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Objective: While selenium exhibits antioxidant properties, its association with 
type 2 diabetes mellitus (T2DM) remains controversial. This study aimed to 
investigate the relationship between dietary selenium intake and T2DM risk in a 
nationally representative population.

Methods: We conducted a cross-sectional analysis of 2,170 adults from the 
National Health and Nutrition Examination Survey (NHANES) 2011–2016. Using 
weighted multivariable logistic regression, we estimated adjusted ORs with 95% 
CIs across selenium intake quartiles. Restricted cubic splines with three knots 
(10th, 50th, and 90th percentiles) were employed to characterize non-linear 
associations. Additionally, stratified analyses were performed based on age, sex, 
ethnicity, BMI, smoking status, and drinking status.

Results: A significant U-shaped relationship was observed between dietary 
selenium intake and T2DM risk (p for non-linearity = 0.042), indicating increased 
risk at both low and high intake extremes. In obese individuals (BMI ≥ 30 kg/
m2), higher selenium intake was inversely associated with the risk of T2DM 
(ptrend = 0.016), suggesting a potential protective role in populations with elevated 
oxidative stress. No significant associations were found for supplemental or 
total selenium intake.

Conclusion: Both insufficient and excessive dietary selenium intake may elevate 
the risk of T2DM, with an optimal range identified through non-linear modeling. 
Targeted selenium recommendations for obese individuals could mitigate 
diabetes risk, though longitudinal studies are needed to confirm causality. These 
findings highlight the importance of personalized nutrition strategies in high-
risk populations.
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Introduction

Diabetes mellitus affected 537 million adults globally in 2021, with projections indicating 
a 46% increase to 783 million by 2045 (1). The most common form is type 2 diabetes mellitus 
(T2DM), accounting for approximately 98% of all diabetes diagnoses (2, 3). This escalating 
epidemic highlights the urgent need to identify modifiable risk factors and implement timely, 
effective interventions to mitigate its impact.
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Selenium, an essential trace element, is crucial for human health 
as it integrates into selenoproteins with strong anti-inflammatory and 
antioxidant effects (4, 5). These properties are especially important for 
T2DM individuals, who often face increased oxidative stress and 
systemic inflammation (6). Such conditions elevate the body’s demand 
for antioxidants, such as selenium, to counteract cellular damage and 
restore metabolic balance.

Despite its biological significance, the relationship between 
selenium and the risk of T2DM remains controversial. While many 
studies have reported a positive association between higher selenium 
levels and T2DM risk, others have found no significant association 
(7–11). These discrepancies may stem from differences in study 
populations, dietary selenium sources, or adjustments for confounding 
factors. Furthermore, while the association between dietary selenium 
intake and diabetes has been extensively studied, there remains a lack 
of research exploring the non-linear relationship in a large adult 
population. Additionally, it is unclear whether factors such as sex, 
ethnicity, body mass index (BMI), smoking status, drinking status, 
and especially serum selenium levels might modify this association. 
Addressing these gaps could provide novel strategies for early health 
management, particularly for individuals with obesity.

To address these gaps, this study examined the association 
between dietary selenium intake and the risk of T2DM using a 
nationally representative sample of U.S. adults, with a focus on 
identifying non-linear relationships and potential effect modifiers.

Research design and methods

Study population

This study utilized publicly accessible, anonymized data from the 
National Health and Nutrition Examination Survey (NHANES 2011–
2016) administered by the Centers for Disease Control and Prevention 
(CDC). Ethical approval for NHANES data collection was granted by 
the National Center for Health Statistics (NCHS) Research Ethics 
Review Board, and all participants provided documented informed 
consent during their original enrollment in NHANES.

Inclusion criteria were as follows: (i) age ≥20 years, (ii) availability 
of plasma fasting glucose and plasma insulin data, and (iii) availability 
of dietary and plasma selenium data. Exclusion criteria included: (i) 
individuals under 20 years of age and (ii) individuals missing any of 
the aforementioned critical information. Details are shown in 
Figure  1. After screening, 2,170 participants were included in 
this study.

Assessment of covariates

Covariates considered include several demographic 
characteristics: sex (male or female), age (years), ethnicity 
(Mexican American, other Hispanic, White non-Hispanic, Black 
non-Hispanic, or other ethnic/racial groups), BMI, family income 
(poverty income ratio, PIR), educational attainment (less than a 
high school education, high school graduate/GED, some high 
school, some college or associate’s degree, or college graduate or 
above), alcohol intake (non-drinker, 1 to <5 drinks/month, 5 to 
<10 drinks/month, or 10+ drinks/month), and smoking status 

(current, former, or never smoker). Never smokers were classified 
as those who had reported smoking <100 cigarettes during their 
lifetime. Current smokers were defined as those who had smoked 
>100 cigarettes over their lifetime and were actively smoking 
cigarettes at the time of the survey. Former smokers were defined 
as those who had smoked >100 cigarettes in their lifetime but had 
quit smoking before the time of the survey. Hypertension was 
defined as a self-reported doctor diagnosis of hypertension, systolic 
blood pressure ≥140 mmHg, or diastolic blood pressure 
≥90 mmHg.

Selenium in diet and supplements

In each NHANES cycle, participants provided detailed dietary 
intake information for two 24-h periods. The first dietary recall was 
conducted in person during the NHANES visit, while the second was 
collected by telephone 3–10 days later. For the analyses, the total 
estimated dietary selenium intake was computed by averaging the 
selenium intake over the two recall periods. If only data from the first 
day were available, that value was used instead of computing an 
average. Apart from dietary selenium intake, participants were queried 
about their supplement use during the same two 24-h periods. 
Selenium intake from supplements was also averaged over 2 days if 
data were available. The total selenium intake was then calculated as 
the sum of dietary selenium intake and supplement selenium intake.

Plasma fasting glucose, insulin, glycated hemoglobin A1c 
(HbA1c), albumin, total protein, and creatinine were measured at 
baseline. Strict procedures were applied during blood collection and 
analysis, and details were documented in the NHANES Laboratory/
Medical Technologists Procedures Manual.

T2DM diagnosis

T2DM was defined as self-reported physician diagnosis of 
diabetes, use of insulin or oral hypoglycemic medication, plasma 
fasting glucose ≥7.0 mmol/L (126 mg/dL), postprandial 2-h plasma 

FIGURE 1

A flowchart of the individual selection from NHANES 2011–2016.
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glucose ≥11.1 mmol/L (200 mg/dL) from an oral glucose tolerance 
test, or HbA1c ≥ 6.5% (mmol/mol).

BMI was calculated as weight (in kilograms) divided by the square 
of height (in meters). Homeostasis model assessment of insulin 
resistance (HOMA-IR) was calculated by multiplying fasting glucose 
in mg/dL by fasting insulin in μU/mL and dividing by 22.5 (12). 
Statistical analysis, sample weights, strata, and primary sampling units 
were used to account for the complex survey design according to the 
NHANES analytic guidelines.

Statistical analysis

All analyses incorporated sample weights, strata, and primary 
sampling units to produce accurate national estimates. Characteristics 
of the study population were expressed as medians (interquartile 
ranges) for continuous variables or percentages for categorical 
variables. Participants lacking critical biochemical indicators required 
for our primary analyses were excluded.

Logistic regression models were used to estimate the ORs and 
95% CIs of dietary selenium intake and the risk of T2DM according 
to quartiles of dietary selenium intake. To investigate dose–
response associations between selenium intake and the risk of 
T2DM, we used a restricted cubic spline regression model with 
three knots at the 10th, 50th, and 90th percentiles of the selenium 
intake distribution. We also investigated the association between 
selenium supplements and total selenium intake with the risk 
of T2DM.

We fitted three statistical models. Model 1 was adjusted for age 
(continuous), sex (male or female), and ethnicity (White 
non-Hispanic, Black non-Hispanic, Mexican American, other/
multiracial, or other Hispanic). Model 2 was further adjusted for PIR 
(continuous), education level (college graduate or above, high school 
graduate/GED, less than high school, or some college or AA), BMI 
(continuous), smoking status (current smoker, former smoker, or 
never smoker), and drinking status (1–5 drinks/month, 5–10 drinks/
month, 10+ drinks/month, or non-drinker). Model 3 was further 
adjusted for albumin (continuous), serum selenium (continuous), and 
serum creatinine (continuous).

Stratified analyses were conducted by age (20–39 years, 
40–59 years, or 60+ years), sex (male or female), ethnicity (White 
non-Hispanic or other/multiracial), BMI (<30 or ≥30), smoking status 
(ever or never smoker), and drinking status (ever or never drinker). 
Potential modifying effects were examined by testing the 
corresponding multiplicative interaction terms. All analyses were 
performed using the R version 4.3.1 software. The significance 
threshold was set at a p-value of <0.05 (two-sided).

Results

Participant characteristics

Among the 2,170 participants included in this study, 477 (22.0%) 
were diagnosed with T2DM (Table 1). The median dietary selenium 
intake was 106.4 μg/d, and participants with T2DM tended to be older, 
have higher BMI, and exhibit elevated levels of serum selenium and 
HOMA-IR.

Association between dietary selenium 
intake and T2DM risk

While quartile-based analysis showed non-significant linear 
trends (Q4 vs. Q1 OR = 0.83, 95% CI: 0.51–1.35) (Figure 2), spline 
regression revealed a significant U-shaped association between dietary 
selenium intake and T2DM risk (p-non-linear = 0.042) (Figure 3). 
This finding suggests that both low and high selenium intake levels are 
associated with increased T2DM risk. In contrast, no significant 
association with the risk of T2DM was observed in selenium 
supplements and total selenium intake (Supplementary Figure S1).

Association between selenium intake and 
T2DM risk in subgroup analysis

Stratified analyses highlighted significant interactions in the obese 
subgroup (Table 2). Among participants with a BMI of ≥30, higher 
dietary selenium intake was associated with a reduced risk of T2DM 
(ptrend = 0.016). This association was not observed in non-obese 
participants, suggesting that selenium intake may play a protective 
role, specifically in populations with increased oxidative stress and 
metabolic demands. No significant interactions were detected 
between dietary selenium intake and strata variables (all 
pinteraction > 0.05).

Discussion

This study revealed a significant U-shaped association between 
dietary selenium intake and the risk of T2DM using a restricted 
cubic spline model (p-non-linearity = 0.042). This finding offers a 
new perspective for explaining previous research contradictions: 
When the non-linear effect is ignored, the overall population may 
show a false zero association, while the risk heterogeneity at both 
ends of the threshold can reconcile the differences in results from 
different regional studies. For example, European populations 
generally have insufficient selenium intake due to low soil selenium 
content (serum selenium <90 μg/L). Randomized controlled studies 
supplementing selenium have found that increasing selenium 
intake can reduce glycation reactions and improve glucose 
metabolism indicators (13). In a randomized controlled study in 
Iran, selenium supplementation improved insulin resistance levels 
in patients with type 2 diabetes (14). Studies in high-selenium 
regions have found that high selenium intake increases the risk of 
diabetes (7–9). Geographical variations in soil selenium content 
and dietary intake likely shape this relationship, with selenium 
excess being harmful in replete populations and protective effects 
observed in deficient regions. Future studies should stratify analyses 
by baseline selenium levels and explore temporal trends to clarify 
compensatory responses versus causal mechanisms in 
diabetes progression.

The U-shaped relationship parallels the dual regulatory roles of 
selenoproteins in glucose homeostasis. At physiological levels, 
glutathione peroxidase 1 (GPX1) and thioredoxin reductase 
(TXNRD) neutralize reactive oxygen species (ROS), protecting 
β-cells and insulin-sensitive tissues (15–17). However, both deficiency 
and high levels of selenoproteins may promote T2DM (18). For 
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TABLE 1 Baseline characteristics of participants based on the condition of T2DM in NHANES 2011–2016.

Characteristic Overall
N = 2,170 (100%)1

T2DM
N = 477 (18%)1

Without T2DM
N = 1,693 (82%)1

p-value2

Sex (%) 0.059

  Female 1,066 (50%) 204 (44.03%) 862 (51.31%)

  Male 1,104 (50%) 273 (55.97%) 831 (48.69%)

Age (years) <0.001**

  20–39 years 700 (31.83%) 35 (7.67%) 665 (37.15%)

  40–59 years 683 (35.01%) 142 (33.88%) 541 (35.26%)

  60+ years 787 (33.16%) 300 (58.45%) 487 (27.58%)

Ethnicity (%) 0.3

  White non-Hispanic 890 (67.64%) 173 (65.67%) 717 (68.07%)

  Black non-Hispanic 431 (9.57%) 114 (12.66%) 317 (8.89%)

  Mexican American 288 (7.98%) 78 (7.99%) 210 (7.98%)

  Other/multiracial 305 (8.06%) 52 (7.34%) 253 (8.21%)

  Other Hispanic 256 (6.76%) 60 (6.34%) 196 (6.85%)

PIR 2.74 (1.33, 4.76) 2.41 (1.27, 3.93) 2.85 (1.39, 4.95) 0.021*

Educational attainment <0.001**

  Less than high school 471 (15.42%) 143 (18.83%) 328 (14.67%)

  High school graduate/GED 476 (20.73%) 120 (27.54%) 356 (19.23%)

  Some college or AA 655 (32.61%) 128 (33.78%) 527 (32.35%)

  College graduate or above 568 (31.24%) 86 (19.85%) 482 (33.75%)

BMI <0.001**

  Underweight 46 (1.97%) 4 (0.88%) 42 (2.21%)

  Normal 611 (27.70%) 70 (12.04%) 541 (31.16%)

  Overweight 696 (33.88%) 149 (32.12%) 547 (34.27%)

  Obesity 797 (36.45%) 250 (54.95%) 547 (32.36%)

Smoking status 0.001**

  Current smoker 444 (20.18%) 81 (16.16%) 363 (21.07%)

  Former smoker 517 (25.40%) 163 (34.73%) 354 (23.34%)

  Never smoker 1,209 (54.42%) 233 (49.11%) 976 (55.59%)

Drinking status 0.002**

  1–5 drinks/month 1,034 (50.59%) 242 (54.20%) 792 (49.77%)

  5–10 drinks/month 163 (9.89%) 29 (4.72%) 134 (11.07%)

  10+ drinks/month 296 (18.41%) 45 (13.22%) 251 (19.60%)

  Non-drinker 535 (21.10%) 140 (27.86%) 395 (19.57%)

Albumin (g/L) 43 (41, 45) 43 (40, 45) 43 (41, 46) 0.006**

Serum creatinine (umol/L) 74.26 (62.76, 86.63) 78.68 (64.53, 91.94) 74.26 (62.76, 84.86) 0.004**

PFG (mmol/L) 5.55 (5.22, 6.05) 7.22 (6.33, 8.96) 5.44 (5.16, 5.83) <0.001**

Insulin (uU/mL) 9.81 (6.10, 15.20) 13.29 (8.95, 22.97) 8.87 (5.69, 14.12) <0.001**

HbA1c (%) 5.50 (5.20, 5.80) 6.40 (5.90, 7.34) 5.40 (5.10, 5.60) <0.001**

HOMA-IR 2.46 (1.47, 4.20) 4.63 (2.81, 8.23) 2.16 (1.36, 3.48) <0.001**

Hypertension <0.001**

  Hypertension 937 (39.54%) 340 (70.62%) 597 (32.70%)

  Without hypertension 1,233 (60.46%) 137 (29.38%) 1,096 (67.30%)

Dietary selenium intake (μg/d) 106.4 (78.8, 141.4) 99.5 (75.7, 137.4) 108.0 (80.9, 142.3) 0.12

(Continued)
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instance, experiments in mice indicate that either knockout or 
overexpression of GPX1 may increase the risk of T2DM (19). 
Similarly, selenoprotein P (SELENOP), a hepatogenic secreted 
protein, may induce insulin resistance by inhibiting adenosine 
monophosphate-activated protein kinase (20). Clinical evidence 
further supports this duality: serum SELENOP levels increase during 
prediabetes but decline as T2DM progresses, suggesting 
compensatory overexpression preceding selenoprotein exhaustion 
(21). In addition, selenoprotein T, critical for endoplasmic reticulum 
proteostasis, governs insulin biosynthesis and secretion—a process 
vulnerable to selenium imbalance (22). These findings highlight the 
necessity of maintaining selenium within a narrow optimal range to 
prevent selenoprotein dysregulation.

Elevated serum selenium levels in T2DM patients may reflect a 
dynamic interplay between oxidative stress adaptation and 
selenoprotein dysregulation. Chronic hyperglycemia induces systemic 
oxidative stress, potentially triggering a compensatory upregulation of 
SELENOP to mobilize selenium in response to redox challenges (23). 
Although this response may transiently enhance antioxidant defenses, 
it paradoxically exacerbates insulin resistance by inhibiting AMPK 
signaling (24). Prolonged high selenium exposure can further impair 
β-cell function and insulin sensitivity through pro-oxidant selenium 
metabolites (5, 25).

Interestingly, we  observed that higher selenium intake was 
associated with reduced T2DM risk exclusively in obese 
individuals. Obesity drives chronic oxidative stress through 
mitochondrial dysfunction and pro-inflammatory adipokine 
secretion, depleting antioxidant reserves (26–28). Selenium 
sufficiency supports selenoprotein-mediated detoxification of lipid 
peroxides and hydrogen peroxide, thereby preserving insulin 
signaling pathways (17). Preclinical studies corroborate this: 
selenium supplementation restores GPX1 activity in obese rodents, 
ameliorating insulin resistance and hepatic steatosis. However, 
Robert Hauffe et  al. recently demonstrated that obesity blunts 
selenium’s insulin-sensitizing effects by dysregulating redox-
sensitive phosphatases, highlighting the complex interplay 
between adiposity and selenium biology (29). These mechanistic 
insights align with our findings, suggesting that selenium-rich 
diets may benefit obese individuals with suboptimal 
selenium status.

Several limitations should be considered. First, due to its cross-
sectional design, this study cannot establish a definitive causal 
relationship between selenium intake and the risk of T2DM. Residual 

TABLE 1 (Continued)

Characteristic Overall
N = 2,170 (100%)1

T2DM
N = 477 (18%)1

Without T2DM
N = 1,693 (82%)1

p-value2

Selenium supplement (μg/d) 97.2 (59.3, 136.2) 89.5 (55.1, 129.5) 97.9 (59.8, 137.0) 0.2

Total selenium intake (μg/d) 204.0 (147.2, 272.2) 186.4 (139.8, 260.6) 206.4 (150.3, 274.0) 0.15

Serum selenium (μg/L) 128.9 (119.0, 139.6) 132.8 (121.5, 143.1) 128.1 (118.4, 138.7) 0.001**

1median (IQR) for continuous; n (%) for categorical. 2Chi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-sum test for complex survey samples. *p < 0.05. **p < 0.01. 
p < 0.05 are shown in bold.

FIGURE 2

ORs (95% CIs) for the risk of T2DM according to dietary selenium 
intake. Q, quartile (μg/d). Q1, <78.85; Q2, 78.85–107.44; Q3, 107.45–
142.05; Q4, >142.05. Model 1: adjusted for sex (male or female), age 
(continuous), ethnicity (White non-Hispanic, Black non-Hispanic, 
Mexican American, other/multiracial, and other Hispanic). Model 2: 
Model 1 + PIR (continuous), education level (less than high school, 
high school graduate/GED, some college or AA, or college graduate 
or above), BMI (continuous), smoking status (current smoker; former 
smoker, or never smoker), drinking status (1–5 drinks/month, 5–10 
drinks/month, 10+ drinks/month, or non-drinker). Model 3: Model 
2 + albumin (continuous), serum selenium (continuous), and serum 
creatinine (continuous).

FIGURE 3

Association between dietary selenium intake and risk of T2DM. 
Adjusted for sex (male or female), age (continuous), ethnicity (White 
non-Hispanic, Black non-Hispanic, Mexican American, other/
multiracial, and other Hispanic), PIR (continuous), education level 
(less than high school, high school graduate/GED, some college or 
AA, or college graduate or above), BMI (continuous), smoking status 
(current smoker; former smoker, or never smoker), drinking status 
(1–5 drinks/month, 5–10 drinks/month, 10 + drinks/month, or non-
drinker), albumin (continuous), serum selenium (continuous), and 
serum creatinine (continuous). A dietary selenium intake level of 
123.16 μg/d was used as the reference to estimate all ORs. The 
shaded areas indicate the 95% CI. p-non-linear = 0.042.
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reverse causation may persist, as undiagnosed prediabetic individuals 
might modify dietary habits, potentially attenuating observed 
associations. Second, the findings are based on data from U.S. adults, 
which may limit their generalizability to other populations. Third, 
geographical variations in soil selenium content may influence food-
derived selenium levels, potentially affecting the accuracy of dietary 
selenium intake assessments. Fourth, self-reported diabetes diagnoses 
could lead to misclassification, particularly in undiagnosed cases. 
Finally, residual confounding by unmeasured factors cannot 
be excluded. Future research should integrate biomarkers and explore 
gene–environment interactions to refine precision nutrition strategies.

Conclusion

In a nationally representative sample of U.S. adults, we found a 
U-shaped pattern between dietary selenium intake and the risk of 
T2DM. Among individuals with obesity, insufficient dietary selenium 
intake may contribute to the development of T2DM.
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TABLE 2 Stratified analyses of the associations (ORs, 95% CIs) between dietary selenium intake and the risk of T2DM1.

Characteristic Dietary selenium intake (μg/d)

Q1 (<78.85) Q2 (78.85–107.44) Q3 (107.45–142.05) Q4 (>142.05) ptrend

Sex

Female 1.00 0.86 (0.48, 1.54) 1.07 (0.53, 2.15) 0.48 (0.16, 1.44) 0.272

Male 1.00 1.14 (0.44, 2.94) 0.79 (0.39, 1.61) 1.00 (0.46, 2.20) 0.746

Age (years)

20–39 1.00 1.59 (0.55, 4.56) 1.13 (0.36, 3.54) 0.91 (0.26, 3.19) 0.758

40–59 1.00 0.85 (0.39, 2.13) 0.87 (0.36, 2.13) 1.42 (0.58, 3.49) 0.455

≥60 1.00 0.93 (0.47, 1.84) 0.95 (0.57, 1.57) 0.55 (0.27, 1.11) 0.758

Ethnicity (%)

White non-Hispanic 1.00 0.91 (0.50, 1.66) 0.98 (0.57, 1.71) 0.84 (0.41, 1.69) 0.652

Other 1.00 1.10 (0.60, 2.01) 0.79 (0.46, 1.34) 0.90 (0.50, 1.59) 0.457

BMI (kg/m2)

<30 1.00 0.90 (0.44, 1.87) 1.00 (0.44, 2.26) 1.46 (0.68, 3.14) 0.321

≥30 1.00 1.02 (0.52, 1.99) 0.75 (0.43, 1.30) 0.46 (0.23, 0.91) 0.016*

Smoking status

Ever 1.00 0.72 (0.34, 1.51) 0.99 (0.57, 1.73) 1.13 (0.60, 2.14) 0.453

Never 1.00 1.25 (0.62, 2.53) 0.85 (0.41, 1.79) 0.70 (0.31, 1.59) 0.266

Drinking status

Ever 1.00 0.90 (0.45, 1.78) 0.89 (0.52, 1.53) 0.88 (0.44, 1.75) 0.687

Non-drinker 1.00 0.92 (0.41, 2.06) 0.88 (0.42, 1.84) 0.64 (0.24, 1.70) 0.330

1Logistic regression models were used to estimate the ORs (95% CIs) of T2DM according to quartiles of dietary selenium intake. The results were adjusted for sex (male or female), age 
(continuous), ethnicity (White non-Hispanic, Black non-Hispanic, Mexican American, other/multiracial, or other Hispanic), PIR (continuous), an education level (less than high school, high 
school graduate/GED, some college or AA, or college graduate or above), BMI (continuous), smoking status (current smoker; former smoker, or never smoker), drinking status (1–5 drinks/
month, 5–10 drinks/month, 10+ drinks/month, or non-drinker), albumin (continuous), serum selenium (continuous), and serum creatinine (continuous). The strata variable was not included 
in the model when stratifying by itself. PIR, poverty income ratio; BMI, body mass index. *p < 0.05. p < 0.05 are shown in bold.
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SUPPLEMENTARY FIGURE S1

Associations between dietary selenium intake, selenium supplements, total 
selenium intake, and risk T2DM. (A,D,G) Dietary selenium intake; (B,E,H) 
selenium supplements; (C,F,I) total selenium intake. Model 1: Adjusted for 
sex (male or female), age (continuous), race (White non-Hispanic, Non-
Hispanic Black, Mexican American, Other/multiracial, and Other Hispanic). 
Model 2: Model 1 + PIR (continuous), education level (less than high 
school, high school graduate/GED, some college or AA, and College 
graduate or above), BMI (continuous), smoking status (current smoker; 
former smoker, and never smoker), drinking status (1–5 drinks/month, 5–10 
drinks/month, 10+ drinks/month, and non-drinker). Model 3: Model 2 + 
albumin (continuous), serum selenium (continuous), serum creatinine 
(continuous).
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