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Introduction: Colored onions are favored by consumers due to their distinctive 
aroma, rich phytochemical content, and diverse biological activities. However, 
comprehensive analyses of their phytochemical profiles and volatile metabolites 
remain limited.

Methods: In this study, total phenols, flavonoids, anthocyanins, carotenoids, 
and antioxidant activities of three colored onion bulbs were evaluated. Volatile 
metabolites were identified using headspace solid-phase microextraction 
combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS). 
Multivariate statistical analyses, feature selection techniques (SelectKBest, 
LASSO), and machine learning models were applied to further analyze and 
classify the metabolite profiles.

Results: Significant differences in phytochemical composition and antioxidant 
activities were observed among the three onion types. A total of 243 volatile 
metabolites were detected, with sulfur compounds accounting for 51-64%, followed 
by organic acids and their derivatives (4-19%). Multivariate analysis revealed distinct 
volatile profiles, and 19 key metabolites were identified as biomarkers. Additionally, 
33 and 38 feature metabolites were selected by SelectKBest and LASSO, respectively. 
The 38 features selected by LASSO enabled clear differentiation of onion types via 
PCA, UMAP, and k-means clustering. Among the four machine learning models 
tested, the random forest model achieved the highest classification accuracy (1.00). 
SHAP analysis further confirmed 20 metabolites as potential key markers.

Conclusion: The findings suggest that the combination of HS-SPME/GC-MS 
and machine learning, particularly the random forest algorithm, is a powerful 
approach for characterizing and classifying volatile metabolite profiles in 
colored onions. This method holds potential for quality assessment and 
breeding applications.
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1 Introduction

Onion (Allium cepa L.) is broadly cultivated and consumed for its 
distinctive flavor and aroma (1). In general, onion germplasms exhibit 
diverse colors, such as purple or red, white, and yellow colors (2). Red 
onions are rich in anthocyanins with antioxidant properties, yellow 
onions have high flavonoid content, particularly quercetin, and white 
onions contain sulfur compounds with antibacterial effects (3). 
Studies have shown that pigmented onions provide numerous health 
benefits, such as anticancer and antibacterial properties, which can 
be attributed to their bioactive substances, including anthocyanins 
and flavonoids, as well as various biological activities, such as free 
radical scavenging ability and phenol concentration (4, 5).

The smell of onions is primarily due to volatile compounds 
released when the onion is chopped (6). Wang et al. (7) identified 61 
volatile odor chemicals (27 sulfur compounds and 13 aldehydes) in 
several pigmented onions via headspace solid-phase microextraction 
associated with gas chromatography–mass spectrometry (HS–SPME–
GC–MS). D’Auria et  al. (8) also identified sulfides (thiopropanal 
S-oxide) in onions as the key differentiator between onions and shallot 
via HS-SPME-GC–MS. Li, Q. et al. (9) analyzed purple onions from 
different origins and reported that the purple onion from Gansu 
Province is superior in flavor quality, containing 27 sulfides. Therefore, 
varieties, odorants, colors and geographic position are closely related 
to the quality characteristics of onions.

Recently, metabolomics has become a highly interdisciplinary and 
emerging technique that can systematically detect low-molecular-weight 
metabolites in biological systems (10, 11). Gas chromatography–mass 
spectrometry (GC–MS) and liquid chromatography–mass spectrometry 
(LC–MS) are the main analytical techniques used for metabolomics. 
Compared with LC–MS-based metabolomics, GC–MS-based 
metabolomics has superior precision, reproducibility, and measurement 
sensitivity, is widely used and can achieve qualitative evaluation of 
volatile components. When combined with the HS/SPME procedure, 
GC–MS-based metabolomics has been confirmed to be  a powerful 
means for quantifying volatile metabolites in various agricultural 
products. For example, Wang et al. (12) detected 132 volatile metabolites 
of fermented Kombucha via HS-SPME/GC–MS metabolomics and then 
selected 25 characteristic metabolites as biomarkers through multivariate 
statistical analysis. Zhao et al. (13) identify the nontargeted metabolomics 
of 27 japonica rice varieties from distinct areas of China.

Moreover, 16 kinds of volatiles and 22 kinds of aromatic 
compounds were selected as discrimination identifiers for uncooked 
and steamed rice, respectively. Additionally, employing the HS-SPME/
GC–QMS technique alongside multivariate statistical analysis has 
proven to be an effective method for distinguishing the geographical 
origins of Spanish onion varieties (14). Thus, GC–MS combined with 
metabolomics is a powerful means to explore characteristic 
metabolites in onion, providing detailed information on the volatile 
metabolites that define flavor and aroma.

However, HS-SPME-GC–MS-based metabolomic studies can 
acquire vast amounts of useful data, which are often processed through 
multivariable statistics and may contain redundant information. With 
the rapid development of artificial intelligence, machine learning 
technologies (such as XG Boost, logistic regression, random forest, and 
decision tree) have been applied to metabolomic studies. These methods 
can significantly address these shortcomings and demonstrate great 
application prospects. In addition, metabolomics employing machine 
learning (ML) provides an unambiguous perspective on data excavation, 

visualization, and selection of essential metabolite elements (15). Wu 
et al. (16) used UPLC–MS/MS to extract metabolites from 32 out of 366 
Astragalus samples. They employed machine learning algorithms to 
assess the accuracy of four selected feature recognizers, achieving an 
accuracy of 86.9%. A combined approach of machine learning and 
metabolomics can be used to evaluate the role of volatile metabolites in 
maintaining the freshness of strawberries during storage (17). Therefore, 
the use of HS-SPME/GC–MS technology in combination with 
metabolomics and machine learning methods can be a novel approach 
for identifying the characteristic metabolites of colored onions.

Jiuquan is located in Gansu Province, Western China, which is a 
famous onion production area and is well known for its three-colored 
onions (red, white, and yellow) as a National Geographical Indication 
Product (7). Pigmented onions contain distinct aroma, abundant 
health-promoting compounds and huge market value for exploitation, 
Our previous study identified volatile organic compounds in raw and 
cooked pigmented onion through GC-IMS (6). To date, 
characterization of volatile flavor profiles of different varieties of 
onion (18), different geographical regions (14), and various 
processing methods (19) derived from the traditional HS-SPME-GC–
MS approach has been reported. Although previous studies have 
analyzed volatile compounds in onions, few reports have integrated 
HS-SPME-GC–MS-based metabolomics with machine learning to 
classify and identify key metabolites in pigmented onions.

Given their diverse phytochemical profiles and economic 
importance, this study, on one hand, compared the differences in major 
nutrients and antioxidant activities of colored onion (red, white, and 
yellow) cultivated in Jiuquan. On another hand, the volatile metabolites 
in different pigmented onions were further investigated through 
HS-SPME-GC–MS-based metabolomics. The distinctive volatile 
metabolites were also screened via multivariate statistics. Moreover, 
machine learning approaches were employed to extract the key features 
of the distinctive volatile metabolites and to evaluate their ability to 
discriminate pigmented onions. These findings may shed additional 
light on the quality characteristics of pigmented onions in Jiuquan.

2 Materials and methods

2.1 Material and reagents

Three colored onions and variety names—Baibilong (white), 
Hongyou 1 (red), and Jinke 7 (yellow)—were collected on October, 
2024 at the same geographical location from Suzhou (Jiuquan, China) 
(Supplementary Figure S1). The three peeled tinctorial onions were 
stored at 4°C.

The carotenoid test kit was purchased from Beijing Leagene 
Biotechnology Co., Ltd. Kits for total antioxidant ability assays (DPPH 
and ABTS), as well as phenol, flavonoid, and proanthocyanidin test 
kits, were obtained from Jiancheng Bioengineering Research Institute 
(Nanjing, China). Anhydrous methanol and ethanol were directly 
sourced from Tianjin Fuyu Fine Chemical Co., Ltd.

2.2 Evaluation of major nutrients and 
antioxidant activity

The determination of major nutrients (phenols, flavonoids, 
anthocyanins, and carotenoids) in pigmented onions was carried out 
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according to the methods of Hu et al. (20). Briefly, 0.1 g of each onion 
mixture was accurately weighed, 1 mL of extraction solution was added 
according to the kit’s instructions, and the mixture was mixed in a 
chilled water bath (DZKW-S-4, Shanghai Keheng Industrial 
Development Co., Ltd., Shaanxi Province, China). Then, the samples 
were centrifuged at 12,000 RPM (Allegra X-30R, Beckman Coulter, 
Inc., USA) for 10 min at 4°C, and the supernatants were placed on ice 
for testing. The total phenol content (TPC), total flavonoid content 
(TFC), total anthocyanin content (TAC), and carotenoid content were 
measured via an enzyme-linked assay (Evolution 201, Thermo Fisher 
Scientific Inc., USA) according to the instructions of the corresponding 
kits. The antioxidant activity of each onion was also evaluated through 
DPPH and ABTS radical scavenging rates according to the instructions 
of the corresponding determination kits. All procedures were repeated 
three times for each onion sample as biological replicates.

2.3 Semiquantitative analysis of volatile 
metabolites via HS–SPME combined with 
GC–MS

Each onion sample was ground evenly, precisely weighed (1.0 g), 
and placed into 20 mL SPME containers manufactured by Shendi in 
China. Three colors of onions independently were set up in eight 
parallel groups to ensure the scientific data (n = 8). The GC–MS 
conditions used in this study followed the methodology of Wei et al. 
(21), with appropriate adjustments. Onion samples were analyzed via 
the CTC Triad automatic sampler. SPME was used for 15 min at 50 
degrees Celsius and a vibration speed of 250 rpm. The SPME filament 
was subsequently placed in the vapor phase of the onion samples, 
allowing them to take up the volatile ingredients for 30 min. After these 
steps, the filament was placed into the GC injection port for desorption 
of analytes over 5 min. The cycle time of GC was 50 min, and all 
samples were analyzed in triplicate. Analysis was performed via an 
Agilent 7890B-5977B GC–MS system equipped with a DB–WAX 
capillary column (30 m in length, 0.25 mm internal diameter, 0.25 μm 
film thickness). The carrier gas used was ultrahigh-purity helium, 
which flows at a rate of 1.0 mL per min. The preliminary thermic 
conditions of the column were set at 40°C for 5 min. The temperature 
was then increased to 220°C at a rate of 5°C/min, followed by an 
increase to 250°C at a rate of 20°C/min, after which it was held at this 
final temperature for 2.5 min. The injection degree and interface degree 
were both set at 260°C. The ion generator and quadrupole thermal 
conditions were 230°C and 150°C, respectively. The mass spectrometry 
data were acquired in full-scan mode across a m/z range of 22–400, 
with the mass selective detector operating in electron impact ionization 
mode at 70 eV. Using 1,2-dichlorobenzene as the internal standard, the 
raw data were analyzed by the software ChromaTOF via the total peak 
normalization correction method to obtain the peak area information 
of the substances, which represents the quantitative results. The spectra 
were matched against the NIST2017 spectrum library.

2.4 Screening of differentially abundant 
metabolites and feature metabolites

2.4.1 Multivariate statistical analysis
The datasets of peak areas were scaled via the Pareto method 

before performing multivariate analysis with principal component 

analysis (PCA) and orthogonal projections to latent structures 
discriminant analysis (OPLS-DA). Precise classification models were 
established via unsupervised PCA and supervised OPLS-DA. The 
variable importance in projection (VIP) selection method was 
applied to identify potential markers for colored onions by 
determining the key compounds that contribute to the separation of 
each sample in the OPLS-DA score plots. The OPLS-DA models were 
validated via permutation tests (13).

2.4.2 Building and assessing the machine learning 
model

Two feature selection methods were used to decrease the feature 
count, prevent dimensional problems, make the model easier to 
interpret, and reduce overfitting (22). First, the correlation values 
among features were calculated, and features exhibiting high 
multicollinearity (greater than 0.8) were subsequently removed, 
reducing the feature count from 242 to 167. Additionally, SelectKBest 
with the function chi2 was used to select key feature metabolites. 
Second, the least absolute shrinkage and selection operator (LASSO) 
method was also used to select key feature metabolites. The 
descriptors were then scaled via the Zheng et al. (22) equation. This 
scaling ensured that each dimension’s data had a variance of one and 
a mean of zero. These processed descriptors x1, x2, x3,…, and x38 were 
subsequently employed as sample variables X for regression and 
classification models (23).

To further enhance the classification and feature selection, 
machine learning algorithms, including XG Boost, logistic regression, 
random forest, and decision tree, were employed. XG Boost was 
chosen for its superior ability to handle complex data interactions 
and improve classification accuracy through boosting. Logistic 
regression provided a simple yet effective baseline model for 
understanding the relationship between metabolites and onion types. 
Random forest was applied for its robustness in high-dimensional 
data and its ability to mitigate overfitting. Finally, the decision tree 
algorithm contributed by offering an interpretable framework for 
classifying metabolites. These combined methods significantly 
improved feature selection and model performance in distinguishing 
pigmented onion varieties.

2.5 Statistical analyses

The data are expressed as the means ± standard deviations 
(n = 8). The possible metabolite names and their retention times, 
CAS numbers, relevant content, and other information in each 
sample were obtained through database annotation, and this 
annotation information of each sample was integrated to obtain the 
final table of possible metabolites for analysis. The peak data were 
normalized to analyze the levels of different metabolites. To study 
the accumulation of metabolites, various analyses, including PCA, 
OPLS-DA, heatmaps and box plots, UpSet plots, and K-means 
clustering, were conducted via the R package.1 All machine learning 
analyses are implemented on the Anaconda3 platform, including 
scikit-learn libraries, glmnet (for LASSO), and matplotlib for data 
processing and analysis (23).

1 https://www.r-project.org
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3 Results and discussion

3.1 Major nutrients and antioxidant activity 
of pigmented onion bulbs

The present study investigated the relative contents of major 
nutrients in pigmented onion. Anthocyanins are related to the 
color of onions and are found mainly in the outer layers of the 
onion (19). As shown in Supplementary Figure S2, TAC levels 
(5.80 ± 1.4 μg/g) were the highest in red-colored onion (p < 0.05), 
but no marked differences were found between white-colored 
onion (0.6 ± 0.51 μg/g) and yellow-colored onion 
(0.55 ± 0.25 μg/g) (p > 0.05). TFC levels differed distinctly 
between yellow-colored onions (0.20 ± 0.02 mg/g) and white-
colored onions (0.16 ± 0.02 mg/g) (p < 0.05). However, there was 
no significant difference in the TFC between red-colored onions 
(0.18 mg/g) and the other two pigmented onions. The TPC value 
of yellow onions (0.69 ± 0.06 mg GAE/g) was significantly greater 
than that of other-colored onions (p < 0.05). The red-colored 
onion (0.55 ± 0.08 mg GAE/g) was significantly different from the 
white-colored onion (0.11 ± 0.03 mg GAE/g) (p < 0.05). The 
carotenoid content showed the same trend as the anthocyanin 
content. Supplementary Figure S2 also shows the antioxidant 
activity of different colored onions by the DPPH and ABTS radical 
scavenging methods. The DPPH radical scavenging activity 
paralleled the trend observed with TAC. The antioxidant capacity 
of red-colored and yellow-colored onions is not significant 
(p > 0.05), and red-colored and yellow-colored onions are 
significantly different from white-colored onions (p < 0.05). These 
results implied that pigmented onions are abundant resources of 
anthocyanins, phenols, flavonoids, and carotenoids with increased 
antioxidative potential. A similar study by Zhang et  al. (2) 
reported that TAC, TFC and TPC were positively correlated 
with antioxidant activity in pigmented onions from 
Jiangsu Province.

Different onion varieties contain various bioactive 
compounds that contribute to their color and antioxidant 
properties. Red onions are particularly rich in anthocyanins, 
including cyanidin-3-glucoside, cyanidin-3-laminaribioside, and 
peonidin derivatives, which are responsible for their red-purple 
pigmentation (3). They also contain significant amounts of 
flavonoids, particularly quercetin glycosides such as quercetin-
3,4′-diglucoside and quercetin-4′-monoglucoside. Additionally, 
red onions are a source of phenolic compounds, including ferulic 
acid, p-coumaric acid, gallic acid, and protocatechuic acid, along 
with small amounts of carotenoids like β-carotene and lutein 
(24). Yellow onions, on the other hand, are abundant in flavonoids 
such as quercetin and kaempferol derivatives, with quercetin 
being the predominant compound (3). Their phenolic 
composition includes ferulic acid and caffeic acid, both known 
for their antioxidant activities. Yellow onions also contain lutein 
and zeaxanthin, which contribute to their characteristic 
coloration (25). White onions have lower flavonoid content than 
red and yellow varieties, with small amounts of quercetin and 
isorhamnetin. Their phenolic content is relatively lower as well, 
primarily consisting of ferulic acid and p-coumaric acid (26). 
Carotenoid levels in white onions are also minimal compared to 
yellow onions (3).

3.2 Outline of the metabolic characteristics 
of pigmented onion

3.2.1 HS-SPME/GC–MS-based metabolomic 
analysis

The stability of the instrument data collection was verified by 
comparing the total ion flow diagrams of onion samples for spectral 
overlap. As depicted in Figure 1A, the baseline of the onion samples 
remained stable, and the intensity and retention time of each 
chromatographic peak remained consistent. This indicates reliable 
instrument stability, with minimal variation due to instrument errors 
throughout the experiment. To explore the diversity of metabolites, 
HS-SPME/GCMS was used to analyze and provide details of the 
volatile metabolites of onions with different colors (9). A total of 243 
metabolic species were separated and characterized, which were 
grouped into alcohols (2–7%), nitrogen and its derivatives (6–10%), 
sulfur compounds (51–64%), aldehydes (4–7%), organic acids and 
their derivatives (4–19%), heterocycles (4–6%), esters (6–9%), and 
others (1–5%). Onion metabolites of different colors were classified, 
as illustrated in Figure 1B. Sulfur compound levels in white onion 
were lower than those in yellow and red onion. These sulfur 
compounds primarily contribute to differences in onion flavor 
substances, depending on their content and quantity of sulfides. Liu 
et al. (27) also identified 16 sulfides in freshly chopped onion via 
HS-SPME/GC–MS and proposed a correlation between volatile sulfur 
compound fluctuations and various fresh-cut styles and storage 
temperatures. Moreover, organic acids play an essential role and can 
influence the flavor profile of onions by influencing their acidity and 
pH (26). The concentrations of organic acids and related derivatives 
in different colors significantly varied, specifically red > white > yellow. 
Das et al. (28) used a GC–MS-dependent metabolomics methodology 
to detect volatile metabolites in 11 varieties of onion bulbs. Sixty-two 
metabolites were detected, 11 of which were organic acids.

3.2.2 Multivariate statistical analysis
PCA was used as an unsupervised method to visualize natural 

clustering and data variability (29). In a study by Fernandes et al. (14), 
PCA was used to divide Spanish onions from different regions into 
four distinct clusters: one group consisted of onions from Porto 
Moniz, another from Ribeira Brava, and two additional groups from 
Caniço and Santa Cruz, which are located close to each other. 
Similarly, we employed PCA to discriminate between onion samples 
of different colors: white vs. yellow, white vs. red, red vs. yellow, and 
white vs. yellow vs. red, revealing varying degrees of separation. As 
shown in Supplementary Figure S3, the two major components 
accounted for 32.4, 34.7, 31.5, and 26.7% of the total variance, 
respectively. The PCA results revealed discernible differences among 
the colored onion samples, which were distinguishable through the 
identification of volatile substances. These findings demonstrated that 
the onion samples could be distinctly separated, highlighting clear 
differences in their profiles.

In contrast, OPLS-DA served as a supervised model to 
maximize group separation and identify key discriminative volatile 
metabolites (30). To determine the differences among the three 
onion species, OPLS-DA modeling was applied to determine the 
relative abundance of volatile metabolites (Figures 2A,C,E,G). The 
validity of the model was subsequently verified through a 
permutation test. The values of R2Y and Q2 in the white and yellow, 
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white and red, and red and yellow and white groups were 0.994 and 
0.413, 0.988 and 0.547, 0.987 and 0.496, and 0.992 and 0.562, 
respectively. This shows that the fitting precision of the model is 
high. The parallel groups of different varieties of onion were 
clustered together, indicating that the samples in this study were 
consistent. Briefly, OPLS-DA can distinguish onion groups well and 
can screen significantly different metabolites.

Using K-means clustering analysis, we filtered the results to obtain 
243 differentially abundant metabolites, which were categorized into 
9 distinct profiles (Figure 3A). Profiles 1, 4, and 5 revealed that 107 
metabolites accumulated more in white onions than in yellow and red 
onions. These included 17 esters, 15 sulfur compounds, and 13 organic 
acids and their derivatives. Profiles 2, 8, and 9 included 68 metabolites, 
mainly 14 esters, 9 organic acids and their derivatives, and 9 sulfur 
compounds that were present in white and red onions. In profiles 3, 
6, and 7, 69 metabolites were overtopped in white and yellow onions, 

which were principally esters, hydrocarbons, and sulfur compounds. 
Volatile sulfur compounds contribute to the characteristic odor of 
onion through the metabolic pathway of S-alkylcysteine sulfoxides (9). 
The esters, ethyl acetate and propyl acetate, found in onions, originate 
from the fatty acid and amino acid pathways (27). The present 
metabonomic analysis suggested that variations in the relative 
abundance of metabolites, particularly in sulfide- and ester-related 
pathways (Figure 3A), could account for the flavor differences among 
white, yellow, and red onions.

3.3 Screening and identification of 
differentially abundant metabolites

Differentially abundant metabolites were identified by 
screening. The criteria for identifying relevant differentially 

FIGURE 1

(A) Total ion flow diagram of onion samples. (B) Distribution of each category of aromatic metabolites in pigmented onion.
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FIGURE 2

OPLS-DA predictive model and clustered heatmap of significant aromatic metabolites in accordance with VIP scores obtained from three onion colors. 
(A,B) White vs. red, (C,D) white vs. yellow, (E,F) red vs. yellow, (G,H) white vs. yellow vs. red.
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abundant metabolites included a VIP score >1 and a one-way 
ANOVA p value <0.05. As shown in Figure 3B, 16 differentially 
abundant metabolites were found in the white- and yellow-colored 

comparisons, 16 in the white- and red-colored comparisons, and 
17 in the red- and yellow-colored comparisons. There were 7, 5 and 
10 upregulated metabolites and 9, 11 and 7 downregulated 

FIGURE 3

(A) K-means examination of various metabolites of three colored onions. The vertical axis displays the normalized quantity of each compound, 
whereas the horizontal axis represents the various samples. (B) Bar chart of the color comparison between the up- and downregulated onion samples.
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metabolites in white-colored vs. yellow-colored onion, white-
colored vs. red-colored onion, and red-colored vs. yellow-colored 
onion, respectively (Figure 3B).

The metabolite content of white-colored onion was significantly 
greater than that of yellow-colored onion in 2 alcohols (methanol, 
1-propanol), 4 sulfides (dipropyl trisulfide, propyl mercaptan, etc.), 
and 1 ether. Compared with yellow-colored onion, white-colored 
onion had a lower content of 3 aldehydes, 4 sulfides (1-allyl-2-
isopropyldisulfane, (E)-1-propenyl 2-propenyl disulfide, etc.) 
tripropylamine and ethylene glycol diethyl ether. The metabolite 
content of a white-colored onion was significantly greater than that of 
a red-colored onion for 3 sulfides (di-n-propyl trisulfide, 
1-(propylthio) propyl methyl disulfide, and propyl mercaptan), 
methanol, and diethyl ether. In contrast, the contents of 4 sulfides, 3 
aldehydes, 2 thiophenes (3,4-dimethylthiophene, 2-mercapto-3,4-
dimethyl-2,3-dihydrothiophene), ethylene glycol diethyl ether, and 
ethanol were lower in white-colored onions than in red-colored 
onions. The metabolite content of red-colored onion was greater than 
that of yellow-colored onion in 2 sulfides ((E)-propenyl propyl, 
trisulfide, propylene sulfide), 4 aldehydes, 2 thiophenes, and 2 alcohols 
(ethanol, n-propanol). The contents of 4 sulfides and 3 aldehydes 
(n-heptanal, hexaldehyde, and trans-2-hexenal) in red onion were 
lower than those in yellow onion. The white onion (S. Pietro) is known 

for its sweetness and low-pungency odor, and it also has a low content 
of all the sulfur components (31), which is consistent with the present 
results (Figure 1B). Compared with darker onions (such as yellow and 
red onions), aldehydes and sulfur-containing heterocyclic compounds 
give onions a spicier taste because of differences in their metabolites. 
This may explain why the levels of aldehydes and sulfur-containing 
compounds are low in white-colored onions.

Afterward, heatmaps were created to visualize the content 
differences of the potentially characterized metabolites, incorporating 
dendrograms for enhanced clarity (Figures 2B,D,F,H). These results, 
which are consistent with the above multivariate analysis, revealed 
that the key metabolites were categorized into two distinct classes. 
There were 19 different metabolites in the three groups that contained 
white-colored, yellow-colored, and red-colored onions. The three 
groups of different metabolites were characterized via a box plot 
(Figure 4).

As shown in Figure 4, the 19 different metabolites can be classified 
as sulfides, aldehydes, ketones, and others. Sulfur compounds are the 
primary contributors to the distinctive aroma of onions and play a 
crucial role in defining their scent profile. The differences in odor 
among species depend on the type and quantity of these sulfur 
compounds, which shape their volatile metabolites (32). Research has 
indicated that in onions, S-[(E)-Prop-1-enyl]-L-cysteine S-oxide 

FIGURE 4

Boxplots of 19 metabolites based on the OPLS-DA (VIP > 1) model showing significant differences between pigmented onions. * denotes a significant 
difference at the 0.05 level. ** denotes a significant difference at the 0.01 level. *** denotes a significant difference at the 0.001 level.
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serves as the primary pioneer of sulfur-containing volatiles. When 
onions are diced, the enzyme alliinase reacts with S-[(E)-Prop-1-
enyl]-L-cysteine S-oxide to produce a sequence of reactive sulfonic 
acids, which undergo chemical transformations to form stable 
volatiles, such as mono-, di-, and trisulfides (18). According to Liu 
et al. (27), propyl mercaptan, dipropyl disulfide, and methyl propyl 
trisulfide are the key volatile onion compounds. The propyl mercaptan 
and 1-(1-propenylthio) propyl propyl disulfide of white-colored onion 
differs significantly from those of yellow-colored onion and 
red-colored onion (Figure 4). Propylene sulfide has the opposite effect. 
The 1-(1-propenylthio) propyl propyl disulfide and di-n-propyl 
trisulfide of yellow-colored onion have the lowest metabolite 
intensities. The methyl propenyl disulfide of white-colored onions has 
the lowest metabolite intensity. As a result, these six sulfides can act as 
significantly different metabolites that distinguish different colored 
onions. Dipropyl disulfide and dipropyl trisulfide are the main volatile 
compounds present in fresh onions and are the primary reason for 
their strong aroma (27). The type and amount of these compounds 
determine how spicy the onion is. The heat treatment causes a change 
in the sulfur content between raw and cooked green onions, thus 
affecting the raw green onions to be more spicy than cooked green 
onions (33).

Aldehydes and alcohols were the most abundant compounds, 
resulting in a green aroma reminiscent of the freshly cut green or 
woody smell of plants. Aliphatic aldehydes and alcohols are produced 
when plant tissues are cut and chewed and originate from the 
lipoxygenase pathway. Several aldehydes (short-chain C6 aldehydes) 
have been identified, which are likely formed from fatty acids through 
the LOX pathway (34). This pathway is primarily active in the green 
tissues of plants in response to injury, contributing to the production 
of volatiles with green fragrance. Cecchi et  al. (35) also detected 
2-methyl-2-butenal, 2-methyl-2-pentenal, and propionaldehyde in 
dried onion via HS-SPME-GC–MS, HS-SPME-GC × GC-TOF, and 
HPLC-DAD. This may be due to the state of the onion sample. The 
2-methyl-2-butenal, 2-methyl-2-pentenal, and propionaldehyde 
contents of red-colored onion are significantly different from those of 
white-colored and yellow-colored onion. The trans-2-hexenal and 
2,4-heptadienal of yellow-colored onion are the most abundant 
(Figure 4).

Elevated injection temperatures have been implicated in the 
formation of thiophene compounds (36). Taglienti et  al. (32) 
identified 2-mercapto-3,4-dimethyl-2,3 dihydrothiophene and 
2,4-dimethylthiophene. The 2-mercapto-3,4-dimethyl-2,3-
dihydrothiophene and 3,4-dimethylthiophene contents of the three 
colors of onions were significantly different. Red onions have the 
highest levels, whereas white onions have the lowest. This is similar to 
previous report, which may provide additional insights into the odor 
profiles of colored onions both academically and industrially (5).

(E)-1-Methyl-3-(prop-1-en-1-yl) trisulfane, and ethanol are the 
most abundant red onions. The contents of hexyl formate and cis-4,5-
epoxy-(E)-2-decenal in yellow onion are significantly greater than 
those in white onion and red onion. Diethyl ether and methanol are 
the most abundant white-colored onions (Figure 4). Esters, which are 
primarily formed through chemical reactions between acids and 
alcohols, contribute sweet and fragrant aromas to onions, resulting in 
differences in the tastes of colored onions (5). Pearson correlation 
analysis was conducted between 19 differentially abundant metabolites 
and major nutrients as well as antioxidant activities, and the results are 

shown in Supplementary Figure S4. The total anthocyanin content was 
positively correlated with di-n-propyl trisulfide (p < 0.05), whereas 
hexyl formate, cis-4,5-epoxy-(E)-2-decenal, trans-2-hexenal, and 
2,4-heptadienal were negatively correlated with ABTS (p < 0.01).

3.4 Selection of feature metabolites in 
pigmented onions via machine learning

The 243 identified metabolites exhibited numerous overlapping 
features, prompting us to employ machine learning models and assess 
the feasibility of feature selection as well as classification accuracy 
across three colored onions. Therefore, we preprocessed the data via 
the LASSO method, and 38 feature metabolites were selected and used 
for machine learning. To assess the impact of the Lasso method on 
eigenvalue processing, a dimensionality reduction technique was 
employed to reduce and visualize 243 metabolites from the original 
dataset of three types of onions. Among these, 33 metabolites were 
selected via the multicollinearity-binding Chi method, whereas 38 
were chosen via the Lasso method, which is known for its strong anti-
overfitting capabilities and insensitivity to collinearity among variables 
(37). The 38 features selected by the Lasso method effectively 
distinguished the differences among the three kinds of onions 
(Supplementary Figure S5). PCA revealed that the first two 
components cannot explain the overall changes, indicating that there 
is a nonlinear relationship between these metabolites. The nonlinear 
dimensionality reduction UMAP method confirms this, and the Lasso 
treatment is superior to the multicollinearity binding Chi method. The 
unsupervised learning K-means algorithm shows similar results 
(Supplementary Figure S6).

Compared with supervised learning, unsupervised learning can 
help uncover hidden patterns and structures in data without the need 
for prelabeled labels, which can help understand the relationships 
between data features and the underlying clustering structure. The 
K-means clustering algorithm is widely recognized as one of the most 
frequently utilized and well-known unsupervised learning algorithms 
(38). In K-means clustering, we aim to partition the samples in the 
dataset into K clusters such that each sample is assigned to the centroid 
of the nearest cluster, thereby delineating the distinctions among the 
samples. Therefore, on the basis of UMAP, we explored the application 
potential of the unsupervised learning K-means algorithm in 
distinguishing three kinds of onions and evaluated the effectiveness of 
LASSO processing in classifying three kinds of onions. 
Supplementary Figure S6 showed that the K-means algorithm, which 
is based on the original 243 data points, could not correctly classify 
the 3 kinds of onion into 3 clusters. In contrast, the K-means algorithm 
can obtain 38 variables accurately divided into 3 kinds of clusters 
according to 3 kinds of onion based on the LASSO method, and the 
error rate is small, which indicates that LASSO feature processing 
combined with the K-means algorithm can accurately distinguish 3 
kinds of onion without manual labeling. McEligot et al. (39) employed 
LASSO regression techniques to analyze dietary intake in relation to 
breast cancer, demonstrating that this approach can effectively identify 
and clarify the impact of various dietary factors on breast cancer 
diagnosis. Therefore, 38 feature metabolites in pigmented onion were 
selected via LASSO for the next prediction.

For further prediction of the onion characteristic metabolite, four 
ML (i.e., XG Boost, RF, logistic regression, and decision tree) 
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classification models were constructed and validated via threefold 
cross-validation, as shown in Supplementary Table S2 and 
Figures 5A–D. The results indicate that the random forest (RF) model 
with threefold cross-validation achieved optimum precision, recall, 
and F1 score above 96% for three colored options, outperforming the 
performance of the other three models (Supplementary Table S2). This 
result can be  explained by the random forest model introducing 
randomness, having good noise “immunity” and being appropriate for 
discrete use (22). To predict the astringency threshold and type of 
flavonoid compounds, the most effective model was RF, which was 
analyzed via the Shapley additive explanations (SHAP) approach (23).

3.5 Using SHAP analysis to pinpoint 
essential metabolites as biomarkers

The SHAP method has been employed to evaluate the output of 
the optimum random forest model and pinpoint the features that exert 
the greatest influence on model predictions (40). Using the SHAP 
approach, 20 metabolites were further selected from 38 features, as 
shown in Figure 6A. Moreover, deeper shades of red indicate higher 
feature values, whereas darker shades of blue signify lower feature 
values, as depicted in Figure  6A. As shown, 2-methyl-2-butenal, 
ethanol, and propyl mercaptan contributed more to differentiating the 
three colored onion groups. Pearson correlation analysis was 

conducted between 20 selected feature metabolites and major 
nutrients as well as their antioxidant activities, and the results are 
shown in Figure 6B. The total anthocyanin content was positively 
correlated with 2,4-dimethylfuran, 2-methyl-2-butenal, and ethanol 
contents (p < 0.05), as the variation in the content of these substances 
influences the total anthocyanin content.

We grouped the 20 metabolites (Supplementary Figure S7) and 
showed that 4 sulfur compounds, 1 diethyl ether, and 3 aldehydes 
(with added benzaldehyde) were consistent with the 20 differentially 
abundant metabolites screened by the OPLS-DA model (Figure 4). 
In addition, there were 3 alcohols (1-octanol, 1-octen-3-ol, and 
alpha-methylbenzyl alcohol), 3 organic acids and their derivatives 
(isovaleric acid, 2-[(2-bromophenyl) methoxy]-benzoic acid, and 
alpha-aminoadipic acid), 2 heterocycles (2,5-dimethylpyrazine, 
2,4-dimethylfuran), and others (methyl myristate, n-hexadecane, and 
aminoimidazole carboxamide), which differed from the two feature 
selection methods (OPLS-DA and machine learning). Yagin et al. 
(41) used a hybrid support vector machines + multilayer perceptron 
model and SHAP to identify glucose, glycine, creatinine, and various 
phosphatidylcholines as biomarkers for targeted metabolomics 
analysis of patients with diabetic retinopathy. Ping et  al. (42) 
developed a novel approach for the nondestructive traceability of 
Panax ginseng origin via optimized models that combine 
hyperspectral imaging (HSI) and X-ray technology. Four variable 
screening methods were used to optimize the random forest and 

FIGURE 5

Classification performances of 38 key metabolites in pigmented onions via machine learning algorithms. (A) XGBoost, (B) logistic regression, 
(C) random forest, and (D) decision tree.
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support vector machine models, which demonstrated high accuracy 
and potential for tracing medicinal and food products. The machine 
learning results were similar to those of eight metabolites identified 
by OPLS-DA, including four sulfur compounds, two aldehydes, 
diethyl ether, and ethanol. Although the majority of differentially 

abundant metabolites used as biomarkers were screened by OPLS-DA 
combined with VIP scores, this study compared the differentially 
abundant metabolites and feature metabolites sieved by OPLS-DA 
and machine learning, respectively. The two methods can be used 
together to screen key metabolites comprehensively and provide 

FIGURE 6

SHAP analysis of the feature metabolites was performed. (A) SHAP value distribution of the top 20 compounds as significant indicators of three colored 
onions. (B) Pearson correlation analysis of feature biomarkers, major nutrients, and antioxidant activities in colored onions. * Denotes a significant 
difference at the 0.05 level. ** denotes a significant difference at the 0.01 level.
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samples with detailed information, especially in large datasets of 
metabolomic studies.

4 Conclusion

In summary, red-colored onions contained the most abundant 
anthocyanins and carotenoids, while yellow-colored onions presented 
the highest levels of phenols and flavonoids. Both red-colored and 
yellow-colored onions exhibited the highest DPPH and ABTS radical 
scavenging activities, highlighting their strong antioxidant potential. A 
total of 243 volatile metabolites were identified across different colored 
onions, with sulfur compounds (51–64%), organic acids and their 
derivatives (4–19%), and nitrogen compounds and their derivatives 
(6–10%) as the major categories. Sulfur compounds were most 
abundant in yellow-colored onions, followed by red-colored and white-
colored onions. A total of 19 differentially abundant metabolites were 
identified through multivariate statistical analysis (OPLS-DA model and 
VIP values). Additionally, using the LASSO method on 243 metabolites, 
38 were found to better represent the overall metabolite profiles of the 
three onion varieties. These 38 metabolites were then applied in four 
machine learning models for onion classification, with the random 
forest model achieving perfect classification accuracy (1.00). 
Furthermore, SHAP analysis identified 20 metabolites as potential 
biomarkers. Understanding the metabolite composition and antioxidant 
properties of different onion varieties can aid in selecting and developing 
onions with enhanced nutritional and sensory attributes. Moreover, the 
identification of key biomarkers and the successful application of 
machine learning models provide valuable tools for the classification 
and authentication of onion varieties in agricultural and food industries. 
These findings would provide insights into onion breeding, quality 
control, and authentication of colored onions. More work on expanded 
sample size, model validation, and uncovering the metabolic pathways 
influencing onion quality and flavor will be carried out in future.
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