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Association between uric acid to 
high-density lipoprotein 
cholesterol ratio and chronic 
kidney disease in Chinese patients 
with type 2 diabetes mellitus: a 
cross-sectional study
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Chunxiao Xu , Mingbin Liang , Lijin Chen , Weiyuan Yao , 
Zhimin Ma , Jieming Zhong  and Meng Wang *

Department of Non-Communicable Disease Control and Prevention, Zhejiang Provincial Center for 
Disease Control and Prevention, Hangzhou, China

Objectives: To examine the association between uric acid (UA) to high-density 
lipoprotein cholesterol (HDL-C) ratio (UHR) and chronic kidney disease (CKD) in 
type 2 diabetes mellitus (T2DM) patients in China.

Methods: The investigation stems from a survey conducted in the eastern 
Chinese province of Zhejiang, spanning from March to November 2018. A 
multivariable logistic regression model was employed to assess the relationship 
between UHR and CKD, while restricted cubic spline (RCS) analysis was used 
to evaluate the dose–response relationship. Receiver operating characteristic 
(ROC) curve analysis was performed to determine the optimal UHR cut-off 
value and assess its diagnostic performance for CKD. Model performance was 
further evaluated using net reclassification improvement (NRI) and integrated 
discrimination improvement (IDI) metrics. Sensitivity analyses, including 
propensity score matching (PSM) and k-means clustering, were conducted to 
enhance the robustness of the findings. Subgroup analyses were performed 
across various demographic and clinical categories to examine the consistency 
of the UHR-CKD association.

Results: This cross-sectional study included 1,756 Chinese patients with T2DM, 
among whom 485 (27.62%) were identified with CKD. Multivariable logistic 
regression analysis revealed a significant positive association between UHR and 
CKD. Per standard deviation (SD) increase in UHR was associated with a 40% 
higher odds of CKD (OR = 1.40, 95% CI: 1.23–1.60) after adjusting for potential 
covariates. When analyzed categorically, participants in the highest UHR tertile 
(T3) had 1.82-fold higher odds of CKD compared to the lowest tertile (T1) (95% 
CI: 1.32–2.50). RCS analysis demonstrated a consistent linear dose–response 
relationship between UHR and CKD across all models (all p for nonlinearity >0.05). 
ROC curve analysis identified an optimal UHR cut-off value of 12.28 for CKD 
prediction, with an area under the curve (AUC) of 0.710 (95% CI: 0.683–0.737) 
in the fully adjusted model. Subgroup analyses confirmed the robustness of the 
UHR-CKD association across most demographic and clinical variables, except 
for younger age groups (18–44 and 45–59 years) and smokers. Notably, BMI 
significantly modified the UHR-CKD relationship, with a nonlinear association 
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observed in individuals with lower BMI (<24 kg/m2) and a linear association in 
those with higher BMI (≥24 kg/m2).

Conclusion: This study demonstrates a significant dose–response relationship 
between the UHR and CKD in Chinese patients with T2DM, highlighting UHR 
as a promising biomarker for CKD risk assessment. The identified UHR cut-off 
of 12.28 offers a practical threshold for early renal monitoring and targeted 
interventions. Future research should explore UHR-targeted therapies and 
its integration into personalized risk stratification models to improve CKD 
management in T2DM.

KEYWORDS

type 2 diabetes mellitus, high-density lipoprotein cholesterol, uric acid, chronic 
kidney disease, uric acid to high-density lipoprotein cholesterol ratio

1 Introduction

Chronic kidney disease (CKD) represents an escalating public 
health concern worldwide, particularly in the context of type 2 
diabetes mellitus (T2DM) (1). As a leading microvascular 
complication associated with diabetes, CKD plays a substantial role in 
elevating morbidity and mortality in those impacted (2). Current 
estimates indicate that CKD impacts over 10% of individuals 
worldwide, with over 850 million individuals worldwide living with 
this condition, and its prevalence is projected to rise further in the 
coming decades due to the escalating burden of diabetes, hypertension, 
and obesity (3, 4). The impact of CKD is particularly profound in 
China, where diabetes has become a predominant factor contributing 
to the development of end-stage renal disease (5). Recent data from 
the 2020 Global Burden of Disease Study indicate that China 
accounted for approximately 132.3  million CKD cases by 2017, 
representing nearly 20% of the global CKD cases, with diabetes-
related CKD contributing to a significant proportion of this figure (6). 
Given the progressive and often irreversible nature of CKD (7), early 
identification of at-risk individuals and targeted management 
strategies are essential to slow disease progression and improve overall 
patient outcomes.

Among the various metabolic and biochemical markers 
implicated in CKD pathogenesis, uric acid (UA) and high-density 
lipoprotein cholesterol (HDL-C) have garnered increasing attention 
due to their roles in metabolic dysregulation and renal dysfunction 
(8, 9). Elevated UA levels have been implicated in the development 
and progression of CKD through multiple mechanisms, including 
oxidative stress, endothelial dysfunction, systemic inflammation, and 
renal hemodynamic alterations (10). Specifically, hyperuricemia can 
induce chronic inflammation by activating the NLRP3 inflammasome 
and promoting the release of pro-inflammatory cytokines such as 
IL-1β, which exacerbate renal tubular injury and interstitial fibrosis 
(11). Additionally, UA contributes to metabolic dysregulation by 
impairing insulin signaling and promoting insulin resistance (IR), a 
hallmark of T2DM that further accelerates renal damage through 
glucotoxicity and lipotoxicity (12). On the other hand, HDL-C, 
commonly referred to as ‘good cholesterol’, is recognized for its 
renoprotective properties, which include promoting reverse 
cholesterol transport, attenuating inflammation, and enhancing 
endothelial function (13, 14). However, in the context of T2DM, 
HDL-C functionality may be  compromised due to oxidative 

modifications and glycation, reducing its anti-inflammatory capacity 
and potentially exacerbating renal injury through lipid accumulation 
in glomeruli (15). Given the interplay between metabolic 
abnormalities and renal injury, recent studies have proposed the 
UA-to-HDL-C ratio (UHR) as a novel composite marker that 
integrates pro-oxidative and anti-inflammatory pathways, thereby 
offering a potentially more comprehensive marker of CKD (16, 17). 
The UHR reflects the balance between UA-driven oxidative stress and 
inflammation and HDL-C-mediated protection, making it 
particularly relevant in T2DM, where chronic inflammation and 
metabolic dysregulation synergistically drive renal pathology (18).

While the individual associations of UA and HDL-C with CKD 
have been well documented, the clinical relevance of UHR to CKD 
among diagnosed T2DM patients remains insufficiently explored, 
particularly in Chinese individuals. Existing research, such as the 
nationwide cohort study by Liu et al. examining UHR in individuals 
with abnormal glucose metabolism, has not specifically focused on 
diagnosed T2DM patients, leaving a critical gap in understanding 
how UHR relates to CKD in this distinct subgroup (19). Moreover, 
prior studies have not fully elucidated the specific mechanisms 
linking UHR to CKD in the context of T2DM-specific 
pathophysiology, nor have they identified precise UHR thresholds for 
risk stratification in this population. Given that T2DM is a complex 
metabolic disorder characterized by chronic low-grade inflammation, 
IR, and vascular dysfunction (20), these pathophysiological 
characteristics may amplify the UHR-CKD association by enhancing 
oxidative stress and inflammatory cascades, potentially involving 
pathways such as the renin-angiotensin system activation and nuclear 
factor-κB signaling (21). Thus, a deeper understanding of the 
UHR-CKD relationship in T2DM patients may uncover novel 
insights into underlying mechanisms and refine risk prediction 
models tailored to this population.

To address this knowledge gap, our study utilizes a 
comprehensive cross-sectional dataset to evaluate the association 
between UHR and CKD among Chinese individuals with diagnosed 
T2DM. Specifically, we aim to assess the relationship between UHR 
and CKD and identify potential UHR cut-off values that could aid 
in clinical risk stratification. By elucidating this relationship, our 
findings may help inform future research on personalized 
intervention strategies for diabetic patients at high risk for CKD 
progression, ultimately contributing to improved renal outcomes in 
this vulnerable population.

https://doi.org/10.3389/fnut.2025.1582495
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chen et al. 10.3389/fnut.2025.1582495

Frontiers in Nutrition 03 frontiersin.org

2 Materials and methods

2.1 Study subjects

The study participants were recruited from an investigation on 
complications of T2DM, which was conducted from March to 
November 2018, including local residents with T2DM aged 18 years 
and above. The selection of participants was conducted through a 
multi-stage randomized sampling approach. In stage 1, 2 districts and 
2 counties were randomly selected from across the province. In stage 
2, 4 townships or subdistricts were randomly selected from each of the 
counties and districts chosen in the first stage. In stage 3, a random 
sample of 120 individuals per township or subdistrict diagnosed with 
T2DM was drawn, ensuring a balanced representation across different 
sexes and age groups. This methodology culminated in the inclusion 
of 1,920 participants in the study. Additional information concerning 
the study’s design and methodological details can be found in the 
published study protocol (22). After applying the exclusion criteria 
(e.g., lack of questionnaires, physical examinations, blood and urine 
tests), a total of 164 participants were excluded, resulting in a final 
sample of 1,756 participants for analysis (Figure 1).

2.2 Sample size calculation

The calculation of the sample size was based on the formula: 
N = deff × μ2 × P × (1 − P)/d2. In this formula, the parameters were 
defined as follows: the design effect (deff) was set at 1.2, P represented 
the prevalence of CKD among Chinese T2DM patients estimated as 
0.271 (23), μ was set to 1.96, and the relative error (d) was 0.05. 

Applying these values, the sample size for each stratum was 
determined to be 365 cases. To account for the stratification of the 
study population into 4 strata (urban and rural areas, as well as 
gender) and a non-response rate of 15.0%, the final sample size 
required for the study was estimated to be 1,718 participants.

2.3 Data collection and quality control

In this study, all participants were required to complete an 
in-person questionnaire survey, undergo physical measurements (e.g., 
weight, height, blood pressure), and participate in laboratory tests 
(such as hemoglobin A1c [HbA1c], lipid profile, etc.), renal function 
tests (urea, creatinine, UA), and the (urine albumin-to-creatinine 
ratio, among others). All these procedures were carried out by staff 
from the township health centers, who possessed extensive work 
experience and had received specialized training for this study project.

Height, weight, and waist circumference were measured using 
standardized tools: a stadiometer, an electronic scale (HD-390, 
TANITA, Tokyo, Japan), and a soft retractable measuring tape, 
respectively. Blood pressure and heart rate were measured using an 
electronic blood pressure monitor (HBP-1300, OMRON, 
Kyoto, Japan).

In this survey, fasting blood samples were obtained from all 
participants following a 10–12 h overnight fast, alongside the 
collection of first-morning urine specimens. FPG levels were 
measured by local laboratories at the survey sites that had passed the 
qualification assessment (glucose oxidase or hexokinase method). The 
remaining blood and urine specimens were processed at the survey 
locations, where they were centrifuged, divided into aliquots, and 

FIGURE 1

The detailed procedure of participants selection.
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stored following established preservation protocols. These samples 
were subsequently transported by a logistics service provider 
appointed by the national project team for further analysis. HbA1c 
was analyzed via high-performance liquid chromatography (D10, 
Berkeley, Bio-Rad, USA), lipids (triglycerides [TG], total cholesterol 
[TC], HDL-C, low-density lipoprotein cholesterol [LDL-C]), UA, 
blood and urine creatinine levels were determined enzymatically 
(Cobas C701, Roche, Basel, Switzerland), while urinary albumin was 
quantified immunoturbidimetrically (Cobas C701, Roche, Basel, 
Switzerland).

Throughout the entire survey process, strict quality control 
measures were enforced. Prior to the investigation, all research staff 
and investigators participated in a comprehensive training session. To 
ensure adherence to standardized procedures, provincial supervisors 
randomly re-examined at least 5% of the participants during the 
investigation phase. Once the survey was completed, all gathered data 
were uploaded to the national information management platform, 
where they underwent thorough review and verification.

2.4 Outcomes and definitions

The primary outcome of our study was the presence of CKD in 
T2DM participants, defined by either a reduction in kidney function, 
as indicated by an estimated glomerular filtration rate (eGFR) of less 
than 60 mL/min per 1.73 m2, or the presence of albuminuria, with a 
urinary albumin-to-creatinine ratio (UACR) of 30 mg/g or higher 
(24). The eGFR was computed using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) formula (25). The UHR, 
expressed as a percentage, was derived by dividing the UA 
concentration (mg/dL) by the HDL-C level (mg/dL) and then 
multiplying the result by 100 (26).

Hypertension was identified if participants had systolic blood 
pressure ≥ 140 mm Hg, diastolic blood pressure ≥ 90 mm Hg, in 
conjunction with a self-reported history of hypertension diagnosis by 
healthcare facilities (27). A lipid profile was considered adverse if it 
met any one of the following thresholds: TC levels at or above 
6.22 mmol/L, TG levels at or above 2.26 mmol/L, LDL-C levels at or 
above 4.14 mmol/L, or HDL-C levels below 1.04 mmol/L (28). 
Elevated HbA1c and FPG were defined as levels of 7.0% or higher and 
7.0 mmol/L or higher, respectively (29).

Educational attainment was segmented into three categories: 
secondary education or lower, senior high school, and college 
education or above (29). Age stratification grouped participants into 
young adults (18–44 years), middle-aged adults (45–59 years), and 
older adults (60 years and above). Diabetes duration was categorized 
into two groups: 10 years and below, and over 10 years. Residency was 
classified as either urban or rural based on the participants’ dwelling 
locations. Smoking status was determined by current daily or 
occasional use of cigarettes, while alcohol drinking was noted if 
subjects had consumed alcohol within the preceding 30 days.

2.5 Statistical analysis

Numerical data were expressed in two formats depending on their 
distribution: means (standard deviations) or medians (IQRs). 
Categorical data were displayed as frequency (percentage). In the 

analysis of data exhibiting a normal distribution, group comparisons 
were conducted using t-tests, whereas the Wilcoxon rank-sum test was 
applied for data that did not follow a normal distribution. Categorical 
variables were compared utilizing the chi-square test. Participants 
were categorized into three groups according to the tertiles of UHR: 
the first tertile (T1), second tertile (T2) and third tertile (T3). A 
propensity score matching (PSM) analysis with standardized mean 
differences (SMD) was conducted to minimize potential confounding 
and ensure balanced characteristics between the CKD and non-CKD 
groups. To evaluate the relationship between CKD and influencing 
factors, multivariable logistic regression models were employed. To 
evaluate the potential nonlinear association between UHR and CKD, 
restricted cubic spline (RCS) curves were employed. Three 
multivariable logistic regression models were constructed: Model 1 
was unadjusted analysis model (no covariates included). Model 2 
included adjustments for age and sex. Model 3 further adjusted for 
additional variables such as educational attainment, BMI, unfavorable 
lipid profile (TC, TG, LDL-C) and glycemic parameters (HbA1c, 
FPG), hypertension, smoking, alcohol drinking, and diabetes 
duration. The generalized variance inflation factor (GVIF) for all 
variables incorporated in the analysis was evaluated to ensure 
significant multicollinearity was not present in our dataset (all GVIF 
<2) (Supplementary Table S1). Receiver Operating Characteristic 
(ROC) curve analysis was performed to evaluate the ability of UHR 
to distinguish individuals with CKD from those without, as measured 
by the area under the curve (AUC). The optimal cut-point is 
determined according to the threshold that maximizes Youden’s 
Index, which represents the point where sensitivity and specificity are 
optimally balanced. To assess the incremental predictive value of 
UHR, net reclassification improvement (NRI) and integrated 
discrimination improvement (IDI) metrics were employed. Subgroup 
analyses were conducted to assess the consistency of the association 
between UHR and CKD across different strata of selected covariates, 
such as age, sex, BMI, smoking, alcohol drinking status, hypertension, 
glycemic control and diabetes duration. Additionally, the k-means 
clustering algorithm was employed to categorize UHR data into 
distinct clusters during sensitivity analysis (19). The optimal number 
of clusters was determined using the elbow method, based on the sum 
of squared errors for varying values of k. The threshold for statistical 
significance was established at α = 0.05. All statistical analyses were 
executed using R software (version 4.2.1, R Foundation for Statistical 
Computing, Vienna, Austria) with the packages pROC, MatchIt, 
tableone, rcssci, rms, PredictABEL, forestplot, metafor, segmented, 
ggplot2, cluster and nricens.

3 Results

3.1 Basic characteristics of participants

This cross-sectional study included 1,920 T2DM subjects, with 
1,756 participants meeting the inclusion criteria by providing 
comprehensive demographic and clinical data (Table 1). Among these, 
485 individuals (27.62%) were identified with CKD. Of these CKD 
cases, 70 (14.43%) exhibited a reduced eGFR, 352 (72.58%) had 
elevated UACR, and 63 (12.99%) presented with both conditions. The 
study population was stratified based on CKD status, revealing a 
nearly equal distribution of males (49.89%) and females (50.11%). 
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Participants had an average age of 57.23 years (SD: 10.15 years) and a 
mean BMI of 24.76 kg/m2 (SD: 3.43 kg/m2). Comparative analyses 
demonstrated that individuals with CKD were older, had higher BMI 
values, elevated UA levels, increased UHR, and more adverse lipid 
profiles, including higher TC and TG alongside lower HDL-C levels 
(all p < 0.01). Furthermore, glycemic control was significantly poorer 
in the individuals with CKD, as evidenced by higher HbA1c and FPG 
levels (all p < 0.001). Hypertension prevalence and diabetes duration 
were also greater among CKD participants (all p < 0.001).

Table  2 presents the baseline characteristics of participants 
stratified by UHR tertiles. A comprehensive comparison of 
demographic, anthropometric, and clinical variables was conducted 
across these tertiles. Individuals in the upper UHR tertiles were more 
frequently male and demonstrated elevated BMI, TG levels, and UA 
concentrations, alongside reduced HDL-C levels (all p < 0.05). 
Additionally, these participants showed a greater prevalence of 
hypertension, higher rates of urban residence, higher smoking and 
alcohol drinking rates. Significant disparities were observed among 
the tertiles in terms of LDL-C levels, diabetes duration, and CKD 
prevalence (all p < 0.05). In contrast, no notable differences were 

detected in age, educational attainment, TC levels, or the frequency of 
elevated FPG and HbA1c across the tertiles (all p > 0.05).

3.2 The relationship between CKD and 
UHR

To evaluate the relationship between UHR with CKD, 
multivariable logistic regression models were employed. The odds 
ratios (ORs) and corresponding 95% confidence intervals (CIs) were 
estimated across the tertiles of UHR, using the lowest tertile (T1) as 
the reference category (Table  3). Initially, UHR was analyzed as 
continuous variable. In the unadjusted model (Model 1), the OR 
(95%CI) per SD increase in UHR was 1.48 (1.33–1.64). Following the 
adjustment for age and sex, this OR remained largely unchanged. 
Subsequent adjustments for additional covariates, including 
educational attainment, BMI, elevated TC, TG, LDL-C, FPG, HbA1c, 
hypertension, smoking status, alcohol drinking, and diabetes duration, 
yielded OR of 1.40 (1.23–1.60). When UHR was analyzed as a 
categorical variable, the unadjusted analysis demonstrated ORs for 

TABLE 1 Participants’ basic characteristics by CKD status (n = 1,756).

Characteristics Total (n = 1,756) CKD group 
(n = 485)

Non-CKD group 
(n = 1,271)

χ2/t/z p-value

Sex, n (%) 0.048b 0.827

  Female 880 (50.11) 241 (49.69) 639 (50.28)

  Male 876 (49.89) 244 (50.31) 632 (49.72)

BMI, mean ± SD, kg/m2 24.76 ± 3.43 25.43 ± 3.56 24.51 ± 3.35 −5.06a <0.001

Age, mean ± SD, years 57.23 ± 10.15 59.09 ± 10.54 56.52 ± 9.92 −4.77a <0.001

Educational attainment, n (%) 8.12b 0.017

  Secondary education or below 1,541 (87.76) 411 (84.74) 1,130 (88.90)

  Senior high school 171 (9.74) 63 (12.99) 108 (8.50)

  College education or above 44 (2.50) 11 (2.27) 33 (2.60)

Residence, n (%) 1.30b 0.255

  Urban 881 (50.17) 254 (52.37) 627 (49.33)

  Rural 875 (49.83) 231 (47.63) 644 (50.67)

Hypertension, n (%) 1,099 (62.59) 385 (79.38) 714 (56.18) 80.73b <0.001

TG, median (IQR), mmol/L 1.60 (1.12–2.42) 1.87 (1.30–2.94) 1.51 (1.06–2.26) 47.47c <0.001

TC, mean ± SD, mmol/L 4.65 ± 1.07 4.78 ± 1.29 4.61 ± 0.97 −2.64a 0.009

HDL-C, mean ± SD, mmol/L 1.25 ± 0.36 1.18 ± 0.37 1.28 ± 0.35 4.96a <0.001

LDL-C, mean ± SD, mmol/L 2.73 ± 0.90 2.70 ± 1.02 2.75 ± 0.85 0.98a 0.325

HbA1c, mean ± SD, % 7.27 ± 1.49 7.61 ± 1.65 7.14 ± 1.40 −5.43a <0.001

FPG, mean ± SD, mmol/L 7.94 ± 2.58 8.54 ± 3.11 7.72 ± 2.31 −5.32a <0.001

UA, mean ± SD, mg/dL 5.63 ± 1.59 6.01 ± 1.87 5.48 ± 1.44 −5.66a <0.001

Diabetes duration (years), n (%) 22.88b <0.001

  ≤10 1,327 (75.57) 328 (67.63) 999 (78.60)

  >10 429 (24.43) 157 (32.37) 272 (21.40)

UHR 12.92 ± 6.12 14.73 ± 7.22 12.22 ± 5.50 −6.92a <0.001

aStudent’s t-test.
bChi-square test.
cWilcoxon rank-sum test.
CKD, chronic kidney disease; SD, standard deviation; BMI, body mass index; TC, total cholesterol; IQR, interquartile range; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; 
HDL-C, high-density lipoprotein cholesterol; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; UA, uric acid; UHR, UA to HDL-C ratio.
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TABLE 2 Participants’ basic characteristics by UHR tertile (n = 1,756).

Variables Total (n = 1,756) T1 (n = 586) T2 (n = 585) T3 (n = 585) p-value

Age (years), Mean ± SD 57.23 ± 10.15 57.82 ± 9.34 57.21 ± 10.18 56.65 ± 10.87 0.144

Sex, n (%) <0.001

  Female 880 (50.11) 389 (66.38) 300 (51.28) 191 (32.65)

  Male 876 (49.89) 197 (33.62) 285 (48.72) 394 (67.35)

Educational attainment,  

n (%)

0.500

  Secondary education or 

lower

1,541 (87.76) 520 (88.74) 517 (88.38) 504 (86.15)

  Senior high school 171 (9.74) 54 (9.22) 51 (8.72) 66 (11.28)

  College education or 

above

44 (2.51) 12 (2.05) 17 (2.91) 15 (2.56)

Residence, n (%) 0.034

  Urban 881 (50.17) 279 (47.61) 283 (48.38) 319 (54.53)

  Rural 875 (49.83) 307 (52.39) 302 (51.62) 266 (45.47)

BMI, Mean ± SD 24.76 ± 3.43 23.38 ± 3.28 24.94 ± 3.13 25.97 ± 3.38 <0.001

TG, median (IQR), 

mmol/L

1.60 (1.12,2.42) 1.16 (0.88,1.61) 1.58 (1.20,2.17) 2.38 (1.62,3.75) <0.001

TC, mean ± SD, mmol/L 4.66 ± 1.07 4.70 ± 0.94 4.68 ± 1.00 4.60 ± 1.25 0.195

LDL-C, mean ± SD, 

mmol/L

2.73 ± 0.90 2.84 ± 0.87 2.87 ± 0.85 2.48 ± 0.92 <0.001

HDL-C, mean ± SD, 

mmol/L

1.25 ± 0.36 1.56 ± 0.34 1.24 ± 0.22 0.95 ± 0.21 <0.001

UA (mg/dL) 5.63 ± 1.59 4.33 ± 0.94 5.57 ± 0.98 6.98 ± 1.49 <0.001

Elevated HbA1c, n (%) 859 (48.92) 304 (51.88) 279 (47.69) 276 (47.18) 0.211

Elevated FPG, n (%) 989 (56.32) 338 (57.68) 327 (55.90) 324 (55.38) 0.708

Hypertension, n (%) 1,099 (62.59) 309 (52.73) 361 (61.71) 429 (73.33) <0.001

Smoking, n (%) 436 (24.83) 89 (15.19) 142 (24.27) 205 (35.04) <0.001

alcohol drinking, n (%) 646 (36.79) 199 (33.96) 202 (34.53) 245 (41.88) 0.007

Diabetes duration (years), 

n (%)

<0.001

  ≤10 1,327 (75.57) 421 (71.85) 462 (78.98) 444 (75.90)

  >10 429 (24.43) 165 (28.15) 123 (21.02) 141 (24.10)

CKD, n (%) 485 (27.62) 131 (22.35) 130 (22.22) 224 (38.29) <0.001

UHR, UA to HDL-C ratio; T1, first tertile; T2, second tertile; T3, third tertile; BMI, body mass index; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; 
HDL-C, high-density lipoprotein cholesterol; UA, uric acid; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; CKD, chronic kidney disease.

TABLE 3 Multivariable regression analysis of UHR and its tertiles in relation to CKD (n = 1,756).

Characteristics Model 1 Model 2 Model 3

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value

UHR per SD 1.48 (1.33–1.64) <0.001 1.52 (1.37–1.70) <0.001 1.40 (1.23–1.60) <0.001

UHR tertile (range)

  T1 (2.09–9.74) 1.00 (ref) 1.00 (ref) 1.00 (ref)

  T2 (9.75–14.07) 0.99 (0.75–1.31) 0.956 1.01 (0.77–1.34) 0.926 0.93 (0.69–1.25) 0.629

  T3 (14.08–55.50) 2.16 (1.67–2.78) <0.001 2.30 (1.75–3.02) <0.001 1.82 (1.32–2.50) <0.001

p for trend 1.09 (1.06–1.11) <0.001 1.09 (1.06–1.12) <0.001 1.07 (1.04–1.10) <0.001

UHR, uric acid to high-density lipoprotein cholesterol ratio; CKD, chronic kidney disease; OR, odds ratio; CI, confidence interval; SD, standard deviation; T1, first tertile; T2, second tertile; 
T3, third tertile; ref, reference.
Model 1: unadjusted analysis (no covariates included); Model 2: adjusted for age, sex.
Model 3: fully adjusted model, incorporating age, sex, education, body mass index, unfavorable lipid profile (total cholesterol, triglyceride, low-density lipoprotein cholesterol) and glycemic 
parameters (hemoglobin A1c, fasting plasma glucose), hypertension, smoking, alcohol drinking, and diabetes duration.
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CKD of 0.99 (0.75–1.31) for T2 and 2.16 (1.67–2.78) for T3, compared 
to T1. Following the adjustment for age and sex in Model 2, the ORs 
exhibited only slight variations. When fully adjusted in Model 3, the 
ORs for T2 and T3 were 0.93 (0.69–1.25) and 1.82 (1.32–2.50), 
respectively. All three analytical frameworks demonstrated statistically 
significant trends (all p for trend <0.001).

3.3 Linear association between UHR and 
CKD

To examine the dose–response relationship between UHR and 
CKD, RCS analysis was conducted, as shown in Figure 2. The spline 
curves were assessed across three separate models: an unadjusted 
model (Model 1), a partially adjusted model that considered age and 
sex (Model 2), and a fully adjusted model with additional covariates 
(Model 3). In all models, a consistent linear dose–response relationship 
was identified between UHR and CKD (all p for nonlinearity >0.05), 
indicating that increasing UHR levels were associated with a higher 
likelihood of CKD.

3.4 ROC curve assessment

The diagnostic potential of the UHR for CKD in T2DM patients 
was assessed through ROC curve analysis (Figure 3). The unadjusted 
model (Model 1) yielded an AUC (95% CI) of 0.607 (0.576–0.637), 
demonstrating moderate diagnostic accuracy. The optimal UHR 
cut-off value was identified as 12.28, with corresponding sensitivity 
and specificity of 60.4 and 58.6%, respectively, and positive and 
negative predictive values of 79.3 and 36.1%. After adjusting for age 
and sex (Model 2), the AUC improved to 0.630 (0.600–0.660). The 
fully adjusted model (Model 3), incorporating additional covariates 
such as BMI, education level, unfavorable lipid profiles (TC, TG, 
LDL-C) and glycemic parameters (FPG, HbA1c), hypertension status, 
lifestyle factors (smoking, alcohol drinking), and diabetes duration, 
showed further improvement with an AUC of 0.710 (0.683–0.737), 
representing moderate diagnostic capability. To assess the incremental 
predictive value of UHR, we employed NRI and IDI metrics. The 

results demonstrated that UHR significantly enhanced the predictive 
performance beyond traditional risk factors (NRI = 20.27%, 
IDI = 1.56%, both p < 0.001). Furthermore, we conducted comparative 
analyses of UHR against its individual components (UA and HDL-C) 
using ROC curves (Figure  4). DeLong test revealed that UHR 
exhibited superior predictive performance compared to either UA or 
HDL-C alone (both p < 0.05), while no significant difference was 
observed between UA and HDL-C (p > 0.05). These findings suggest 
that the combined UHR metric provides better diagnostic utility than 
its individual components for identifying CKD in T2DM patients.

3.5 Results of subgroup analyses

Based on the optimal cut-off value obtained from ROC analysis, 
the UHR was divided into two groups: <12.28 and ≥12.28. 
Comprehensive subgroup analyses were performed, encompassing 
various demographic and clinical factors, including age group 
(18–44 years, 45–59 years, and ≥60 years), sex (male and female), 
BMI (<24 kg/m2 and ≥24 kg/m2), hypertension (yes or no), glycemic 
control (good or poor), smoking (yes or no), alcohol drinking (yes or 
no), and diabetes duration (≥10 years or <10 years) (Figure 5). The 
results indicated that the p-values for the association were statistically 
significant (all p < 0.05) in all subgroups except for the 18–44 years age 
group, the 45–59 years age group, and smoking group, where the 
associations were not significant (p > 0.05). The analysis revealed 
non-significant interaction and heterogeneity effects across most 
subgroup comparisons (p > 0.05), with the notable exception of BMI, 
which demonstrated significant interaction (p = 0.009) and 
heterogeneity (p = 0.007). These findings indicate that the association 
between elevated UHR levels and increased CKD risk remained 
robust and consistent across most demographic and clinical variables 
examined. Specifically, the OR was higher in individuals with BMI 
<24 kg/m2 compared to those with BMI ≥24 kg/m2, indicating a 
stronger association between UHR and CKD risk in the lower BMI 
group. To further investigate the association between UHR and CKD, 
we performed RCS analysis stratified by BMI. The results revealed 
distinct dose–response patterns based on BMI categories. In 
participants with lower BMI (<24 kg/m2), a nonlinear relationship was 

FIGURE 2

Association between the uric acid to high-density lipoprotein cholesterol ratio (UHR) and chronic kidney disease (CKD) across different models, with 
95% confidence intervals (CIs). The figure depicts the relationship between UHR and CKD across three models, considering potential nonlinear 
associations. Model 1: Unadjusted analysis (no covariates included). Model 2: Adjusted for age and sex, providing a more refined estimate of the 
association by controlling for these demographic factors. Model 3: Fully adjusted model, incorporating age, sex, education, body mass index, 
unfavorable lipid profile (total cholesterol, triglyceride, low-density lipoprotein cholesterol) and glycemic parameters (hemoglobin A1c, fasting plasma 
glucose), hypertension, smoking, alcohol drinking, and diabetes duration. CI, confidence interval; UHR, uric acid to high-density lipoprotein cholesterol 
ratio.
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consistently observed between UHR and CKD across all models, 
including crude, partially adjusted, and fully adjusted models (all p for 
nonlinearity <0.05) (Figure 6). Conversely, among participants with 
higher BMI (≥24 kg/m2), a linear association was consistently 
demonstrated between UHR and CKD in all models (all p for 
nonlinearity >0.05) (Figure  7). These findings suggest that BMI 
significantly modifies the nature of the UHR-CKD relationship.

3.6 Sensitivity analyses

To enhance the reliability and validity of our research findings, 
we conducted a series of comprehensive sensitivity analyses. First, 
we  employed PSM to mitigate potential confounding factors and 
strengthen the robustness of our results. As shown in 
Supplementary Table S2, the distribution of covariates between the 
CKD and non-CKD groups was significantly improved after PSM, 
with all SMDs reduced to below 0.1, indicating a well-balanced 
matched population. This confirmed the effectiveness of PSM in 
creating comparable study groups. Subsequently, we  performed 
multivariable logistic regression analyses on the matched dataset to 
evaluate the association between UHR (both as a continuous variable 

and in tertiles) and CKD risk (Supplementary Table S3). These 
analyses were conducted across three models: crude, partially 
adjusted, and fully adjusted. The results from the matched cohort 
analysis were consistent with our initial findings prior to PSM, further 
reinforcing the stability and reliability of our primary conclusions. 
Additionally, we  utilized the k-means clustering algorithm to 
categorize UHR data into distinct clusters. Supplementary Figure S1 
illustrates a clear elbow point was at k = 4, indicating that dividing 
UHR levels into four clusters provided an optimal balance between 
accuracy and computational efficiency. Specifically: cluster 1 (UHR 
range: 2.09–10.34), cluster 2 (UHR range: 10.34–16.28), cluster 3 
(UHR range: 16.30–25.68) and cluster 4 (UHR range: 25.82–55.50). 
We then applied multivariate logistic regression models to analyze the 
relationship between UHR clusters and CKD (Supplementary Table S4). 
In the fully adjusted model 3, the odds ratios (ORs) for cluster 2, 
cluster 3, and cluster 4 were 1.17 (95% CI: 0.89–1.55), 1.93 (95% CI: 
1.37–2.73), and 3.35 (95% CI: 1.84–6.11), respectively. All three 
clusters demonstrated statistically significant trends (all p for trend 
<0.001), consistent with the relationship observed between UHR 
tertiles and CKD. Finally, given the nonlinear relationship between 
UHR and CKD in the lower BMI group (BMI < 24 kg/m2) as indicated 
by RCS analysis, we conducted a piecewise logistic regression model 

FIGURE 3

Receiver operating characteristic (ROC) curves for the association between uric acid to high-density lipoprotein cholesterol ratio (UHR) and chronic 
kidney disease (CKD) in different models. Model 1: Unadjusted analysis (no covariates included); Model 2: Adjusted for age, sex; Model 3: Fully adjusted 
model, incorporating age, sex, education, body mass index, unfavorable lipid profile (total cholesterol, triglyceride, low-density lipoprotein cholesterol) 
and glycemic parameters (hemoglobin A1c, fasting plasma glucose), hypertension, smoking, alcohol drinking, and diabetes duration. AUC, area under 
curve.
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to further explore this relationship. As shown in Supplementary  
Table S4, the piecewise model provided a significantly better fit than 
the standard logistic regression model (p = 0.012). The analysis 
revealed a threshold effect at a UHR of 5.85. Below this threshold, 
higher UHR was associated with a reduced risk of CKD, whereas 
above this threshold, higher UHR was associated with an increased 
risk of CKD.

4 Discussion

This study identified a significant positive correlation between the 
UHR and CKD in a Chinese population aged 18 years and older with 
T2DM. Our analysis revealed that individuals with higher UHR levels 
exhibited a greater likelihood of CKD, with this relationship persisting 
even after adjusting for multiple confounders. Notably, a linear dose–
response relationship was observed, suggesting that increasing UHR 
levels consistently correlated with an elevated CKD risk. Furthermore, 
subgroup analyses demonstrated that this association remained robust 
across most demographic and clinical variables, except for the 18–44 
and 45–59 age groups and smokers. Importantly, BMI was identified 
as a significant effect modifier, with a nonlinear relationship observed 
in individuals with lower BMI, whereas a linear association persisted 

among those with higher BMI. ROC curve analysis further established 
the diagnostic potential of UHR, with an optimal cut-off value of 
12.28 providing moderate predictive accuracy. Sensitivity analyses, 
including PSM and clustering approaches, reinforced the stability and 
reliability of our primary findings. These results support the clinical 
relevance of UHR as a potential biomarker for CKD risk assessment 
in T2DM patients.

The positive linear association between the UHR and CKD in 
T2DM populations may be driven by a combination of metabolic 
dysregulation, chronic inflammation, and vascular dysfunction. 
Given that UHR reflects both elevated UA and reduced HDL-C, it 
serves as a composite marker of metabolic stress and systemic 
inflammation (30), both of which are key contributors to CKD 
progression in diabetic patients (31). Uric acid-induced renal injury 
is particularly relevant in T2DM due to the already compromised 
renal function in these patients (32). Elevated UA contributes to 
glomerular hypertension, oxidative stress, and endothelial 
dysfunction, all of which accelerate renal injury (33, 34). In diabetic 
kidneys, UA further promotes NLRP3 inflammasome activation, 
leading to increased secretion of pro-inflammatory cytokines such as 
IL-1β and TNF-α, which drive tubulointerstitial fibrosis (35–37). 
Additionally, uric acid impairs mitochondrial function in renal 
tubular cells, exacerbating diabetic kidney disease through 

FIGURE 4

Receiver operating characteristic (ROC) curves for the association between uric acid to high-density lipoprotein cholesterol ratio (UHR), UA and HDL-C 
with chronic kidney disease (CKD). AUC, area under curve; UA, uric acid; HDL-C, high-density lipoprotein cholesterol; UHR, uric acid to high-density 
lipoprotein cholesterol ratio.
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epithelial-to-mesenchymal transition (EMT) and fibrosis (38, 39). 
Recent research has further elucidated that UA activates the xanthine 
oxidase pathway, generating reactive oxygen species (ROS) that 
exacerbate podocyte injury and glomerulosclerosis in T2DM models 
(40). Beyond these established pathways, UHR may influence CKD 
development through additional mechanisms, such as the 
upregulation of toll-like receptor 4 signaling, which amplifies 

inflammatory responses in renal tissues, or by promoting 
microvascular damage via the inhibition of nitric oxide bioavailability 
(41). Compared to other inflammatory markers like C-reactive 
protein or interleukin-6, UHR offers a unique advantage by 
integrating both pro-oxidative (UA) and protective (HDL-C) 
components, providing a more holistic reflection of metabolic-
inflammatory imbalance in T2DM-related CKD.

FIGURE 5

Subgroup analysis of adjusted odds ratios for chronic kidney disease (CKD). Adjusting age, sex, education, body mass index, unfavorable lipid profile 
(total cholesterol, triglyceride, low-density lipoprotein cholesterol) and glycemic parameters (hemoglobin A1c, fasting plasma glucose), hypertension, 
smoking, alcohol drinking, and diabetes duration for each subgroup (excluding for its own group). UHR, uric acid to high-density lipoprotein 
cholesterol ratio; OR, odds ratio; BMI, body mass index.

FIGURE 6

Association between the uric acid to high-density lipoprotein cholesterol ratio (UHR) and chronic kidney disease (CKD) among lower BMI group 
(BMI < 24 kg/m2), with 95% confidence intervals (CIs). The figure depicts the relationship between UHR and CKD across three models, considering 
potential nonlinear associations. Model 1: Unadjusted analysis (no covariates included). Model 2: Adjusted for age and sex, providing a more refined 
estimate of the association by controlling for these demographic factors. Model 3: Fully adjusted model, incorporating age, sex, education, unfavorable 
lipid profile (total cholesterol, triglyceride, low-density lipoprotein cholesterol) and glycemic parameters (hemoglobin A1c, fasting plasma glucose), 
hypertension, smoking, alcohol drinking, and diabetes duration. CI, confidence interval; UHR, uric acid to high-density lipoprotein cholesterol ratio.

https://doi.org/10.3389/fnut.2025.1582495
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chen et al. 10.3389/fnut.2025.1582495

Frontiers in Nutrition 11 frontiersin.org

Low HDL-C levels further increase CKD risk in T2DM patients 
by impairing its normal anti-inflammatory, antioxidant, and 
endothelial-protective functions (42–44). HDL plays a crucial role in 
reverse cholesterol transport, preventing lipid accumulation in renal 
tissues (45, 46). However, in diabetic patients, HDL dysfunction is 
common, leading to increased oxidative stress, vascular injury, and 
chronic low-grade inflammation—all of which contribute to CKD 
progression (47, 48).

IR and metabolic dysfunction may further mediate the link 
between UHR and CKD in T2DM. Both elevated UA and low HDL-C 
are strongly associated with IR, which in turn contributes to 
glomerular hyperfiltration, podocyte injury, and lipid accumulation 
in renal tubules, leading to progressive nephron loss (49, 50). 
Additionally, IR activates inflammatory pathways and the renin-
angiotensin-aldosterone system, worsening hypertension and 
accelerating diabetic kidney disease (51, 52). Finally, systemic vascular 
dysfunction plays a central role in CKD development among T2DM 
patients (53). Given these multiple mechanisms, UHR may serve as a 
valuable tool for early CKD risk stratification in diabetic patients, 
potentially guiding clinical decisions such as intensified monitoring 
or targeted interventions to mitigate renal decline. For instance, 
patients with elevated UHR could benefit from early uric acid-
lowering therapies (e.g., allopurinol) or HDL-C enhancing strategies 
(e.g., niacin or lifestyle modifications), though clinical trials are 
needed to validate these approaches.

The finding that lower BMI strengthens the association between 
UHR and CKD suggests that BMI plays a critical role in modulating 
the underlying pathophysiology linking UHR to renal dysfunction 
(54). In individuals with lower BMI, the UHR-CKD relationship may 
be more pronounced due to reduced visceral fat buffering of UA, 
leading to higher circulating UA levels and impaired renal excretion 
(55). This could reflect a state of unopposed UA accumulation, where 
the absence of visceral fat allows UA-driven oxidative stress and 
inflammation to exert a more direct impact on renal tissue (56). 
Alternatively, lower BMI might indicate sarcopenia or malnutrition in 
T2DM patients, which could exacerbate oxidative stress and 
inflammation, further amplifying UHR’s detrimental effects on kidney 
function (57). Our study’s RCS analysis provides further insight into 
this modulation, revealing a nonlinear UHR-CKD relationship in the 
lower BMI group, with a threshold effect at UHR 5.85. Below this 

threshold, lower UHR levels may reflect insufficient UA-driven 
metabolic stress to trigger CKD, possibly due to preserved renal 
clearance or reduced inflammatory burden. However, above this 
threshold, the sharp increase in CKD risk likely stems from unopposed 
UA accumulation, which activates pathways such as the NLRP3 
inflammasome and xanthine oxidase, driving reactive oxygen species 
production and tubulointerstitial damage (58). This nonlinearity 
suggests a tipping point where UA’s pro-oxidative effects overwhelm 
HDL-C’s protective capacity in leaner T2DM patients. In contrast, the 
higher BMI group exhibited a linear UHR-CKD relationship, likely 
reflecting a chronic, obesity-driven inflammatory milieu. In these 
individuals, visceral fat amplifies IR and lipid dysregulation, 
synergizing with UHR to progressively worsen CKD without a distinct 
threshold (59). Additionally, adipocyte-derived adipokines may 
enhance endothelial dysfunction and glomerular hypertension, 
sustaining a steady UHR-CKD link (60). For leaner individuals, 
sarcopenia could further exacerbate the UHR-CKD relationship by 
reducing muscle mass-dependent UA metabolism, while in obese 
patients, the dominant role of visceral fat and systemic inflammation 
may overshadow UHR’s independent effects. These BMI-specific 
mechanisms highlight the need for tailored interventions. Lean 
patients may benefit from early uric acid-lowering therapies below 
critical thresholds to prevent the tipping point where UA-driven 
damage becomes irreversible. In contrast, obese patients might require 
combined anti-inflammatory and lipid-modulating strategies to 
disrupt the linear progression of CKD.

The lack of significant associations in younger patients and 
smokers is another notable finding that requires further investigation. 
Age-related metabolic variations and smoking-related mechanisms 
may influence the ability of UHR to distinguish CKD status in these 
subgroups. In younger individuals, renal function may be less affected 
by chronic inflammatory and metabolic stressors that elevate uric 
acid and impair HDL-C metabolism, resulting in weaker associations 
with CKD (61). Younger individuals typically have better renal 
reserve and fewer cumulative metabolic insults, which may mask the 
impact of UHR on kidney function. As individuals age, these 
metabolic disturbances, including oxidative stress, chronic 
inflammation, and IR, become more pronounced, thereby 
strengthening the link between UHR and kidney damage (62). This 
suggests that UHR may be a more reliable biomarker for CKD risk in 

FIGURE 7

Association between the uric acid to high-density lipoprotein cholesterol ratio (UHR) and chronic kidney disease (CKD) among higher BMI group 
(BMI ≥ 24 kg/m2), with 95% confidence intervals (CIs). The figure depicts the relationship between UHR and CKD across three models, considering 
potential nonlinear associations. Model 1: Unadjusted analysis (no covariates included). Model 2: Adjusted for age and sex, providing a more refined 
estimate of the association by controlling for these demographic factors. Model 3: Fully adjusted model, incorporating age, sex, education, unfavorable 
lipid profile (total cholesterol, triglyceride, low-density lipoprotein cholesterol) and glycemic parameters (hemoglobin A1c, fasting plasma glucose), 
hypertension, smoking, alcohol drinking, and diabetes duration. CI, confidence interval; UHR, uric acid to high-density lipoprotein cholesterol ratio.
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older populations, where metabolic dysregulation and renal 
vulnerability are more evident. Regarding smoking, while it is a well-
known risk factor for CKD, its interaction with UHR may be more 
complex. Smoking induces systemic inflammation, oxidative stress, 
and endothelial dysfunction, all of which contribute to kidney injury 
(63). However, the effect of smoking on UHR and CKD risk may vary 
depending on factors such as smoking duration, intensity, and the 
presence of comorbidities like hypertension or diabetes. For instance, 
smoking may alter uric acid metabolism and HDL-C functionality in 
ways that are not fully captured by UHR alone. Smokers often exhibit 
higher levels of oxidative stress and inflammation, which could 
potentially overwhelm the protective effects of HDL-C, making UHR 
less predictive of CKD in this subgroup (64). These findings have 
important implications for clinical practice. In younger individuals, 
UHR may not be as effective in predicting CKD risk due to their 
relatively preserved renal function and lower burden of metabolic 
disturbances. Clinicians should consider alternative biomarkers or 
risk stratification tools for younger patients, particularly those 
without significant metabolic comorbidities. For smokers, the 
complex interplay between smoking-related mechanisms and UHR 
suggests that UHR alone may not be sufficient to assess CKD risk in 
this population. Instead, a more comprehensive evaluation that 
includes smoking history, intensity, and duration, along with other 
metabolic and inflammatory markers, may be necessary to accurately 
predict CKD risk in smokers.

Our findings align with and extend the existing literature on UHR 
and CKD. A key comparison can be made with Liu et al., a nationwide 
cohort study using CHARLS data, which found a positive correlation 
between UHR and CKD risk in 3,902 Chinese adults with abnormal 
glucose metabolism (19). Both studies confirm UHR’s association with 
CKD, but from different perspectives: Liu et al. employed a longitudinal 
design tracking UHR changes over time (2011–2015), reporting ORs 
for CKD incidence increasing from 1.08 to 2.13 across UHR classes, 
while our cross-sectional study provides a snapshot of UHR’s 
association with prevalent CKD (ORs significant across tertiles). Our 
study found that per SD increase in UHR was associated with a 40% 
higher odds of CKD (OR = 1.40, 95% CI: 1.23–1.60) after adjusting for 
potential covariates, while Liu et al.’s study indicated that each 1-SD rise 
in cumulative UHR levels, the likelihood of developing CKD increased 
by 32%. Other similarities include the linear UHR-CKD relationship 
and robustness across sensitivity analyses. However, differences arise 
in study design, population focus and outcomes. Liu et al.’s study was 
longitudinal, could establish temporal relationships and assess 
causality, while our cross-sectional analysis provides a comprehensive 
snapshot of UHR-CKD associations, allowing for detailed subgroup 
analysis and potential effect modifiers. Together, these studies 
complement each other by providing both immediate associations and 
insights into the progression of CKD over time, highlighting the need 
for further prospective studies to validate UHR as a predictive 
biomarker for CKD in high-risk populations. Other studies, such as 
Wang et al. on contrast-induced acute kidney injury (65) and Cheng 
et al. on a health check-up population (17), also support UHR’s renal 
risk association, though they differ in context (acute kidney injury) and 
population (older population in the united states), highlighting UHR’s 
broad applicability but T2DM-specific gaps our study addresses.

The strengths of this study include the following aspects. First, to 
our knowledge, it is the first to investigate the relationship between 
UHR and CKD in a well-defined population of Chinese patients with 

T2DM, offering important insights into this association within a high-
risk population. Second, we  utilized standardized data collection 
protocols, ensuring the reliability of our findings.

However, a more critical evaluation of limitations reveals areas for 
caution. Firstly, the study sample was restricted to individuals with 
T2DM from Eastern China, potentially limiting generalizability to other 
regions or ethnicities with differing dietary, genetic, or lifestyle factors. 
Secondly, despite comprehensive adjustments, residual confounding 
from unmeasured variables (e.g., genetic predisposition, dietary purine 
intake) cannot be excluded. Thirdly, the absence of medication data, such 
as diuretics or urate-lowering agents, is a significant limitation, as these 
could directly influence UA levels and thus UHR, potentially 
overestimating its association with CKD. Lastly, the cross-sectional 
design precludes causality inference, as it captures only a single time 
point, potentially missing dynamic UHR changes or reverse causation 
(e.g., CKD altering UHR). This design limitation may underestimate the 
true strength of the UHR-CKD relationship, particularly if longitudinal 
trends are more predictive. Potential confounders, such as socioeconomic 
status or physical activity, could bias the results. The direction of this bias, 
either toward or away from the null, depends on their distribution.

5 Conclusion

This study underscores the association between UHR, a marker of 
systemic inflammation, and CKD prevalence in individuals with T2DM, 
revealing a clear dose–response relationship. These findings position 
UHR as a potentially valuable parameter for CKD risk assessment in 
diabetic patients, with important implications for clinical practice. 
Specifically, UHR could be incorporated into routine metabolic panels 
for T2DM patients, with the identified cut-off of 12.28 serving as a 
trigger for enhanced renal monitoring (e.g., eGFR, albuminuria) or early 
interventions such as uric acid reduction or HDL-C optimization. 
Building on Liu et al.’s study, this research further elucidates UHR’s role 
in CKD pathogenesis, emphasizing its potential as both a biomarker and 
therapeutic target. Future studies should prioritize randomized 
controlled trials to explore interventions targeting UHR-related 
pathways, such as anti-inflammatory or antioxidant therapies, to evaluate 
their efficacy in preventing CKD progression in T2DM. Additionally, 
integrating UHR into risk stratification models could enable more 
personalized treatment strategies, tailoring interventions to individual 
metabolic and inflammatory profiles.
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