical and clinical studies related to osteoporosis
and explore the potential clinical applications of the latest
engineering toolbox for bone health.

2 Osteoporosis

Osteoporotic fractures, a hallmark of systemic skeletal fragility,
disproportionately affect the hip and vertebrae but impose the
greatest socioeconomic burden through non-hip, non-vertebral
fractures, which account for the majority of incident cases (8,
9). Hip fractures—characterized by acute pain, immobility, and
high short-term mortality—pre-dominantly occur in women over
80 years, with global incidence showing marked geographical
disparities (> 10-fold variation) and an estimated 2.7 million
cases in 2010, half of which were potentially preventable through
osteoporosis mitigation (10, 20, 21). Vertebral fractures, the most
prevalent osteoporotic fractures, often evade clinical detection
yet serve as critical predictors of subsequent fragility fractures,
including hip fractures (14–16). While their heterogeneous
presentation (ranging from asymptomatic to debilitating)

complicates epidemiological analysis, standardized diagnostic
criteria are emerging to refine their classification and clinical
relevance (18, 19).

Notably, secular trends in fracture epidemiology reveal
diverging patterns: Hip fracture rates have declined in North
America but risen in Asia, whereas non-hip fractures exhibit less
consistent trajectories (21–23). These shifts likely reflect complex
interactions between lifestyle changes, urbanization, obesity trends,
and screening practices. Despite advances in understanding,
unmet needs persist in fracture prevention and global equity in
osteoporosis care, particularly given the substantial morbidity,
mortality, and economic costs linked to underdiagnosed vertebral
fractures (13, 17).

2.1 Bone remodeling and age-related
pathophysiology

The adult skeleton comprises cortical and trabecular bone,
with site-specific pre-dominance: Vertebrae are rich in trabecular
bone, while long bones primarily consist of cortical bone.
Bone remodeling—a tightly coupled process of resorption and
formation—occurs in discrete remodeling units. Orchestrated
by osteoclast-mediated resorption followed by osteoblast-driven
formation, this cycle renews the skeleton over ∼10 years while
maintaining equilibrium in healthy adults (24, 25) In contrast, bone
modeling, pre-dominant during skeletal development, decouples
resorption and formation to optimize bone geometry in response to
mechanical stress, persisting in adulthood under loading conditions
(26, 27).

Genetic factors account for 50–85% of bone mineral density
(BMD) variance, with genome-wide association studies (GWAS)
identifying > 100 loci linked to bone strength and fracture risk.
While most loci exert small polygenic effects, monogenic disorders
have elucidated critical pathways (e.g., RANK/RANKL/OPG, Wnt
signaling) governing bone remodeling and structural integrity (28).

2.2 Effects of osteoporosis drugs on
bone remodeling and modeling

Osteoporosis drugs exert their effects on bone through
distinct mechanisms, targeting either bone resorption or formation.
Antiresorptive drugs primarily inhibit osteoclast recruitment and
activity, reducing the rate of bone remodeling and allowing for a
modest increase in bone mineral density (BMD) (29). By decreasing
the number of remodeling units, these drugs reduce the negative
remodeling balance, leading to increased secondary mineralization
and preservation of bone mass and structure.

Denosumab, a monoclonal antibody targeting receptor
activator of nuclear factor κB ligand (RANKL), has shown
particular efficacy in improving cortical bone structure by
increasing thickness and decreasing porosity. This effect may
be due to its enhanced pharmacokinetic properties compared to
bisphosphonates, allowing better accessibility to cortical bone (30).

Anabolic drugs stimulate bone formation through both
remodeling and modeling processes. Teriparatide, a recombinant
parathyroid hormone, promotes modeling-based bone formation
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on cancellous, endosteal, and periosteal surfaces, particularly in
the early stages of treatment. However, the majority of its anabolic
effects in cancellous bone are achieved through remodeling with
overfilling of remodeling units (31, 32). In cortical bone, treatment
with teriparatide may initially increase total bone area and cortical
porosity, forming hypomineralized new bone. Despite these early
changes, long-term treatment has been associated with increased
bone strength and localized cortical thickness at mechanically
loaded sites (33, 34).

Romosozumab, a monoclonal antibody targeting sclerostin,
an osteocyte-derived inhibitor of bone formation, exhibits unique
anabolic effects. Early treatment with romosozumab induces
large increases in bone formation in cancellous and endocortical
bone, accompanied by a sustained reduction in bone resorption.
These effects lead to significant improvements in trabecular bone
volume, microarchitecture, and cortical thickness after 12 months
of treatment (35). Although animal studies suggest increased
modeling bone formation in response to sclerostin inhibition,
the relative contributions of remodeling and modeling to bone
formation in humans remain to be fully elucidated (34).

2.3 Adverse effects of osteoporosis
pharmacotherapies

Therapeutic interventions for osteoporosis, while effective
in fracture prevention, are associated with distinct adverse
effect profiles that necessitate careful risk-benefit evaluation.
Bisphosphonates, including alendronate and zoledronate, are
linked to gastrointestinal complications such as esophagitis
and gastric ulceration, particularly with oral formulations, due
to delayed mucosal healing exacerbated by gastroesophageal
reflux (36, 37). Intravenous zoledronate frequently induces
transient acute-phase reactions (30% incidence), characterized
by myalgia, fever, and cytokine-driven inflammation, which
typically resolve within days (38, 39). Although early studies
suggested a potential association with atrial fibrillation, subsequent
meta-analyses found no statistically significant risk (40–42).
Ocular adverse events, including uveitis (0.8–1.1%), occur
rarely but warrant patient counseling, as symptoms often
emerge within days post-infusion and respond to topical
therapies (43–45). Prolonged bisphosphonate use elevates
the risk of atypical femoral fractures (AFFs), with adjusted
relative risks of 1.70 (95% CI 1.22–2.37) in cohort studies,
disproportionately affecting Asian populations and escalating
with treatment duration beyond 3–5 years (46–48). Osteonecrosis
of the jaw (ONJ), though rare in osteoporosis (0.01–0.001%),
rises significantly in oncology settings (1–15%) due to high-
dose regimens, comorbid therapies (e.g., glucocorticoids,
antiangiogenics), and invasive dental procedures (49–52).
Pathophysiological mechanisms involve suppressed bone
remodeling, osteocyte apoptosis, and immune modulation via
γδ T-cell dysregulation (53–56).

Denosumab, a RANKL inhibitor, demonstrates comparable
antifracture efficacy but carries risks of hypocalcemia, necessitating
pre-treatment vitamin D optimization (57). While AFFs (1:10,000)
and ONJ remain uncommon in osteoporosis, extended use (7–
10 years) correlates with incremental ONJ incidence, albeit far

lower than in malignancy cohorts (57). Teriparatide, the sole
anabolic agent, exhibits favorable tolerability with transient nausea
and dizziness reported; rodent osteosarcoma findings have not
translated to human risk (58, 59). Selective estrogen receptor
modulators (SERMs), notably raloxifene, reduce vertebral fractures
but increase thromboembolic events and fatal stroke risk, offsetting
benefits in non-osteoporotic populations (60, 61).

Mitigation strategies emphasize pre-therapeutic dental
evaluations to minimize ONJ risk, vigilance for prodromal AFF
symptoms (e.g., thigh pain), and individualized duration limits
for antiresorptives (62, 63). Clinicians must weigh skeletal benefits
against context-specific harms, particularly in patients with
comorbidities or extended treatment histories.

2.4 Pathogenesis of osteoporosis

2.4.1 Gut microbiota in osteoporosis
The gut microbiota (GM), a diverse consortium of over

1,000 microbial species, emerges as a pivotal regulator of skeletal
homeostasis. Comparative studies in germ-free (GF) mice reveal
elevated trabecular bone mineral density (BMD), underscoring the
GM’s role in physiological bone remodeling (64). Mechanistically,
GM depletion attenuates osteoclastogenesis via reduced T-cell
proliferation and proinflammatory cytokines (TNF-α, IL-6), while
butyrate—a microbial-derived short-chain fatty acids (SCFAs)—
enhances bone formation by stimulating osteocalcin secretion
and Wnt10b signaling through Treg-CD8 + T cell crosstalk
(65, 66). Intriguingly, butyrate supplementation rescues the
anabolic effects of intermittent parathyroid hormone (iPTH) in
microbiome-depleted models, restoring trabecular bone volume
(67). Conversely, continuous PTH (cPTH)-induced bone loss
requires GM-mediated expansion of pro-osteoclastic TNF + T and
Th17 cells, highlighting the microbiota’s dual role in bone dynamics
(68). These findings position GM modulation as a therapeutic
frontier for osteoporosis (OP).

2.4.2 Autophagy dysregulation: a nexus of bone
cell dysfunction in osteoporosis

Autophagy, a conserved cellular recycling process, critically
balances bone formation and resorption. In osteocytes, fluid
shear stress enhances autophagic flux, preserving cellular viability
under mechanical strain (69). Conversely, RANKL-induced
osteoclast differentiation necessitates autophagy activation; its
pharmacological inhibition (e.g., via chloroquine) mitigates
glucocorticoid-driven bone loss by modulating RANKL/OPG
ratios (70). Aging exacerbates OP pathogenesis through declined
autophagy in bone marrow mesenchymal stem cells (BMMSCs),
skewing differentiation toward adipogenesis via ROS/p53 pathways
(71). Mitophagy defects further impair BMMSC function, linking
mitochondrial dysfunction to senescent phenotypes (72). Thus,
autophagy modulation represents a dual-edged yet promising
target for OP intervention.

2.4.3 Cellular senescence and the aging skeleton
Cellular senescence, marked by irreversible cell-cycle arrest and

senescence-associated secretory phenotype (SASP) production,
accumulates in aged bone microenvironments. Senescent
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osteoblasts, osteocytes, and immune cells exhibit elevated
p16Ink4a expression, correlating with trabecular deterioration
(73). Senolytic strategies—genetic ablation or pharmacological
agents like ruxolitinib—reduce senescent burden, improving bone
microstructure and strength in aged models (74). GM dysbiosis in
senescence-accelerated mice parallels β-galactosidase upregulation
and IL-17A-mediated BMMSC dysfunction, implicating microbial-
metabolic crosstalk in age-related OP (71). Iron overload
exacerbates senescence via ROS overproduction, reversible by
chelators like Desferal R©, which restore BMMSC osteogenic
capacity (75). Targeting senescence thus offers a viable route to
counteract OP progression.

2.4.4 Therapeutic horizons: bridging mechanisms
to clinical translation

Emerging therapies exploit GM modulation, autophagy
enhancement, and senolysis to restore bone homeostasis.
Probiotics and SCFAs supplementation may rectify GM
dysbiosis, while autophagy inducers (e.g., rapamycin analogs)
could rejuvenate BMMSC function (64). Senolytics, though
nascent, show pre-clinical efficacy in eliminating senescent
cells and mitigating SASP-driven bone loss (76). Animal
models, particularly ovariectomy (OVX) and glucocorticoid-
induced OP, remain indispensable despite limitations in
replicating human pathophysiology (64, 77). Standardizing these
models and integrating multi-omics approaches will accelerate
translational breakthroughs.

3 Probiotics

Probiotics, when administered at physiologically effective
concentrations, confer health benefits to the host organism,
positioning them as a key focus of public health research (78).
The expanding comprehension of dynamic crosstalk between
enteric microbiota and host immune homeostasis has propelled
investigations into probiotics’ immune-homeostatic regulatory
functions, now constituting a pivotal research frontier in
immunometabolism (79). Over the past several decades, the impact
of probiotics on human health has been extensively studied by
researchers, as well as the food and drug industries.

The concept of probiotics was initially associated primarily
with beneficial bacteria. However, recent advancements have
expanded the definition of probiotics to include not only
bacteria but also other microorganisms, such as yeasts (80).
Probiotics, including combined Bifidobacterium, Saccharomyces
boulardii sachets, and Bifid.Triple Viable Capsules, are
widely used in the treatment of diarrhea and various other
diseases, particularly in children. A notable example is
Saccharomyces boulardii, a yeast extensively studied for its
positive effects on gastrointestinal health (81). Industrial-
scale probiotic production pre-dominantly utilizes lactic acid
bacteria (LAB) genera (Leuconostoc, Lactobacillus, Lactococcus,
Streptococcus, and Enterococcus), spore-forming Bacillus species,
Bifidobacterium spp., Propionibacterium strains, and select
non-pathogenic Escherichia coli (E. coli) variants (82). The
enteroprotective mechanisms of probiotics operate through
enhancing mucosal barrier integrity via stimulation of enterocyte

mitogenesis, and maintaining selective paracellular transport
through stabilization of intercellular junction complexes (83).
Furthermore, Probiotics further strengthen the gut’s defenses
by stimulating the production and secretion of antimicrobial
peptides (84).

Lactic acid bacteria (LAB), a ubiquitous cluster of Gram-
positive, non-pathogenic 2microorganisms, are prevalent in
the human gut and fermented foods, and they are generally
regarded as safe. Lactobacilli, a prominent subgroup of LAB,
are frequently used in functional foods to regulate glucose
and lipid metabolism, maintain gut microbial balance,
and enhance host immune function (85, 86). Well-known
strains include Lactobacillus acidophilus, Lactobacillus casei,
Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus
lactis, Bifidobacterium longum, Bifidobacterium infantis and
Streptococcus thermophilus (87). These bacteria have a long
history in food fermentation, enhancing quality, flavor, texture,
and promoting beneficial biological activities. For example,
fermentation with Lactobacillus plantarum WLPL01 increases
the organic acid content and reduces the bitterness of Artemisia
(88). Additionally, fermentation with Bifidobacterium infantis
significantly altered the volatile and non-volatile components of
barley juice and improved its antioxidant capacity (89). The advent
of metabolomics technology has markedly heightened interest
in the study of LAB-secreted bioactive compounds, including
SCFAs, bacteriocins, and extracellular polysaccharides (EPS),
due to their acknowledged significance in host physiology. The
critical role of LAB in mammalian biology has been confirmed by
studies conducted on sterile mice and antibiotic-treated mouse
models (90, 91). Mechanistically, LAB execute their probiotic
functions through three fundamental pathways: Alleviation
of oxidative stress, preservation of intestinal epithelial barrier
architecture, and homeostatic regulation of gut microbial
ecology (86).

3.1 Genetic engineering paradigms in
lactic acid bacteria

Plasmid-based systems remain foundational for LAB
engineering yet face intrinsic constraints including low
transformation efficiency due to Gram-positive cell wall barriers,
strain-specific restriction-modification systems, and plasmid
instability (92). Shuttle vectors like pTRKH2 and pLEM415-
ldhL-mRFP1 circumvent these limitations through E. coli-LAB
compatibility, enabling high-copy replication and functional gene
expression tracking in vivo (93, 94). However, antibiotic selection
pressures risk genomic mutation and microbiome dysbiosis,
motivating chromosomal integration strategies. Early approaches
utilized Rec-independent insertion (pTRK327) or homology-
directed systems (pTRK685/pGK12) for stable gene insertion
(95, 96).

The Cre-lox system advanced precision editing by enabling
site-specific recombination, though its utility is constrained by off-
target effects and screening complexity (97). CRISPR-Cas platforms
now dominate LAB engineering through multiplexed editing
capabilities. Pioneering work in Lactobacillus reuteri demonstrated
Cas9-mediated double-strand break repair with homology-directed
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templates, while innovations like the all-in-one pNZDual plasmid
reduced metabolic burden in Lactococcus lactis (98, 99). CRISPRi
further enables tunable gene regulation, synergizing with the well-
characterized NICE system for nisin-inducible protein secretion
(100, 101). These tools collectively facilitate proteome optimization
and metabolic pathway engineering while mitigating escape
mutations through lethal selection (102, 103).

3.2 Precision probiotics

The burgeoning field of probiotics has transitioned from
generalized formulations toward precision therapeutics, driven
by the recognition of individual variability in gut microbiota
composition, host physiology, and microbial interaction networks
(13, 42, 43). Conventional probiotics, while beneficial for
broad-spectrum dysbiosis, often fail to address patient-specific
pathologies due to heterogeneous factors such as age, dietary
habits, and immune responses. Precision probiotics address this
gap by leveraging strain-specific molecular mechanisms—effector
proteins, metabolites, and host-microbe signaling pathways—to
restore targeted dysbiotic states.

Notable examples illustrate this mechanistic specificity:
Precision strategies exploit molecular effectors such as Lactobacillus
helveticus and Bifidobacterium longum-derived Runx2/BMP-2
upregulation to enhance osteogenesis (104, 105), andLactobacillus
plantarum mediated elevation of vitamin D receptor coupled with
cytoprotective autophagy induction, synergistically promoting
osteoblast activity (106, 107) while Faecalibacterium prausnitzii
reinforces intestinal barrier integrity via butyrate production,
mitigating inflammatory conditions (48). Similarly, Bacillus
amyloliquefaciens demonstrates anti-osteoporosis effects mediated
by the increased IGF-1 levels (108). These findings underscore
the necessity of multi-omics integration (genomics, proteomics,
metabolomics) and machine learning algorithms to decode strain-
host synergies, enabling predictive selection of probiotics aligned
with individual microbial ecosystems.

Advancements in computational biology facilitate patient
stratification based on microbial biomarkers and clinical
phenotypes, allowing tailored therapeutic regimens. AI-driven
models analyze genomic signatures, metabolite profiles, and host
metadata to predict colonization efficacy and monitor disease
progression dynamically (45, 49). However, challenges persist in
standardizing omics data across diverse cohorts and establishing
universal functionality biomarkers. Collaborative efforts bridging
clinical microbiology, bioinformatics, and systems biology are
critical to realizing precision probiotics’ translational potential.

3.3 AI/ML-Driven advancements in
probiotic research

Artificial intelligence (AI) and machine learning (ML) are
revolutionizing probiotic development by enhancing precision
across in vitro, in silico, in vivo, and clinical research paradigms.
These technologies accelerate strain identification, functional
characterization, and therapeutic optimization while minimizing
human error and resource expenditure (109, 110).

3.3.1 Strain screening and functional decoding
AI models like ABIOME simulate gut ecosystems using

adaptive regression algorithms (MARS), identifying synergistic
probiotic combinations while detecting antagonistic interactions
(e.g., competitive amino acid depletion between L. reuteri and
Saccharomyces boulardii) (111, 112). Concurrently, ML predicts
excipient compatibility, optimizing formulations—such as 111
pharmaceutical agents enhancing L. paracasei viability (113).

ML algorithms enable high-throughput discrimination of
probiotic candidates from non-probiotic microbes. Platforms like
iProbiotics employ SVM classifiers and k-mer feature selection
to achieve species-specific probiotic identification (110), while
ANN models demonstrate 90% accuracy in tRNA sequence-based
classification (112). Beyond taxonomy, ML integrates multi-omics
data—such as transcriptomic networks of Lactobacillus reuteri—
to elucidate strain-specific mechanisms (e.g., antimicrobial gene
clusters) (114). Such in silico predictions synergize with in vitro
assays; for instance, supervised ML screening of 144 LAB strains
identified four Lactobacillus isolates with potent antimicrobial
activity (115).

3.3.2 Pre-clinical and clinical integration
In preclinical models, AI enhances pathological analysis

efficiency, exemplified by deep learning-driven histopathological
interpretation in murine colitis (116) and tumor phenotyping
in lung adenocarcinoma (114). Clinically, AI/ML holds promise
for stratifying patient populations and predicting therapeutic
outcomes. A landmark study applied ML to 70,000 IBD patients,
achieving robust prediction of disease progression and risk
scores (117). While randomized trials validate probiotic efficacy—
Bacillus subtilis against S. aureus colonization (118), microbiota
modulation in T2D (119)—AI-augmented clinical frameworks
remain underexplored.

Bridging AI with multi-omics and clinical metadata will refine
predictive models for personalized probiotic therapies. Prioritizing
AI-driven trial designs could optimize dosing regimens, monitor
real-time microbiota shifts, and forecast host responses, ultimately
accelerating translational outcomes.

3.3.3 AI/ML-Driven probiotics for osteoporosis:
decoding molecular mechanisms to clinical
translation

The anti-osteoporotic properties of probiotics stem from
molecular interactions mediated by surface proteins and
metabolites. Clinically robust lactic acid bacteria (LAB) exhibit
bile tolerance (via transporter activity) (120) and high adaptability
to gastrointestinal stressors (acid, osmolarity) (121), while their
surface proteins govern mucosal adhesion (immunomodulation)
(78) and pathogen exclusion (122). A paradigm is L. rhamnosus
GG, whose P40/P75 proteins enhance intestinal barrier integrity
by activating epidermal growth factor receptors (EGFR) (123).
These proteins synergize with bacteriocins (lactacin B, bifidocin)
and SCFAs to suppress pathogens (S. aureus, H. pylori), modulate
gut ecology, and ultimately ameliorate osteoporosis through
microbiota-bone axis regulation (124, 125).

Despite omics technologies (genomics, proteomics,
metabolomics) mapping these interactions, clinical translation
remains hindered by data complexity (126). AI/ML bridges
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this gap by decoding multidimensional patterns: DeepFilter
resolves uncharacterized bacterial proteomes via spectral analysis
(127); ML models predict diet-driven shiftsin Lactobacillus and
Ruminococcus populations (128); and CNN-based TaxoNN
correlates microbiome profiles with osteoporosis risk (129).

Although direct studies on AI-guided probiotic screening for
osteoporosis remain in their nascent stages, and no direct literature
currently exists on AI/ML-based strain selection for osteoporosis
treatment, interdisciplinary approaches suggest novel pathways
with translational potential. By transforming data into predictive
biomarkers, AI/ML holds promise for enabling precision selection
of probiotics with optimized stability, therapeutic efficacy, and
bone-protective potential in the future, paving the way for tailored
microbiome interventions in osteoporosis management.

3.4 Challenges

Despite their therapeutic promise, probiotics face clinical
implementation barriers due to host non-responsiveness (36%
efficacy in diarrhea trials) and heterogeneous outcomes driven by
individual variations in diet, genetics, and microbiota composition
(130). Personalized approaches require integration of multi-omics
data (genomics, proteomics, metabolomics) and clinical metadata
to identify microbial biomarkers and replenish underrepresented
taxa—a process hindered by invasive sampling methods and
incomplete gut microbiome profiling (131, 132).

4 Probiotic-driven mechanisms in
osteoporosis modulation

4.1 Association between gut microbiota
and bone formation

The human skeleton undergoes continuous remodeling
through coupled actions of osteoclasts, which resorb aged bone,
and osteoblasts, which deposit new bone. Tight regulation of this
balance is critical to prevent pathological changes in bone mass or
quality (133). Emerging evidence implicates the gut microbiome
as a novel modulator of skeletal homeostasis, potentially through
microbial metabolites that influence systemic pathways (134, 135).

It is through the modulation of tryptophan metabolism that
gut bacteria play a crucial role in skeletal homeostasis. Bacterial
indoleamine-2,3-dioxygenase-1 (IDO-1) initiates tryptophan
catabolism, producing kynurenine (an aryl hydrocarbon receptor
(Ahr) ligand that promotes regulatory T-cell (Treg) differentiation
and interleukin-22 (IL-22) secretion by group 3 innate lymphoid
cells (ILC3s), thereby modulating inflammatory responses)
(136). Mice fed a tryptophan-deficient diet exhibited altered gut
microbiota composition and compromised intestinal immunity,
underscoring the importance of tryptophan-derived metabolites
in immune-bone crosstalk (136). While these findings highlight
microbial metabolic influence, the precise origins and identities of
Ahr ligands remain unresolved.

Insulin-like growth factor 1 (IGF-1) represents another
critical mediator of the gut-bone axis. Germ-free (GF) mice

colonized with specific pathogen-free (SPF) microbiota showed
elevated serum IGF-1 levels—produced pre-dominantly in liver
and adipose tissue—accompanied by increased bone formation
and resorption markers (137). Conversely, antibiotic-induced
microbiota depletion reduced IGF-1 production and suppressed
osteogenesis, reinforcing microbiota-dependent regulation of bone
metabolism (137).

Hydrogen sulfide (H2S), generated by both host
gastrointestinal cells and gut microbes, further contributes to
skeletal homeostasis. GF mice demonstrated diminished serum
and intestinal H2S levels, suggesting microbial origin of systemic
H2S (137). Dysregulated H2S impairs calcium flux via altered
sulfhydration of TRP calcium channels, disrupting kinase signaling
essential for osteoblast/osteoclast differentiation from bone
marrow mesenchymal stem cells (138, 139).

Clinical evidence supports these mechanistic insights.
Mendelian randomization studies link Clostridiales and
Lachnospiraceae taxa to bone mass alterations (140). In a
cohort of 181 participants, Clostridium Cluster XIVa (Firmicutes
phylum) abundance correlated with osteopenia/osteoporosis
prevalence (140). Similarly, postmenopausal women with
osteoporosis/osteopenia exhibited reduced gut microbiota diversity
and elevated Lachnospira pectinoschiza (Lachnospiraceae family)
levels compared to controls (140). These findings collectively
position gut microbiota composition as a potential biomarker and
therapeutic target for bone disorders.

4.2 Probiotic-mediated attenuation of
inflammatory and oxidative pathways in
osteoporosis

The gastrointestinal tract, housing the body’s largest immune
cell repertoire, plays a pivotal role in bone metabolism through
cytokine-mediated regulation of bone remodeling (141, 142).
Emerging evidence reveals that intestinal dysbiosis, particularly
antibiotic-induced microbiota alterations, modulates systemic
inflammation by reducing lipopolysaccharide (LPS) levels
and associated inflammatory cascades (143). This gut-bone
axis presents promising therapeutic targets, with probiotics
demonstrating multifaceted regulatory capacities.

Mechanistically, probiotic-derived bacteriocins attenuate
inflammatory responses through COX-2-mediated modulation
of NLRP3 inflammasome and NF-κB signaling pathways (144).
Such anti-inflammatory actions not only preserve tissue integrity
but also suppress osteoclast differentiation, counteracting the
RANKL/OPG imbalance characteristic of osteoporosis-associated
dysbiosis (38). Notably, specific probiotic strains exhibit strain-
specific benefits: Lactobacillus rhamnosus enhances mucosal
immunity through IgA-mediated pathogen exclusion (145, 146),
while EPS-producing Bifidobacterium 35624 preferentially inhibits
osteoclast precursor fusion through IL-17 regulation (147).

The aging process exacerbates bone loss through redox
imbalance mechanisms. Postmenopausal estrogen decline impairs
antioxidant defenses (reduced superoxide dismutase, folate, and
GSH-Px activity), leading to ROS accumulation that disrupts
bone homeostasis via MAPK, NF-κB, and Wnt/β-catenin pathway
dysregulation (148–151) Crucially, gut microbiota composition
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modulates mitochondrial biogenesis through CREB-dependent
glutathione synthesis, with Firmicutes/Bacteroidetes ratio
alterations potentially exacerbating ROS-mediated bone resorption
(152). Probiotic metabolites like urolithin A demonstrate
therapeutic potential by simultaneously reducing osteoclast
NLRP3 inflammasome activation (via caspase-1 and GSDMD
suppression) and enhancing antioxidant capacity (153–155). After
discussing the immunomodulatory role of probiotics, let’s now
turn to their impact on the neuroendocrine system, which also has
significant implications for bone health.

4.3 Neuroendocrine modulation

The bidirectional brain-gut axis integrates neural, endocrine,
and immune pathways between the central nervous system and
gastrointestinal tract (156, 157). Sensory neurons, gut hormones
(e.g., 5-HT, GABA), and microbial metabolites mediate this
crosstalk, with emerging evidence linking these interactions to bone
homeostasis through osteocyte modulation (158–163). Probiotics
demonstrate dual regulatory capacity: They restore gut microbiota
equilibrium while influencing enteric nervous system activity,
vagal signaling, and hypothalamic-pituitary-adrenal (HPA) axis
dynamics—mechanisms potentially relevant to bone metabolism
via neurotransmitter-mediated osteocyte regulation (164–167)
(Figure 1).

4.3.1 Serotonergic modulation
Gut-derived serotonin (g5-HT), synthesized from tryptophan

in enterochromaffin cells, exerts site-specific effects on bone
remodeling. Microbial metabolites critically modulate this
pathway: Short-chain fatty acids upregulate tryptophan
hydroxylase 1 (TPH1) to enhance g5-HT production, while
specific gut bacteria (e.g., Clostridium, Bacteroides) metabolize
tryptophan into indole derivatives that suppress g5-HT
levels (168–174). This microbial-g5-HT crosstalk influences
osteoblastogenesis through 5-HT1B receptor activation, with
altered serotonin transporter (SERT) expression potentially
disrupting bone-microbiome homeostasis.

4.3.2 Adrenergic modulation
Norepinephrine (NE) from sympathetic neurons interacts

with gut microbiota through cAMP-PKA-pCREB signaling, with
elevated NE levels correlating with bone density suppression (175–
177). Germ-free models reveal microbiota-dependent NE synthesis,
as Clostridium colonization restores cecal NE concentrations (178).
This microbial-neuroendocrine interplay suggests probiotics may
modulate sympathetic tone through HPA axis regulation, though
mechanistic details require further elucidation.

4.4 Endocrine modulation

Insulin-like growth factor 1 (IGF-1) serves as a central regulator
of bone homeostasis through dual mechanisms: Stimulating
osteoblast-mediated matrix synthesis and suppressing osteoclastic
resorption (179). Emerging evidence highlights probiotics as potent
modulators of IGF-1 bioactivity, offering therapeutic potential for

osteoporosis. IGF-1 enhances bone anabolism by upregulating
type I collagen synthesis, alkaline phosphatase activity, and
osteocalcin expression while inhibiting collagen degradation (180,
181). Systemically, it coordinates mineral metabolism through
renal phosphate reabsorption and calcitriol-mediated intestinal
calcium/phosphate absorption (182).

Notably, specific gut microbiota strains exhibit strain-
dependent capacity to activate the growth hormone/IGF-1 axis.
Lactobacillus plantarum strains differentially enhance growth
parameters in juvenile mammals, with LpWJL demonstrating
superior efficacy in elevating hepatic IGF-1 expression and
butyrate synthesis (183, 184). Mechanistic studies reveal that
Lactobacillus reuteri attenuates diabetic bone loss via Wnt10b/IGF-
1 crosstalk (185) while Bacillus amyloliquefaciens restores growth
in malnourished models by amplifying nutrient absorption and
mucosal immunity through GH/IGF-1 activation (108). SCFAs-
producing taxa (e.g., Rikenellaceae, Clostridiales) further synergize
this axis (186).

Of particular interest, Bifidobacterium species exhibit robust
osteogenic effects. B. longum subsp. infantis CCFM1269
significantly elevates serum IGF-1 (P < 0.05) and osteogenic
markers (OPG, osteocalcin) across sex and age groups,
accompanied by increased IGFBP3 levels—a critical determinant
of IGF-1 bioavailability (187).

4.5 Microbiota-derived metabolites
modulation

4.5.1 SCFAs and bone metabolism
SCFAs—primarily carboxylic acids with short hydrocarbon

chains—are synthesized by the gut microbiota and can translocate
from the gastrointestinal tract into systemic circulation. Once
in circulation, SCFAs serve as pivotal signaling molecules in
metabolism, immunity, and endocrine regulation (188–191, 192).
Although early research mainly focused on the interactions of
SCFAs with organs such as the liver, brain, pancreas, and kidneys,
emerging evidence now suggests that SCFAs also play an important
role in regulating bone metabolism (137, 191).

4.5.2 Mechanisms by which SCFAs regulate bone
metabolism

The mechanisms through which SCFAs regulate bone
metabolism encompass the following: (1) Facilitating intestinal
calcium absorption: SCFAs serve as an energy source for intestinal
epithelial cells, maintaining barrier integrity. They enhance
intestinal villus structure, increase epithelial surface area, and
promote calcium absorption by improving the paracellular
pathway and reducing pH in the intestinal lumen, which increases
mineral solubility and supports bone formation (188, 193). (2)
Modulating IGF-1 regulation: Another fundamental mechanism
(137). (3) Regulating phytoestrogens: Gut bacteria, such as
Bifidobacterium and Lactobacillus, metabolize phytoestrogens into
compounds that bind estrogen receptors, promoting osteoblast
proliferation, differentiation, and inhibiting osteoclast activity,
thereby increasing bone mineral density (187, 194–196). (4)
Inhibition of histone deacetylase (HDAC) activity: Butyrate
exhibits HDAC inhibitory effects, facilitating the development of
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FIGURE 1

Probiotics modulate bone formation via gut-brain axis and neurotransmitters. NCC, enterochromaffin cell; TPH1, tryptophan hydroxylase 1; SCFA,
short chain fatty acid; IAA, indoleacetic acid; 5-HT, 5-hydroxytryptamine; CNS, central nervous system; HPA axis, hypothalamic–pituitary–adrenal
axis; SNS, sympathetic nervous system. Created in BioRender. Wenshuo, D. (2025) https://BioRender.com/nt3qm3r.

Foxp3 + regulatory T cells (Tregs), and contributing to immune
system homeostasis (197, 198). (5) Interaction with G protein-
coupled receptors (GPCRs): SCFAs modulate bone metabolism by
reducing intracellular cyclic adenosine monophosphate (cAMP)
levels, activating immune responses, promoting Treg proliferation,
suppressing intestinal inflammation, and inhibiting osteoclast
differentiation (199). (6) Regulation of 5-HT synthesis and release:
SCFAs and secondary bile acids (2BAs) regulate 5-HT synthesis and
release from enterochromaffin cells (ECCs), which interact with
osteocytes to suppress osteoblast proliferation primarily through
the activation of 5-HT1B receptors on preosteoblasts (200). (7)
Vitamin D production and parathyroid hormone (PTH) secretion:
Promote vitamin D production while inhibiting parathyroid
hormone (PTH) secretion (201).

4.5.3 Phytoestrogen metabolism
Recent research has highlighted several nutrients with potential

to alleviate osteoporosis, with phytoestrogens being particularly
notable (202, 203). Phytoestrogens are polyphenolic compounds
found in plants such as soybean and flaxseed. They resemble
mammalian estrogens structurally and can exert estrogen-like
effects in biological systems (204). These compounds are primarily
categorized into isoflavones, ellagitannin, and lignans, which
undergo metabolism by gut bacteria to form more biologically
active compounds like equol, urolithin, and enterolipin (205).

These metabolites exhibit enhanced estrogenic/antiestrogenic
and antioxidant activities in comparison to their precursors (206).
Furthermore, they possess anti-inflammatory, anti-proliferative,

and pro-apoptotic effects (207). Studies have demonstrated that
intestinal bacteria such as Bifidobacterium and Lactobacillus
can metabolize isoflavones into equol, which mimics estrogen
activities (208, 209). Equol bind to estrogen receptors ERα

and ERβ, stimulates the differentiation of mesenchymal stem
cells into immature osteoblasts, impedes the differentiation and
activation of osteoclasts, induces their apoptosis, and restores the
equilibrium between bone formation and resorption (210–213).
Ellagitannin can be converted by gut bacteria, like Clostridium
leptum and Ruminococcus bromii, into urolithin, a compound
with antioxidant properties that may reduce inflammation,
promote bone formation, and inhibit bone resorption (214–216).
Additionally, Clostridium, Klebsiella, and Collinia participate in
the conversion of lignans into enterolipins (especially enterodiol
and enterolactone), which regulate hormone levels, particularly
estrogen, and promote bone health (196, 217). However, it is
important to note that the complex structure of the gut microbiota
is critical for proper lignan metabolism. For instance, Eggerthella
lenta does not independently convert secoisolariciresino (SECO)
to enterolactone but does so in co-culture with Blautia producta
(218, 219).

4.6 Gene expression modulation

Genes associated with bone calcification and remodeling -
including SPARC (secreted protein acidic and cysteine-rich),
the osteogenic master transcription factor RUNX2, and bone
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morphogenetic protein 2 (BMP-2) - are critical regulators of
skeletal development (Figure 2). Emerging evidence indicates
that probiotic interventions can modulate their expression to
influence osteoporosis progression (105, 220). Specifically, SPARC
functions as a calcium-binding matrix protein that facilitates bone
mineralization through transcriptional activation of calcification-
related targets during tissue repair and remodeling processes (221,
222).

Clinical investigations by Parvaneh et al. revealed that
Bifidobacterium longum supplementation upregulated SPARC
and BMP-2 expression, corresponding with increased serum
osteocalcin (a bone formation marker) and decreased C-terminal
telopeptide of type I collagen (CTX, a bone resorption indicator)
(105). The Wnt signaling pathway, particularly through its key
ligand Wnt10b, further contributes to osteoblast regulation
and bone homeostasis (223). Mechanistically, probiotics
enhance osteogenic Wnt10b production via butyrate-mediated
differentiation of regulatory T cells (Tregs) (224). Supporting this
pathway, Zhang et al. demonstrated that Lactobacillus reuteri
administration prevented Wnt10b signaling suppression and
maintained osteoblast activity in type 1 diabetic mice, establishing
a direct association between Wnt10b dysregulation and diabetic
osteoporosis progression.

5 Conventional probiotics

Emerging pre-clinical studies delineate a paradigm shift in
osteoporosis management through targeted microbial modulation.
Conventional probiotics (Lactobacillus, Bifidobacterium)
demonstrate conserved osteoprotective mechanisms across
animal models, including suppression of osteoclastogenesis via
TNF-α/IL-1β inhibition and enhancement of intestinal barrier
integrity through ZO-1/occludin upregulation (225–227). These
findings align with Saccharomyces species’ capacity to attenuate
bone resorption through RANKL/IL-17 axis modulation (228),
and Bacillus strains’ dual action in T-cell polarization rebalancing
and vitamin D metabolism potentiation (229, 230).

5.1 Lactobacillus

Although representing a minor proportion of gut microbiota
(< 10% in duodenum, < 1% in colon) (231, 232), Lactobacillus
species emerge as critical modulators of bone homeostasis through
their unique acid tolerance and S-layer protein-mediated intestinal
colonization (233, 234). Clinical evidence underscores their
therapeutic potential: A landmark randomized trial (n = 249)
demonstrated that tri-strain Lactobacillus supplementation
preserved lumbar bone mass in postmenopausal women via WNT
pathway modulation (WNT16, sFRP4, Wnt10b) (235), establishing
a paradigm for microbiota-targeted interventions.

5.1.1 Mechanistic interplay between lactobacilli
and skeletal system

Lactobacilli orchestrate bone remodeling through three
synergistic axes. First, their capacity to produce short-chain
fatty acids enhances mineral bioavailability, exemplified by

Lactobacillus plantarum-mediated 10% elevation in Caco-2
calcium absorption through vitamin D receptor upregulation
and transcellular transport potentiation (107, 236). Second,
lactobacilli reinforce intestinal barrier integrity via species-
specific mechanisms: L. plantarum induces dose-dependent tight
junction reorganization in colonic epithelia (237–239), while
L. rhamnosus ameliorates mucosal damage through Th17/Treg
balance restoration and inflammatory cytokine suppression (240).
Third, direct osteogenic modulation occurs via strain-dependent
signaling—L. helveticus upregulates Runx2/BMP-2 expression and
serum osteocalcin levels (105), whereas L. plantarum stimulates
pyrazine synthesis to activate osteogenic genes (OSX, osteocalcin)
(106, 241).

5.1.2 Clinical heterogeneity and therapeutic
implications

Divergent clinical outcomes highlight the complexity of
lactobacilli-bone interactions (Table 1). While L. reuteri NCIMB
30242 significantly elevated serum 25(OH)D in adults (242),
its effects on bone density remain context-dependent. Notably,
a 12-month RCT of L. reuteri 6,475 in osteopenic elderly
women demonstrated improved trabecular bone mineral density
(Tb.BMD: + 2.1% vs. −1.8% in placebo, P = 0.03) through
gut microbiota modulation (a Faecalibacterium, ↓ Escherichia;
q < 0.05) (11), yet a subsequent multi-omics analysis by Li
et al. on the same cohort revealed non-responders exhibited
detrimental microbial shifts, including enrichment of Escherichia
coli (log2FC = 3.7, adjusted P = 0.04) and upregulated biofilm
formation (e.g., arcA, csgA; P < 0.01), suggesting non-canonical
pathways (243). Intriguingly, L. acidophilus-natto combinations
paradoxically increased femoral calcium despite reducing serum
levels, emphasizing tissue-specific bioavailability (236). These
discrepancies underscore the necessity to delineate strain-specific
pharmacodynamics and host-microbe crosstalk.

5.2 Bifidobacterium

As keystone commensals within gut microbiota,
Bifidobacterium species (B. longum, B. adolescentis, B. bifidum)
demonstrate emerging potential in osteoporosis intervention
through multimodal biological pathways (244). Clinical evidence
reveals that B. longum supplementation enhances vitamin D
bioavailability and calcium absorption, with a phase III trial
demonstrating significant elevation of serum vitamin D3 and
reduction of procalcitonin in postmenopausal women receiving
Bifidobacterium-calcitriol co-therapy versus controls (229,
245, 246). These effects are mechanistically linked to TLR2-
dependent osteoclast inhibition mediated by B. bifidum-derived
exopolysaccharides (247), alongside immunomodulatory capacity
to suppress proinflammatory cytokine networks (248).

5.2.1 Prebiotic synergy and ecological modulation
The therapeutic landscape extends beyond direct probiotic

administration to encompass prebiotic strategies that selectively
enrich endogenous Bifidobacterium populations. Phytochemical
interventions—notably grape seed anthocyanins and konjac
oligosaccharides—exert osteoprotective effects by reshaping
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FIGURE 2

The signaling pathway of the probiotics and pathogens in the pathogenesis and probiotics therapies for osteoporosis. SPSRC, Secreted protein
acidic and rich in cysteine; BMP-2, Bone morphogenetic protein 2; SCFA, short-chain fatty acids; RANKL, Receptor Activator of nuclear factor-kappa
B ligand;APC, Antigen presenting cells; IFN-γ, Interferon-γ; IL-1, Interleukin -1; IL-2, Interleukin-2; IL-6, Interleukin-6;IL-17, Interleukin-17; TNF,
Tumor Necrosis Factor; MMPs, Matrix metalloproteinases; COX-2, Cyclooxygenase-2; Pi, Phosphorus; NFAT, Nuclear factor of activated T cells; L.
reuteri, Limosilactobacillus reuteri; IGF-1, Insulin-like growth factor 1. Created in BioRender. Wei, A. (2025) https://BioRender.com/e75e579.

TABLE 1 Effect of probiotic supplementation on clinical trials.

Participants
number

Intervention Duration Measurement Major finding Study

127 Healthy
high-cholesterol

adults

Administration group(G): G1:
Control (13-week placebo) G2:
L.reuteri NCIMB 30242(4-week

placebo + 9-week L.reuteri NCIMB
30242)

13 weeks 1. Serum low-density
lipoprotein- cholesterol
2. fat-soluble vitamins

L.reuteri NCIMB 30242 increased
serum 25-OH vitamin D

levels,which is precursor of active
vitamin D. Active vitamin D can

directly influence bone
metabolism.

Jones et al.
Canada

(215)

70 Women who were
75−80 years old and

had low BMD

G1: Control (placebo) G2: 1010
colony-forming units of L. reuteri

6475

12 months 1.Tibia total volumetric
BMD

L. reuteri 6475 was effective in
reducing total vBMD loss

com-pared to placebo.

Nilsson et al.
Sweden (11)

54 Postmenopausal
women

G1: Control(soymilk) G2: soy-honey
fermented milk [with Lacto- bacillus

casei subsp. casei R-68 (SMH Lc)] G3:
soy-honey fermented milk [with

Lacto- bacillus plantarum 1 R 1.3.2
(SMH Lp)]

90 DAYS 1. Osteocalcin
2. Serum osteocalcin levels
3. Others (random blood

glucose, uric acid, and total
cholesterol levels)

Osteocalcin levels and cholesterol
levels were significantly reduced

by fermented soy honey
containing SMH Lp and SMH Lc.

Desfita et al.
Indonesia

(216)

53 Participants who
were older than

55 years

G1: Control [(microcrystalline
cellulose) G2: Probiotics capsule L.

fermentum SRK414, 4.0× 109 CFU]

6 months 1. BTMs
2. BMD

3. 0C

1. L. fermentum SRK414
improved Femur neck BMD in

G2.
2. L. fermentum SRK414

maitained the level of OC in G2.
3. There was a significant

correlation between changing L.
fermentum concentrations and

changing OC levels.

Han et al.
Korea (217)

40 Postmenopausal
women

G1: Control (placebo material,
calcium, calcitriol)

G2: Probiotic [Bifdobacterium
animalis subsp. lactis Probio-M8
(Probio-M8), calcium, calcitriol]

3 months 1. Bone mineral density
2. Blood sample analysis

(PTH, VD3, Ca2+ ,
phosphorus, ALP, OC,
tP1NP, B-CTX, PCT)

3. Fecal sample analysis

Co-administration of calcium,
osteotriol and probiotic M8 has
been shown to increase vitamin
D3 levels and decrease serum

levels of PTH and calcitoninogen

Zhao et al.
China (218)

55 Participants who
were 45−70 years

G1: Control (placebo) G2: probiotic
(L. acidophilus UALa-01TM)

12 Weeks 1. Body composition
2. Blood biochemical

parameters
3. Serum calcium levels
4. Biomarkers of bone

metabolism

1. Serum calcium levels decreased
in the probiotic group compared

to baseline.
2. Taking L. acidophilus

probiotics appears to help slow
fluctuations in bone turnover

markers.

Harahap
et al. Poland

(219)

BMD, bone mineral densitometry; BTM, bone turnover markers; OC, osteocalcin.
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microbial ecology. These compounds enhance Bifidobacterium
abundance while suppressing opportunistic pathogens,
concurrently restoring intestinal barrier integrity and bone
marrow immune homeostasis (230, 249). Such findings position
plant-derived prebiotics as ecological modulators that amplify the
osteoanabolic potential of commensal bifidobacteria.

5.3 Saccharomyces

Emerging evidence positions Saccharomyces species—
notably S. boulardii and S. cerevisiae—as novel modulators of
osteoimmunological balance through pleiotropic mechanisms.
The S. boulardii CNCM I-745 strain demonstrates potent anti-
osteoclastic activity by suppressing RANKL/IL-17/TNFα signaling
cascades, effectively attenuating inflammatory bone resorption
(228). This immunometabolic modulation extends to direct
interference with osteoclast differentiation through bone marrow
monocyte interactions, establishing a dual therapeutic axis against
pathological bone loss.

5.3.1 Bioactive components and translational
potential

Beyond classical probiotic functions, Saccharomyces-derived
compounds exhibit targeted osteoprotection. β-Glucans from
S. cerevisiae demonstrate systemic bone metabolism regulation,
with pre-clinical studies highlighting their capacity to mitigate
alveolar bone deterioration in metabolic disorder contexts
(250). Notably, yeast hydrolyzates restore sex hormone
equilibrium and trabecular microarchitecture, suggesting
utility in postmenopausal osteoporosis management (251) A
breakthrough innovation lies in yeast-conjugated gallium (YG),
which synergizes enhanced bone mineral density with reduced
osteoclast activity (evidenced by suppressed TRACP-5b), while
circumventing elemental toxicity through organic complexation
(252, 253).

5.4 Bacillus

As resilient Gram-positive probiotics, Bacillus species
(B. coagulans, B. subtilis) emerge as potent modulators of
osteoimmune homeostasis through multifaceted mechanisms
(254, 255). Clinical evidence reveals that B. coagulans
supplementation enhances bone mineral density, particularly
in weight-bearing skeletal regions, via dual immunometabolic
pathways: Suppression of bone-resorptive cytokines and
potentiation of vitamin D biosynthesis (256). This vitamin D
elevation—uncoupled from serum calcium fluctuations—suggests
tissue-specific endocrine modulation rather than systemic mineral
regulation.B. subtilis further expands this therapeutic repertoire
by rebalancing T-cell polarization, specifically through Th17
suppression and Treg population expansion, thereby attenuating
osteoclastogenic inflammatory cascades (IL-17, IL-6, TNF-α) (220,
256, 257).

While conventional probiotics have shown therapeutic
promise, recent advancements in synthetic biology have enabled
the engineering of next-generation probiotics with enhanced
functionalities.

6 Next-generation probiotics

6.1 Revolutionizing probiotic
therapeutics through synthetic biology

The integration of synthetic biology tools into probiotic
engineering represents a paradigm shift in developing next
generation biotherapeutics. By reprograming microbial chassis to
dynamically sense pathological signals and execute therapeutic
responses, researchers are advancing live biotherapeutic systems
capable of treating metabolic disorders with unprecedented
precision (19, 258). Notably, synthetic biology-engineered
probiotics have demonstrated clinical potential in addressing
homocystinuria, osseointegration, tumor microenvironment, and
inflammatory bowel disease through targeted enzyme delivery and
metabolite regulation (259–262).

These next-generation probiotics (NGPs) combine therapeutic
enzyme expression with sophisticated biosensing circuits, enabling
real-time detection and mitigation of disease biomarkers within
the gastrointestinal microenvironment (263). However, their
translational implementation faces critical biological barriers.
The gut ecosystem imposes dual challenges through both
physicochemical stressors and microbial competition, where
commensal microbiota outcompetes therapeutic strains for
nutritional resources while creating colonization resistance (264).
Furthermore, maintaining microbial viability and functional
stability within the intestinal lumen’s dynamic conditions remains
a pivotal hurdle for sustained therapeutic efficacy.

6.2 Escherichia coli Nissle 1917 (EcN): a
versatile platform for engineered
biotherapeutics

First isolated during a World War I shigellosis outbreak,
E. coli Nissle 1917 (EcN) demonstrated intrinsic resistance to
enteric pathogens, later validated for its immunomodulatory,
anti-inflammatory, and antimicrobial properties (265, 266).
Marketed as Mutaflor R©, EcN is clinically proven to alleviate
acute diarrhea in pediatric populations (267) and ulcerative
colitis (UC) symptoms comparably to mesalazine (268). Its
efficacy stems from anti-inflammatory cytokine induction and
competitive exclusion of pathogens via microcin H47 secretion
(269, 270). These traits, combined with genomic stability and a
long safety profile, position EcN as a robust chassis for NGPs
(271).

6.2.1 Genetic toolbox and biocontainment
strategies

EcN’s fully annotated genome (272) and cryptic plasmids
(pMUT1/2) enable stable heterologous expression without
antibiotic selection (273, 274). Chromosomal integration
further enhances genetic stability (275), while conjugation-
based systems improve transformation efficiency (276). To
address biocontainment concerns, CRISPR-Cas9 kill switches
and temperature-sensitive circuits ensure controlled proliferation
and environmental safety (277). These advancements support
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EcN’s application in drug delivery (278), biosensing (279), and
inflammatory disease mitigation (280).

6.2.2 Therapeutic applications of engineered EcN
EcN’s modularity enables tailored therapies for diverse

domains. In oncology, engineered strains enhance antitumor
immunity through L-arginine-mediated T-cell infiltration (281)
or STING pathway activation via cyclic di-AMP delivery (282).
Anti-infective strategies leverage pathogen-specific mechanisms,
including tetrathionate-responsive microcins against Salmonella
(122) and bile salt hydrolase-mediated inhibition of C. difficile
sporulation (258). Emerging applications span neuromodulation
(GABA production via gadB overexpression for neuropsychiatric
disorders) (283) and ethanol detoxification through metabolic
pathway engineering (284).These advances highlight EcN’s
versatility as a therapeutic platform, with multiple candidates
progressing toward FDA approval.

However, current clinical research remains largely
confined to pre-clinical studies and early phase trials. Despite
demonstrating promising experimental efficacy, substantial
barriers persist before widespread clinical adoption can be
realized.

Illustrating this translational challenge, Synlogic’s EcN-based
engineered strain SYNB1934—developed for phenylketonuria—
achieved a 34% reduction in plasma phenylalanine during its Phase
II trial (NCT04534842) (285). Nevertheless, its pivotal Phase III
study (NCT05764239) was terminated in 2024 due to suboptimal
efficacy.

Ongoing efforts aim to address unmet needs in homocystinuria
and enteric hyperoxaluria using the EcN platform. For SYNB8802
(targeting hyperoxaluria), pre-clinical work by Lubkowicz et al.
successfully modeled and predicted clinically relevant urinary
oxalate reductions (> 20%) (286). Yet, while its Phase I trial
(NCT04629170) has completed, results remain unpublished.
Similarly, the Phase I trial of SYNB1353 for homocystinuria
(NCT05462132) demonstrated a statistically significant 26%
reduction in plasma methionine (AUC0−24)(p < 0.05) in
methionine-loaded healthy volunteers (260). This preliminary
finding warrants validation in homocystinuria patients, and further
Phase II studies are planned.

Despite EcN’s versatile therapeutic adaptability and the
clinical advancement of multiple candidates, collective data reveal
unresolved translational barriers that challenge the platform’s
broader applicability.

6.3 Emerging non-conventional
probiotics

Novel probiotic candidates such as Akkermansia muciniphila,
Faecalibacterium duncaniae, Bacteroides fragilis, and Bacillus
clausii are gaining attention for their therapeutic potential in
inflammatory and metabolic disorders (287–290). These species
contribute to gut homeostasis through distinct mechanisms,
notably via the biosynthesis of SCFAs including acetate,
propionate, and butyrate. A. muciniphila enhances metabolic
health by stimulating glucagon-like peptide-1 (GLP-1) secretion,
a mechanism linked to improved glycemic regulation in murine

models (291). Genomic characterization of this species has
further identified redundant mucinase genes, suggesting an
evolutionary adaptation for mucin degradation and niche
colonization (292)

F. duncaniae, a dominant butyrogenic commensal, exerts
anti-inflammatory effects by IL-10-secreting, Foxp3-expressing
T regulatory cells, thereby attenuating mucosal inflammation
(288). Similarly, Bacillus clausii modulates glucose fermentation
dynamics through propionate production, influencing host
metabolic pathways (293). Within the Bacteroides genus, species
such as B. fragilis, B. thetaiotaomicron, and B. vulgatus exhibit
competitive fitness in the gut ecosystem via polysaccharide
utilization loci (PULs), enabling efficient catabolism of
complex dietary fibers (294, 295). However, their clinical
application is complicated by strain-specific virulence factors;
for instance, enterotoxigenic B. fragilis variants are implicated
in colorectal carcinogenesis through bacteriocin and toxin
production (296).

To harness their therapeutic potential, targeted gene editing—
such as deletion of virulence determinants or heterologous
expression of carbohydrate-active enzymes—may enhance safety
and colonization efficacy. Nevertheless, developing organism-
specific genetic toolkits remains a critical hurdle for engineering
these phylogenetically diverse candidates.

6.4 Evolutionary advancements in
microbial therapeutics

This mechanistic convergence underpins the therapeutic
potential of next-generation probiotics like Anaerostipes caccae, a
spore-forming Lachnospiraceae member that optimizes butyrate
production and oxygen tolerance (297, 298). Comparative
pre-clinical analyses reveal A. caccae’s superior biodurability
and metabolic versatility. Long-term supplementation in avian
models demonstrated sustained trabecular preservation through
bone marrow immunomodulation, outperforming conventional
probiotics in aging-related bone loss attenuation (299). Synergistic
formulations with lactulose amplify butyrate synthesis, achieving
dual osteoprotective and anti-allergic effects in gnotobiotic
systems—a therapeutic breadth unmatched by first-generation
probiotics (300).

6.5 Advancing genetic toolkits for
engineering non-conventional probiotics

The therapeutic potential of non-conventional probiotics
remains constrained by the scarcity of organism-specific
genetic engineering platforms. While synthetic biology
strategies established for model probiotics offer a foundational
framework, their adaptation to phylogenetically diverse
species requires systematic optimization. For instance,
Akkermansia muciniphila—a mucinolytic specialist producing
immunomodulatory SCFAs—has been engineered using a
codon-optimized Himar1 transposase system (301, 302). This
approach enabled the creation of a transposon mutagenesis
library, revealing that mucin degradation machinery is
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critical for both glycan metabolism and gastrointestinal
colonization (292).

CRISPR-based systems have demonstrated species-specific
challenges and opportunities. In Clostridium butyricum,
initial attempts to enhance butyrate yields via heterologous
Streptococcus pyogenes Cas9 faced toxicity limitations (303).
By contrast, leveraging the endogenous Type I-B CRISPR-
Cas system improved editing efficiency, achieving a 60%
increase in butyrate production through targeted knockout
of spo0A and aldh genes (304). Similarly, Bacteroides
spp.—dominant gut colonizers harboring both metabolic
versatility and pathogenic potential—exhibit diverse native
CRISPR systems (Type I-B, III-B, II-C) that could be
repurposed to silence virulence factors or xenogeneic elements
(305, 306).

Beyond genetic manipulation, understanding host-
microbe interactions remains pivotal. Innovative platforms
like the Gut Microbiome Physiome (GuMI) system have
elucidated how butyrate-producing strains modulate
inflammatory pathways, including TLR3/4 downregulation
(307). Future efforts to expand the genetic toolbox for
NGPs should prioritize both precision genome editing
and functional validation within physiologically relevant
models, ultimately enabling tailored expression of
therapeutic biomolecules.

6.6 Reassessing probiotic safety and
translational challenges

Despite their therapeutic promise, probiotic interventions
carry non-trivial risks ranging from subclinical inefficacy to
severe adverse events. A landmark Dutch trial administering
multispecies probiotics to acute pancreatitis patients
reported higher incidence of bowel ischemia and mortality
compared to placebo—a cautionary outcome that significantly
impacted clinical probiotic research trajectories (308,
309). Beyond acute complications, chronic issues such as
D-lactic acidosis from LAB-derived metabolites can induce
neurocognitive impairments, while post-antibiotic probiotic
use may paradoxically delay microbiome reconstitution
(310, 311). Safety concerns are compounded by risks of
bacteremia, horizontal antibiotic resistance transfer, and
unintended ecological disruption in antibiotic-treated hosts
(312, 313).

These challenges underscore the need for precision
engineering in NGPs. Advanced genetic tools could mitigate
risks by eliminating virulence factors and enhancing strain
stability (314). For instance, Novome Biotechnologies
employs synthetic biology to engineer Bacteroides strains
with tailored polysaccharide utilization loci, coupled with
prebiotic porphyran supplementation to create selective
metabolic niches (308, 315). Such synbiotic strategies
may overcome colonization barriers that frequently
undermine therapeutic efficacy in late-stage trials (316). By
integrating strain optimization with ecological engineering,
researchers can address both safety and functionality gaps in
probiotic development.

7 Bacterial extracellular vesicles
(BEVs): emerging therapeutic agents
in OP management

7.1 Biogenesis and functional diversity of
BEVs

BEVs, bilayered spherical nanostructures (20–400 nm
diameter), encapsulate diverse cargo including glycoproteins,
enzymes, nucleic acids, and metabolites, enabling their roles
in immunomodulation, microbial colonization, and metabolic
cooperation (317, 318). Initially identified in Gram-negative
bacteria in the 1960s (319), BEVs were later recognized in
Gram-positive species in the 1990s (320). Their biogenesis
mechanisms differ markedly between bacterial classifications:
Gram-negative bacteria produce outer membrane vesicles (OMVs)
via membrane blebbing or explosive cell lysis (EOMV/OIMV),
while Gram-positive counterparts generate cytoplasmic membrane
vesicles (CMVs) through programed cell lysis pathways (23,
321, 322). Compositionally, OMVs are enriched with outer
membrane proteins influenced by cell wall dynamics, whereas
CMVs and EOMV/OIMV harbor peptidoglycan, nucleic acids,
and cytoplasmic components due to their lytic origins (18,
217). A critical distinction lies in the exclusive presence of
lipopolysaccharide (LPS) in Gram-negative BEVs, a feature linked
to both therapeutic potential and systemic toxicity (23, 321).

7.2 BEVs as therapeutic platforms for OP

BEVs represent a promising experimental therapeutic strategy
for systemic bone diseases such as OP, leveraging their cell-
free nature, nanosized architecture, biocompatibility, and non-
replicative properties. Compared to parental probiotics, BEVs may
offer enhanced safety and efficacy potential in modulating the “gut-
bone” axis—a critical pathway involving intestinal metabolites,
immune regulation, and endocrine signaling (323, 324). Notably,
BEVs derived from probiotics like Akkermansia muciniphila,
Lactobacillus spp., and Bifidobacterium spp., which demonstrate
pre-clinical anti-osteoporotic effects in models, represent potential
candidates for OP treatment that require further validation.

OP fracture treatment demands a holistic approach addressing
bone loss, microenvironment repair, and mechanical stabilization.
Pre-clinical studies suggest that BEVs can synergize with
mesoporous inorganic biomaterials (325, 326), metallic scaffolds
(327, 328), and hydrogels (329) to enhance fracture repair. As
dual-purpose nanocarriers in experimental settings, BEVs have
shown potential to simultaneously deliver anti-resorptive agents
and promote osteogenic differentiation, addressing both systemic
OP and localized fracture healing in animal models..

7.3 BEVs in osteoporosis: mechanisms
and engineering advances

BEVs derived from probiotic or attenuated bacterial strains
show pre-clinical promise in bone disease therapeutics by
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circumventing LPS-mediated toxicity. For instance, Proteus
mirabilis (PM)-derived BEVs were shown to suppress
osteoclastogenesis by elevating reactive oxygen species (ROS),
disrupting mitochondrial membrane potential, and modulating
apoptosis-related proteins (Bax, Bcl-2, Caspase-3) (330). In
ovariectomized (OVX) mice, PM-BEV administration mitigated
bone loss, highlighting their experimental osteoprotective
potential (330).

Engineering strategies further enhance BEV functionality.
Liu et al. engineered BEVs expressing BMP-2 and CXCR4
fused to ClyA surface proteins, which promoted BMSC
osteogenic differentiation in OVX models (331). To address
poor bone targeting, bone-homing peptides were anchored
to Lactobacillus rhamnosus GG-derived EVs (LGG-EVs),
enabling miRNA delivery to bone microenvironments while
inhibiting osteoclastogenesis (332). Similarly, anti-miR-6359-
loaded exosomes modified with EXOmotif (CGGGAGC)
demonstrated precise osteoclast precursor targeting (333).
These pre-clinical innovations underscore the versatility of
engineered BEVs in balancing efficacy and safety, but remain to be
translated clinically.

7.4 Engineering strategies for
functionalizing bacterial extracellular
vesicles (BEVs)

7.4.1 Physical engineering approaches
7.4.1.1 Membrane fusion

Liposome-mediated fusion stands as a versatile method to
enhance BEV functionality. Simple incubation at 37◦C enables EV-
liposome fusion (334), while polyethylene glycol (PEG) facilitates
efficient hybridization (335). For example, fusion of CXCR4-
engineered MEVs with antagomir-188-loaded liposomes yielded
hybrid nanoparticles with dual bone-targeting and therapeutic
capabilities (336). Similarly, Lin et al. demonstrated CRISPR-Cas9
delivery to mesenchymal stem cells (MSCs) via MEV-liposome
hybrids (334), highlighting the potential for BEVs to integrate
gene-editing tools.

7.4.1.2 Membrane coating

Nanoparticle encapsulation through membrane coating
enhances BEV functionality while preserving targeting specificity.
Chen et al. engineered BEVs to coat indocyanine green (ICG)-
loaded mesoporous silica nanoparticles (MSNs), achieving
targeted dendritic cell delivery (337). Hybrid membrane
systems, such as BEV-cancer EV (CEV) fusions, further
combine tumor-targeting properties with immunogenicity
for precision drug delivery (338). These platforms exemplify
how BEV-coated nanoparticles could bridge therapeutic and
diagnostic applications.

7.4.1.3 Electroporation

Electroporation enables efficient cargo loading without
compromising vesicle integrity. Optimized conditions (400 V,
125 µF in potassium phosphate buffer) successfully introduced
siRNA into MEVs for neuron-specific delivery via Lamp2B-
RVG targeting (339) Applied to BEVs, this method could load

antiresorptive or anabolic agents for osteoporosis therapy.
Notably, Zha et al. demonstrated VEGF plasmid delivery
via progenitor cell-derived MEVs to enhance bone repair
(340), suggesting electroporation’s adaptability for BEV-based
regenerative strategies.

7.4.2 Chemical engineering approaches
Chemical modification strategies for BEVs are broadly

classified into covalent and non-covalent methods, each offering
distinct advantages in precision, stability, and applicability.
Covalent approaches leverage robust chemical bonds to
permanently functionalize BEV surfaces, while non-covalent
strategies prioritize flexibility and simplicity for transient
interactions. Below, we dissect these methodologies and their
implications for BEV engineering.

7.4.2.1 Covalent modifications

Covalent engineering exploits stable chemical bonds to
anchor functional moieties onto BEV membranes. Click chemistry,
for instance, enables site-specific conjugation of targeting
peptides or imaging probes through bioorthogonal reactions,
minimizing off-target effects (341). Huang et al. demonstrated
this principle by tethering quantum dots to MEVs using DNA
hinges, achieving precise labeling without compromising vesicle
integrity (342). Similarly, aldehyde-amine condensation and
amidation reactions facilitate aptamer conjugation, transforming
BEVs into smart platforms for precision therapeutics (343).
Bioconjugation strategies further capitalize on BEV-specific
surface markers, such as CD63, to anchor functional peptides
like CP05, thereby enhancing cargo-loading efficiency (344).
However, the limited identification of BEV-specific markers—
compared to MEVs, which express well-characterized tetraspanins
(e.g., CD9, CD81) and TSG101 (345)—remains a bottleneck.
Additionally, the long-term biocompatibility and immunogenicity
of covalently modified BEVs warrant rigorous investigation to
ensure clinical viability.

7.4.2.2 Non-covalent strategies

Non-covalent modifications offer reversible and rapid
functionalization, ideal for applications requiring dynamic
interactions. Hydrophobic insertion, a widely adopted method,
exploits the amphiphilic nature of BEV membranes. For
example, DSPE-PEG derivatives conjugated to targeting
ligands (e.g., RGD, folate) spontaneously integrate into lipid
bilayers, enhancing BEV homing to specific tissues (346).
Electrostatic interactions provide another avenue: Cationic
polymers or lipids bind to the anionic BEV surface, enabling
hybrid nanoparticle formation. Nakase et al. utilized cationic
lipids to fuse pH-sensitive peptides with MEVs, improving
cytoplasmic delivery (347), while Sawada et al. engineered
cationic pullulan-based nanogels to boost EV uptake efficiency
(348). Receptor-ligand interactions further exemplify non-
covalent precision. By exploiting natural binding pairs—such
as transferrin (Tf) and its receptor (TfR)—Yang et al. isolated
TfR + MEVs using magnetic nanoparticles, showcasing a
strategy adaptable for BEV-specific targeting (349). Despite
their simplicity, non-covalent methods may suffer from lower
stability compared to covalent approaches, necessitating
context-dependent optimization.
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7.5 Administration strategies

Current BEV delivery approaches include oral, intravenous,
and bioactive material-combined routes. Oral administration,
though non-invasive, faces hurdles such as gastric acid degradation
and intestinal variability. Surface modifications, such as dopamine
polymerization, protect BEVs from acidic environments,
enhancing gastric stability in pre-clinical settings (350).

Intravenous delivery, while potentially efficient, risks systemic
toxicity; localized injections and hydrogel encapsulation are being
developed as strategies toprolong retention and minimize off-target
effects (351, 352). Integration with bioactive materials represents
a promising experimental frontier in BEV applications. Liang Ma
et al. combined nanotopographical titanium-cultured sEVs with
3D-printed polyetheretherketone scaffolds, significantly enhancing
bone regeneration in rabbit femoral defects models (353). Similarly,
hypoxia-responsive EVs (hypo-EVs) embedded in hydrogels
promoted cranial defect repair in rats, leveraging the hypoxic bone
microenvironment (354). These advances demonstrate the pre-
clinical-stage synergistic potential of BEV-material hybrids in tissue
engineering, necessitating future clinical validation.

7.6 Translational challenges and
strategies for BEVs therapeutics

7.6.1 Biosafety: Balancing efficacy and risk
mitigation

The clinical advancement of bacterial extracellular vesicles
(BEVs) hinges on rigorous biosafety validation. While pre-
clinical studies confirm the absence of acute toxicity in
BEV-administered models (355, 356), concerns persist regarding
residual immunogenic components such as lipopolysaccharides
(LPS). Strategies to enhance biocompatibility include genetic
modifications targeting LPS biosynthesis (msbA, lpxM deletions)
(357), leveraging non-pathogenic Gram-positive species or
engineered probiotics (e.g., Escherichia coli Nissle 1917) (358), and
physicochemical purification via lysozyme/pH treatments (359,
360). Encapsulation with pH-responsive biomaterials (e.g., calcium
phosphate) further refines targeted delivery while minimizing
systemic exposure (361). Comprehensive pharmacokinetic
profiling—encompassing biodistribution, cellular uptake, and
clearance mechanisms—remains critical to establish therapeutic
windows and long-term safety thresholds.

7.6.2 Standardization: toward reproducible BEV
therapeutics

Heterogeneity in BEV production and isolation protocols
poses significant reproducibility challenges. Variations in bacterial
culture parameters (nutrient availability, pH, temperature) directly
modulate vesicle yield and cargo composition (362, 363), while
quantification methods based on protein content or nanoparticle
counts introduce analytical inconsistencies (77, 364). Although
commercial isolation kits improve accessibility, limitations in
purity and cost-efficiency necessitate standardized workflows.
Alignment with frameworks such as the MISEV guidelines
(20, 365), coupled with advanced characterization tools (e.g.,
nanotracking analysis, proteomic profiling), could harmonize
inter-laboratory practices and enhance data comparability.

7.6.3 Scalability: bridging laboratory innovation to
industrial feasibility

Fermentation technologies offer a scalable platform for
BEV production, yet industrial translation faces bottlenecks.
Heterologous protein expression in recombinant strains
often requires suboptimal low-temperature induction (366,
367), conflicting with large-scale fermentation efficiency.
Hypervesiculating mutants (e.g., nlpL, rmpM knockouts)
(368, 369) and optimized bioreactor conditions (e.g., fed-
batch strategies, dissolved oxygen control) (370, 371) present
viable pathways to amplify vesicle yields. Future efforts must
integrate synthetic biology with bioprocess engineering to achieve
cost-effective, GMP-compliant manufacturing—a prerequisite for
clinical adoption.

8 Conclusion and future
perspectives

OP management faces persistent challenges with conventional
therapies due to adverse effects and inadequate modulation
of gut-bone crosstalk. NGPs and BEVs represent promising
experimental transformative strategies that address these
limitations through precision-targeted mechanisms. NGPs,
enhanced by synthetic biology, hold potential to enable
dynamic delivery of osteoprotective metabolites (e.g., SCFAs,
phytoestrogens), immunomodulation, and neuroendocrine
regulation, while circumventing colonization barriers inherent to
traditional probiotics. BEVs, as biocompatible nanocarriers, offer
experimental, scalable, non-replicative platforms for bone-specific
delivery of therapeutic cargo (miRNAs, cytokines, osteogenic
factors), synergizing with biomaterials to enhance fracture repair.
Despite encouraging pre-clinical promise, significant challenges
in strain-specific efficacy, biosafety, and industrial scalability
necessitate standardized protocols and rigorous clinical validation.
Future research must prioritize multi-omics integration to decode
host-microbe interactions, optimize genetic toolkits for non-
conventional probiotics, and advance hybrid BEV-scaffold systems.
By bridging microbial therapeutics with bone bioengineering,
these innovations hold immense potential to restore skeletal
homeostasis, offering safer, personalized alternatives to reshape
osteoporosis care.

Future directions should prioritize multifactorial strategies:
Optimizing synthetic probiotics to enrich therapeutic strains,
elucidating senescence-autophagy interplay in BMMSC aging,
and advancing BEV engineering for dual osteoanabolic/anti-
resorptive effects. Bridging these mechanistic insights with
robust clinical validation is essential to unlock next-generation
therapies, transforming OP management from symptomatic relief
to pathophysiology-driven precision medicine.
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