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Background/objectives: Dietary patterns play an important role in regulating 
serum uric acid (SUA) levels in the body. Recently, compositional data analysis 
(CoDA) has been proposed as an alternative technique in identifying dietary 
patterns. However, the relative advantages of CoDA, particularly in identifying 
dietary patterns associated with hyperuricemia have not been investigated. 
We  evaluated and compared CoDA, including compositional principal 
component analysis (CPCA) and principal balances analysis (PBA), with the most 
commonly used principal component analysis (PCA) in determining dietary 
patterns associated with hyperuricemia.

Methods: The 3 day 24-h dietary recall method was used to estimate dietary 
data from 3,954 study participants of the China Health and Nutrition Survey 
(CHNS). Dietary patterns were constructed using PCA, CPCA and PBA. These 
methods were compared based on the performance to identify plausible 
patterns associated with hyperuricemia.

Results: PCA, CPCA and PBA all identified three dietary patterns, with a common 
“traditional southern Chinese” pattern high in rice and animal-based foods and 
low in wheat products and dairy. Only this pattern was positively associated 
with risk of hyperuricemia [PCA: OR (95%CI) = 1.29 (1.15–1.46); CPCA: OR 
(95%CI) = 1.25 (1.10–1.40); PBA: OR (95%CI) = 1.23 (1.09–1.38)].

Conclusion: All three dietary patterns methods in our study identified that a 
“traditional southern Chinese” dietary pattern was associated with increased risk 
of hyperuricemia, suggesting a robust and consistent finding.
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1 Introduction

Hyperuricemia, a metabolic condition characterized by excessive 
concentration of serum uric acid (SUA), poses a significant risk factor 
of the development of chronic diseases including gout, cardiovascular 
disease, and diabetes, etc. (1). Latest data shows that the prevalence of 
hyperuricemia in Chinese population has increased from 8.4% in 2010 
to 13.6% in 2021 (2, 3), signaling the need for effective interventions 
to mitigate the rising rate of hyperuricemia. A growing body of 
research indicates that hyperuricemia can be  effectively managed 
non-pharmacologically through dietary modifications such as 
avoiding alcohol consumption and adhering to a diet low in purine-
rich foods (4–7). Additionally, plant-based foods, including vegetable, 
fruits, cereals, and spices, are rich in dietary polyphenols, which are 
shown to prevent hyperuricemia through inhibiting uric acid (UA) 
synthesis and enhancing UA secretion (8). Despite the potential 
benefits, studying human diets is largely complicated due to the 
impracticality of isolating diets into single foods or nutrients. 
Therefore, it is increasingly common in the field of nutrition 
epidemiology to investigate dietary patterns as a more holistic 
approach to capture day-to-day eating habits (9).

In most of the literature, statistical methods of deriving dietary 
patterns fall into three classic categories: a priori, a posteriori, and 
hybrid methods (9). The a priori approach, based on established 
knowledge and evidence, focuses on diet quality using various dietary 
indices, including Mediterranean scores and Healthy Eating Index, but 
tends to overlook the contributions of specific nutrients and the 
interactions between nutrients (10). In contrast, the a posteriori 
method is data-driven, extracting dietary patterns through statistical 
dimension-reduction techniques. The most widely used data-driven 
method is principal component analysis (PCA), which analyzes the 
correlation matrix of food variables and derives principal components 
(PC) or dietary patterns characterized by different foods (11). Hybrid 
methods combine the first two classes of methods to identify dietary 
patterns (9).

Over the past few years, a growing number of studies have 
emerged to use PCA as the primary method to investigate the impact 
of dietary patterns on hyperuricemia among Chinese adult 
populations, but the results have been inconsistent (12, 13). For 
example, while one cohort study found no association between a 
dietary pattern high in fruits, deep-fried foods, and sweets with 
hyperuricemia (14), another cohort study identified a similar pattern 
rich in sweet foods that was positively associated with hyperuricemia 
(1). Furthermore, when a cross-sectional study identified a plant-
based dietary pattern inversely associated with hyperuricemia (13), 
another found no such association (15). A possible explanation for the 
discrepancies in these results is that PCA is not completely data-
driven. When intending to qualitatively interpret the PC factors, the 
threshold value of foods’ factor loadings, coupled with the labeling of 
each dietary pattern, remains somewhat arbitrary (16). The 
inconsistencies in dietary patterns identified by PCA across studies 
suggest a potential weakness in using a single approach to derive 
patterns related to hyperuricemia.

Given that the amount of food intakes for an individual is 
relatively constant, the increase in the intake of some foods will lead 
to the decrease in the intake of other foods, vice versa. This implies the 
compositional nature of dietary intake, which can be  adequately 
addressed by Compositional Data Analysis (CoDA) (9). CoDA is a 

novel class of dimension reduction methods that has not been widely 
utilized in health and dietary research (9). It encompasses a standard 
family of statistical methods computing log-ratio transformation of 
dietary data. These methods include compositional PC analysis 
(CPCA) and principal balances analysis (PBA), which serve as viable 
tools in estimating the relative importance of food variables within 
dietary patterns and facilitating the interpretation of the results (17).

Despite their promising application in dietary pattern research, 
limited studies have utilized these statistical methods (17). Moreover, 
the majority of studies have only chosen PCA as the single a posteriori 
approach to extract dietary patterns as hyperuricemia predictors, 
resulting in a lower reproducibility of the results (12). Therefore, the 
aim of this study is to (1) simultaneously use three statistical 
approaches – one traditional approach (i.e., PCA) and two novel 
approaches (i.e., PBA and CPCA) – to extract dietary patterns and 
explore shared food groups across these patterns; and (2) to 
investigate their associations with hyperuricemia in a cohort of 
Chinese population.

2 Materials and methods

2.1 Study design and population

This retrospective cohort study utilized data from the China 
Health and Nutrition Survey (CHNS), an ongoing large-scale, 
prospective cohort survey initiated in 1989 and continued in 1991, 
1993, 1997, 2000, 2004, 2006, 2009, 2011, and 2015. Multi-stage 
random cluster sampling was employed to select the study participants 
from nine provinces and three autonomous cities with diverse 
demographic, geographical, economic development, and public 
resource characteristics. A comprehensive description of the CHNS is 
provided elsewhere (18). Given that the only hyperuricemia data 
available was in 2009, and the revised version of the China Food 
Composition Table (FCT) was initially used in 2004 to obtain nutrient 
values (19), we used data from the CHNS conducted in 2004, 2006, 
and 2009.

We included 14,086 participants who entered the study in either 
2004 or 2006 and were followed up until 2009. We excluded 2,495 
participants aged under 18 years and 4,853 who had missing 
hyperuricemia data. From the remaining participants, we  further 
excluded pregnant women, those with diabetes, myocardial infarction, 
stroke, hypertension, and extreme total energy intake (≥ 8,000 and ≤ 
800 kcal/day for men; ≥ 6,000 and ≤ 600 kcal/day for women) (16), 
and those who self-identified as vegetarians. Additionally, we excluded 
912 participants with missing data on marital status, education, 
income, smoking, drinking, Body Mass Index (BMI), sleep, physical 
activity, and sedentary behavior (Supplementary Figure S1). Finally, a 
total sample of 3,954 participants were selected for the analysis.

2.2 Dietary assessment

To collect dietary data and assess individual diet, the CHNS 
employed a consecutive 3-day 24-h diet recall method. Literature has 
validated the use of the 24-h dietary recall method (20). Details of the 
dietary assessment has been described elsewhere (21). In summary, 
qualified interviewers requested that participants report the quantities 
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and types of foods consumed on the preceding day for three consecutive 
days, which were randomly assigned from Monday to Sunday (21). 
We calculated the three-day average intake (grams per day) of foods for 
each participant in each survey round (2004, 2006, 2009) based on the 
FCT. We categorized 20 food groups according to their nutrient and 
culinary characteristics (see Supplementary Table S1).

2.3 Outcome measurement: SUA and 
hyperuricemia

The primary outcome of the study was hyperuricemia. In 2009, 
fasting blood samples (12 mL) were collected from participants. The 
SUA was measured using the enzymatic colorimetric method with a 
Hitachi 7,600 automated analyzer (Tokyo, Japan) and Randox reagents 
(Randox Laboratories Ltd., Crumlin, UK). Hyperuricemia was defined 
as SUA levels ≥ 416 μmol/L in men and ≥ 357 μmol/L in women (22).

2.4 Covariates

In line with the literature (22), the following confounders were 
included in the analysis due to their established association with 
hyperuricemia: age, sex, residence (urban and rural), region (southern 
and northern), marital status (married and others), education level 
(primary school and below, middle school, high school, college degree 
and above), income, hours of physical activity (PA), drinking, 
smoking, daily energy intake, BMI, sleep duration, and sedentary 
time. Smoking status was categorized as former smoker, current 
smoker, or non-smoker. Drinking status was classified into two 
categories: those who consumed beer/liquor in the previous year and 
those who did not. Anthropometric measurements including height 
and weight were taken using standard procedures, with participants 
wearing light clothing and no shoes. Body Mass Index (BMI) was 
calculated as weight in kilograms divided by height in meters squared 
(kg/m2), and was classified according to recommended cutoff points: 
underweight (<18.5), normal (18.5–23.9), overweight (24.0–27.9), and 
obese (≥28.0) (21). The total hours of PA and sedentary behavior were 
calculated based on the reported weekly hours of each activity type.

2.5 Statistical analysis

We obtained dietary patterns using three dimension reduction 
methods: PCA, PBA, and CPCA. Many of the 20 food groups included 
in the dietary analysis were consumed by only a small proportion of 
participants. For PCA, the food groups were classified into two 
categories: those consumed by <25% of participants were converted 
to binary variables (non-consumers and consumers), while those 
consumed by ≥25% of participants were categorized into three levels 
(non-consumers, consumers with intake ≤ median, and consumers 
with intake > median) (16). We used varimax orthogonal rotation to 
enhance the interpretability of factor correlations with food groups 
and retained factors with eigenvalues > 1.0 to maximize variance 
retention while reducing dimensionality. Each retained factor was 
interpreted based on factor loadings, reflecting correlations between 
food groups and the pattern. Patterns were labeled using food groups 
with absolute factor loadings≥0.3, indicating strong contributions.

CoDA uses isometric log-ratio transformations to generate new 
variables (dietary patterns) that represent log-ratios between 
compositional parts (17). To handle zero values from rarely consumed 
foods in the three-day 24-h dietary recalls, we applied zero imputation 
using a modified expectation–maximization algorithm with a lower 
detection limit (16). Consistent with CoDA principles, individual food 
group intakes were expressed as proportions of the total intake across 
all 20 groups. We applied PBA to generate principal balances (PBs) 
that quantify the relative contribution of specific food group subsets 
against another subset (16). Given the absence of a standardized 
criterion for PBs retention, we retained the same number of dietary 
patterns as derived from PCA. For the alternative CoDA approach, 
CPCA, we computed the log-ratio of each food group relative to the 
geometric mean of all 20 groups (17). Similar to PCA, each CPCA-
derived PC involves all food groups, with absolute factor loadings≥0.3 
indicating significant contributions to the pattern. The criterion for 
retaining PCs in CPCA mirrored that used in PCA.

Baseline characteristics were compared between participants with 
and without hyperuricemia, using chi-square tests for categorical 
variables and either Student’s t-tests or analysis of variance (ANOVA) 
for continuous variables, as appropriate. Tertiles for each dietary 
pattern were constructed to assess the associations between dietary 
patterns and the risk of hyperuricemia in three multivariate logistic 
regression models: Model 1 adjusted for age and sex; Model 2 
additionally adjusted for marital status, residence, region, education, 
and income; Model 3 further adjusted for smoking, drinking, BMI, 
physical activity time, sedentary time, sleep duration, and daily 
energy intake.

All statistical analyses were performed using R version 4.0.3. The 
two-sided p < 0.05 was considered as statistical significance.

3 Results

3.1 Characteristics of study participants

After applying a series of exclusion criteria (see 
Supplementary Figure S1), a total of 3,954 participants were included 
in the cohort. Baseline characteristics of participants with and without 
hyperuricemia are summarized in Table  1. We  documented 534 
participants with hyperuricemia, with the overall prevalence of 13.5%. 
Compared to participants without hyperuricemia, those with 
hyperuricemia were more likely to be men, older, urban residents, 
southerners, highly educated, current smokers, current drinkers, and 
to have higher BMI, higher income, and shorter sleep duration.

3.2 Dietary patterns based on PCA, PBA, 
and CPCA

Factor loadings of the 20 food groups for the dietary patterns 
derived from PCA, PBA, and CPCA are shown in Table  2. PCA 
identified three distinct dietary patterns, which were determined by 
three PC factors with eigenvalues greater than 1.0. The first PC factor 
(“traditional southern Chinese”) had low intakes of wheat, milk, and 
other cereals, with high intakes of fresh vegetables, pork, aquatic 
products, and rice. The second PC factor (“western”) had high intakes 
of fast foods, sugary food, fruits, beverages, eggs, processed meat, and 
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fungi and algae. The third PC factor (“plant-based”) was characterized 
by high intakes of tubers, legumes, and fresh vegetables, and low 
intakes of other livestock and organs. The three PCs explained 28.07% 
of the total variation.

PBA analysis also identified three dietary patterns. The first PB 
(“traditional southern Chinese”) showed high intakes of rice, poultry, 
aquatic products, and pork, with low intakes of wheat, tubers, and 

milk. The second PB (“Tuber-Based”) had high intakes of tubers and 
low intakes of milk and wheat. The third PB (“low cereal”) was 
characterized by high intakes of fruits and eggs and a low intake of 
other cereals. The three PBs accounted for 34.83% of the food 
intake variations.

Similar to the first PC and the first PB, the CPCA presents that 
the first PC (“traditional southern Chinese”) was characterized by 

TABLE 1 Baseline characteristics of the 3,954 study participants.

Characteristic All participants 
(n 3,954)

Hyperuricemia p value

No (n 3,420) Yes (n 534)

Sex, n (%)

  Men 1827 (46.2) 1,487 (43.5) 340 (63.7) <0.001

  Women 2,127 (53.8) 1933 (56.5) 194 (36.3)

Age, mean (SD), yr 45.7 (12.2) 45.5 (12.1) 47.2 (12.5) 0.003

Residence, n (%)

  Urban 1,124 (28.4) 930 (27.2) 194 (36.3) <0.001

  Rural 2,830 (71.6) 2,490 (72.8) 340 (63.7)

Region, n (%)

  Northern 1,541 (39.0) 1,380 (40.4) 161 (30.2) <0.001

  Southern 2,413 (61.0) 2040 (59.7) 373 (69.9)

Marriage status, n (%)

  Married 3,590 (90.8) 3,111 (91.0) 479 (89.7) 0.35

  Unmarried 364 (9.2) 309 (9.0) 55 (10.3)

Education, n (%)

  Primary school and below 1,665 (42.1) 1,457 (42.6) 208 (39.0) 0.001

  Middle school 1,353 (34.2) 1,190 (34.8) 163 (30.5)

  High school 529 (13.4) 437 (12.8) 92 (17.2)

  College degree and above 407 (10.3) 336 (9.8) 71 (13.3)

Smoking status, n (%)

  Non-smoker 2,676 (67.7) 2,379 (69.6) 297 (55.6) <0.001

  Former smoker 93 (2.4) 71 (2.1) 22 (4.1)

  Current smoker 1,185 (30.0) 970 (28.4) 215 (40.3)

Drinking status, n (%)

  Never 2,642 (66.8) 2,363 (69.1) 279 (52.3) <0.001

  Current 1,312 (33.2) 1,057 (30.9) 255 (47.8)

BMI, n (%)

  Underweight 238 (6.0) 223 (0.03) 15 (2.8) <0.001

  Normal 2,448 (61.9) 2,188 (64.0) 260 (48.7)

  Overweight 1,051 (26.6) 848 (24.8) 203 (38.0)

  Obese 217 (5.5) 161 (4.7) 56 (10.5)

Income, mean (SD), CNY/yr 10289.3 (13675.3) 9958.5 (13332.7) 12407.7 (15541.0) <0.001

Sleep duration, mean (SD), h/d 8.1 (1.2) 8.1 (1.2) 8.0 (1.2) 0.04

Physical activity time, mean (SD), h/d 0.4 (1.8) 0.4 (1.9) 0.41 (1.3) 0.97

Sedentary time, mean (SD), h/d 4.9 (3.94) 4.9 (4.0) 4.91 (3.6) 0.76

Energy, mean (SD), kcal/d 2282.4 (660.0) 2275.8 (657.5) 2324.40 (674.9) 0.11

Serum uric acid, mean (SD), μmol/L 301.1 (102.2) 273.8 (66.0) 476.42 (118.3) <0.001

BMI, Body Mass Index; CNY/yr, Chinese yuan/year; SD, standard deviation.
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high intakes of rice, aquatic product, legumes, and pork and low 
intakes of wheat and milk. The second PC (“mixed”) had high 
intakes of beverages, vegetables, organ, processed meat, and rice. 
The third PC (“seafood and poultry”) showed high intakes of fungi 
and algae, poultry, aquatic products, with low intakes of tubers 
and legumes. The total variance explained by the three PCs 
was 32%.

3.3 Dietary patterns and hyperuricemia

Table 3 displays the association between the risk of hyperuricemia 
with dietary patterns obtained from PCA, PBA and CPCA. For PCA, 
after adjusting for all covariates (in Model 3), the “traditional southern 
Chinese” pattern was positively associated with hyperuricemia 
(adjusted OR for T3 vs. T1, 1.68; 95% CI, 1.31–2.14; P trend < 0.001), 
while the “plant-based” pattern was inversely associated with 
hyperuricemia (adjusted OR for T3 vs. T1, 0.76; 95% CI, 0.60–0.96; P 
trend = 0.02). Similarly, the “traditional southern Chinese” pattern 
derived from PBA was positively associated with hyperuricemia 
(adjusted OR for T3 vs. T1, 1.43; 95% CI, 1.12–1.84; P trend = 0.001), 
while the other two patterns of PBA showed no association with 
hyperuricemia. The “traditional southern Chinese” pattern derived 
from CPCA was also positively associated with hyperuricemia 
(adjusted OR for T3 vs. T1, 1.57; 95% CI, 1.23–2.01; P trend < 0.001).

4 Discussion

This study applied three analytical methods—PCA and two data-
driven CoDA methods (PBA and CPCA)—each identified three 
dietary patterns in a cohort of 3,954 Chinese adult participants. The 
three methods harmonized in identifying a “traditional southern 
Chinese” dietary pattern with shared attributes: lower wheat and dairy 
intake, higher rice, aquatic, and pork intake, and a positive association 
with hyperuricemia risk. The high comparability suggests that 
methods focusing on food composition can effectively capture dietary 
behavior. Consistent findings across methods strengthen our 
understanding that a high-animal-product, low-dairy-and-cereal-
product dietary pattern may increase hyperuricemia risk 
among Chinese.

Evidence shows that traditional agricultural practices in southern 
China have led to a dominant rice-based dietary pattern (23). With 
the rapid aquaculture development (24) and economic growth 
especially in the southern coastal region in China, the traditional 
Chinese diet has transitioned towards a western-like diet with more 
animal-based foods including meats and seafood products (25). These 
products tend to have a high purine content, which elevates blood 
levels of uric acid, or urate (the end product of purine), making it one 
of the major risk factors for hyperuricemia (26). The adverse effect of 
animal meats, organs, and seafoods on the outcome of hyperuricemia 
as well as disorders like gout has been confirmed in various studies 

TABLE 2 Factor loadings of for patterns derived using principal component analysis (PCA), principal balances analysis (PBA), and compositional 
principal component analysis (CPCA).

Food groups PCA PBA CPCA

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor3

Wheat products −0.78 −0.02 0.25 −0.44 −0.41 −0.83 −0.12 −0.14

Dairy −0.76 0.03 0.22 −0.44 −0.41 −0.83 −0.11 −0.10

Tubers −0.08 0.00 0.53 −0.44 0.82 −0.22 −0.09 −0.56

Other cereals −0.56 −0.02 −0.13 −0.82 −0.08 0.09 −0.10

Fungi and algae 0.07 0.45 −0.19 −0.04 −0.02 0.51

Eggs 0.04 0.33 0.24 0.41 −0.02 −0.29 −0.14

Beverages 0.02 0.31 −0.04 −0.02 0.92 0.05

Fruits 0.02 0.66 −0.01 0.41 −0.00 −0.24 0.21

Vegetables 0.31 −0.14 0.31 0.01 0.91 −0.06

Fast Foods −0.04 0.56 0.06 0.07 0.08 −0.12

Sweets −0.04 0.46 0.09 0.08 0.11 −0.05

Other livestock meat 0.06 0.14 −0.43 0.10 0.02 −0.08

Organs 0.06 0.05 −0.50 0.10 0.30 0.11

Processed meat 0.04 0.32 −0.17 0.12 0.39 −0.11

Poultry 0.16 0.29 −0.42 0.33 0.15 −0.01 0.62

Nuts −0.00 0.25 −0.11 0.20 0.24 0.07

Rice 0.63 −0.27 0.06 0.33 0.33 0.32 0.04

Aquatic products 0.35 0.11 0.01 0.33 0.36 −0.13 0.41

Legumes 0.10 0.17 0.48 0.37 −0.30 −0.40

Pork 0.34 0.17 −0.09 0.33 0.45 −0.15 0.14

Variance explained (%) 12.10 9.46 6.51 16.84 9.14 8.85 13.51 11.51 6.98

Bold values indicate food groups that were significant contributors to the patterns (with factor loadings ≥ |0.30|).
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(27–30). Research supports our observation that hyperuricemia was 
prevalent among male participants with higher incomes living in 
economically developed urban southern Chinese regions, likely due 
to frequent purine-rich diet consumption (30, 31).

Literature suggests that plant-based foods like wheat and cereals 
are beneficial for lowering SUA and the risk of hyperuricemia because 
they contain minimal purines (26, 32). Not all animal-based foods 
increase the risk of hyperuricemia. Dairy products, like milk and 
cheese, are also linked to reduced uric acid levels (26, 28). A cohort 
study found a strong inverse relationship between dairy products and 
gout, suggesting dairy proteins and other nutrients in dairy products 
cause urate lowering (28). Increased consumption of urate-elevating 
foods (like meat and seafood) and decreased consumption of urate-
lowering foods (like wheat and dairy) may explain the positive 
association between the “traditional southern Chinese” pattern and 
hyperuricemia risk in this study.

Another cohort study of Chinese adults identified a “traditional 
southern” dietary pattern using PCA, similar to ours. This pattern is 
characterized by low whole grain and cereal intake and high pork, fish, 
offal, and poultry intake. It was also positively associated with the risk 
of hyperuricemia in a full adjusted model (13). In contrast, we found 
a significant inverse association between the “plant-based” pattern and 
hyperuricemia, similar to a China-based study by Zhou et al., though 
the food group compositions differed (13). Our “plant-based” pattern 
emphasized legumes, tubers, and vegetables, while theirs included 
legumes, vegetables, and non-plant-based foods like eggs and dairy 
(13). Similarly, using PCA, Mao et al. identified a plant-based dietary 
pattern high in tuber and vegetables, which had a reverse association 
with the SUA levels (33). Moreover, a comprehensive meta-analysis 
study supported our findings, showing a positive association between 
animal-based diets and hyperuricemia, while plant-based diets 
showed an inverse relationship (34).

Previous studies defining dietary patterns using multiple methods 
yielded inconclusive results regarding their correlation with 
hyperuricemia risk (12). For instance, in the cohort study by Zhou 
et  al., different methods like PCA derived incomparable dietary 
patterns among northern Chinese adults, with varying associations 
with hyperuricemia (13). Due to inconsistent findings in the literature, 
it’s challenging to definitively establish dietary patterns associated with 
hyperuricemia. This study identified a dietary pattern significantly 
linked to hyperuricemia, replicated across three methods: 
conventional PCA and two novel CoDA methods. It is important to 
note that the “traditional southern Chinese” dietary pattern identified 
in our study differs in composition from the commonly referenced 
“traditional Chinese” or “eastern” dietary pattern (12). While the 
traditional Chinese diet is predominantly plant-based and 
characterized by lower meat consumption (33), the “traditional 
southern Chinese” pattern observed in our analysis is distinguished 
by having higher intakes of animal-based foods and lower intakes of 
dairy and cereal products. Therefore, in daily life, one should 
consciously increase the intake of plant-based foods and dairy 
products and reduce the intake of animal-based foods.

From a statistical perspective, these three methods differ in their 
methodological approaches, each with its own strengths and 
limitations. PCA, a commonly used technique, constructs factors 
based on variance in food group intake to capture dietary patterns 
(35). However, it lacks a standard threshold value of factor loadings, 
introduces subjectivity in pattern naming, and cannot model food 

TABLE 3 Odds ratios (95% CI) for risk of hyperuricemia by tertile of each 
dietary pattern scores derived from principal component analysis (PCA), 
principal balances analysis (PBA), and compositional principal 
component analysis (CPCA).

Models T1 T2 T3 P-trend

OR (95%CI) OR (95%CI)

Principal component analysis

PC1: “traditional southern Chinese” pattern

Model 1 Ref. 1.41 (1.11, 1.78) 1.43 (1.13, 1.81) 0.002

Model 2 Ref. 1.37 (1.08, 1.74) 1.42 (1.12, 1.79) 0.003

Model 3 Ref. 1.54 (1.21, 1.97) 1.68 (1.31, 2.14) <0.001

PC2: “western” pattern

Model 1 Ref. 1.20 (0.95, 1.51) 1.15 (0.91, 1.45) 0.26

Model 2 Ref. 1.12 (0.89, 1.41) 0.94 (0.73, 1.21) 0.61

Model 3 Ref. 1.06 (0.83, 1.34) 0.90 (0.69, 1.16) 0.40

PC3: “plant-based” pattern

Model 1 Ref. 0.77 (0.62, 0.97) 0.76 (0.60, 0.95) 0.01

Model 2 Ref. 0.84 (0.67, 1.05) 0.77 (0.61, 0.97) 0.02

Model 3 Ref. 0.80 (0.63, 1.02) 0.76 (0.60, 0.96) 0.02

Principal balances

PB1: “traditional southern Chinese” pattern

Model 1 Ref. 1.11 (0.88, 1.40) 1.37 (1.08, 1.74) 0.005

Model 2 Ref. 1.17 (0.93, 1.48) 1.29 (1.01, 1.64) 0.02

Model 3 Ref. 1.30 (1.02, 1.65) 1.43 (1.12, 1.84) 0.001

PB2: “tuber-based” pattern

Model 1 Ref. 1.01 (0.81, 1.27) 1.02 (0.81, 1.28) 0.93

Model 2 Ref. 1.07 (0.85, 1.34) 1.08 (0.86, 1.36) 0.54

Model 3 Ref. 1.06 (0.84, 1.33) 1.08 (0.85, 1.36) 0.55

PB3: “low cereal” pattern

Model 1 Ref. 1.13 (0.89, 1.44) 1.06 (0.84, 1.35) 0.46

Model 2 Ref. 1.19 (0.93, 1.51) 1.05 (0.83, 1.34) 0.68

Model 3 Ref. 1.21 (0.94, 1.55) 1.03 (0.81, 1.31) 0.91

Compositional PCA

PC1: “traditional southern Chinese” pattern

Model 1 Ref. 0.97 (0.78, 1.20) 1.48 (1.17, 1.88) 0.002

Model 2 Ref. 0.99 (0.79, 1.23) 1.40 (1.10, 1.78) 0.01

Model 3 Ref. 1.09 (0.87, 1.36) 1.57 (1.23, 2.01) < 0.001

PC2: “mixed” pattern

Model 1 Ref. 1.12 (0.89, 1.40) 1.11 (0.88, 1.39) 0.40

Model 2 Ref. 1.12 (0.89, 1.40) 1.08 (0.86, 1.36) 0.49

Model 3 Ref. 1.14 (0.90, 1.44) 1.12 (0.89, 1.42) 0.32

PC3: “seafood and poultry” pattern

Model 1 Ref. 0.88 (0.70, 1.10) 1.13 (0.89, 1.43) 0.49

Model 2 Ref. 0.93 (0.74, 1.17) 1.24 (0.97, 1.57) 0.12

Model 3 Ref. 0.94 (0.75, 1.18) 1.26 (0.98, 1.60) 0.10

Results were obtained from multivariate logistic regression models; Model 1: adjusted for age 
and sex; Model 2: additionally adjusted for marital status, region, residence, education, and 
income; Model 3, further adjusted for smoking, drinking, BMI, physical activity time, 
sedentary time, sleep duration, and daily energy intake. PC, principal component; PB, 
principal balance; OR, odds ratios; CI, confidence interval; T, tertile.
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substitution effects (16). CoDA methods (PBA and CPCA), in 
contrast, model substitution by representing dietary patterns as 
balances between food groups (17). PBA simplifies pattern naming 
by focusing on a smaller number of food groups but also lacks 
standard retention rules, whereas CPCA, similar to PCA, presents all 
food groups but retains subjectivity in labeling. Despite these 
methodological differences, the results from all three approaches 
converged, consistently identifying an association between the 
“traditional southern Chinese” dietary pattern and hyperuricemia in 
the Chinese population. This convergence strengthens the robustness 
of our conclusion.

This study has several strengths. To the best of our knowledge, it 
is the first to use the recently developed CoDA methods to find 
dietary patterns linked to hyperuricemia in a Chinese population 
over time. The large sample size and careful control of covariates 
enhanced the findings’ reliability. Consistent identification of a 
similar dietary pattern associated with hyperuricemia across three 
methods demonstrated reproducibility. However, this study has 
several limitations. First, we were unable to account for unobserved 
potential confounders, including possible impacts of drug use (such 
as diuretics) or genetic factors (such as the SLC2A9 genotype) on UA 
(36), thereby establishing causality remains challenging, as is the case 
with all observational studies. Additionally, although dietary data 
were collected repeatedly using an extensive database, the three-day 
dietary records may not fully capture individuals’ habitual eating 
patterns. Third, the generalizability of the results to other study 
settings, including different population groups and health outcomes, 
is questionable due to the current study population’s limited scope to 
general Chinese adults. Finally, the findings may not capture shifts in 
dietary patterns since the data used in this analysis were limited to 
2009, the most recent year for which biomarker data were available. 
Future studies with more up-to-date data are warranted to validate 
and extend these findings.

5 Conclusion

In conclusion, we extract dietary patterns through three data-
driven methods and explored the relationships between the dietary 
patterns and the risk of hyperuricemia. All three methods – PCA, 
PBA, and CPCA  – consistently identified one common dietary 
pattern that was positively associated with the risk of hyperuricemia: 
the “traditional southern Chinese” pattern, characterized by a high 
intake of rice and animal-based foods and a low intake of wheat 
products and dairy. On the other hand, the “plant-based” pattern may 
also be  inversely associated with hyperuricemia, but further 
verification is still needed, while the other dietary patterns showed 
no association with hyperuricemia. The findings indicate that 
reducing animal-based food consumption and increasing the intake 
of wheat products and dairy, as “eastern” dietary pattern advocated, 
may be  advantageous in preventing hyperuricemia. Future 
longitudinal studies conducted in other settings are necessary to 
validate our results and explore causal mechanisms.
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