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Metabolic dysfunction-associated steatotic liver disease (MASLD) is also known as 
fatty liver disease associated with non-alcoholic fatty liver disease (NAFLD), which 
is a spectrum of chronic liver diseases characterized by steatosis, inflammation, 
fibrosis and liver injury. The incidence and prevalence of MASLD is increasing rapidly 
worldwide. It is a multifactorial disease and there is no single drug approved for its 
treatment. The liver is the main organ that stores and metabolizes the B9 vitamin 
folate, which is synthesized mainly from dietary nutrients and intestinal microbiota 
and plays an important role in processes such as nucleic acid synthesis, methylation, 
and one-carbon metabolism (OCM). Serum folate levels are generally low in 
MASLD patients, and the low levels of endogenous folate lead to abnormalities 
in methionine metabolism and OCM, which disrupt lipid metabolism signaling 
pathways, and cause abnormalities in hepatic lipid metabolism, which may be related 
to the occurrence of metabolic disorders such as MASLD. Target folate may 
have beneficial effects in regulating hepatic lipid metabolism through regulating 
methionine metabolism, OCM and DNA methylation, and signaling pathways. 
Though a handful of studies argue that folate supplementation had no effect on 
blood pressure and lipids in patients with metabolic diseases, majority suggest 
that folate has the potential to serve as a potential therapeutic agent for the 
development of MASLD and the onset of metabolic associated steatohepatitis 
(MASH). To date, further research is needed in MASLD to (a) establish the dose of 
folate as a treatment, (b) determine the duration of therapy, especially in individuals 
with metabolic diseases, and (c) test its benefit on the different component features 
of MASLD (hepatic fat, inflammation, and fibrosis).
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1 Introduction

The liver is an important organ involved in the regulation of lipid metabolism, which can 
convert carbohydrates such as glucose into triglycerides (TGs) and cholesterol, and then 
secrete it into the blood for peripheral tissue storage and utilization. Dysregulation of hepatic 
lipid metabolism leads to metabolic diseases such as fatty liver, hyperlipidemia and diabetes. 
Metabolic dysfunction-associated steatotic liver disease (MASLD) is also known as fatty liver 
disease associated with non-alcoholic fatty liver disease (NAFLD). With the global epidemics 
of obesity and type 2 diabetes mellitus (T2DM), the prevalence of metabolic disorders and 
fatty liver disease in patients with other types of liver disease is increasing. The limitations of 
“NAFLD” are becoming increasingly evident, seriously affecting the diagnosis, and prevention 
of fatty liver disease. In addition, the term “alcoholic” in the NAFLD is stigmatized in the 
Western. The “A multi-society Delphi consensus statement on new fatty liver disease 
nomenclature” was released at the EASL Annual Meeting in 2023, and the new consensus 
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recommends that NAFLD be renamed MASLD (1). A large number 
of studies have concluded that the serum folate level is generally 
decreased in patients with MASLD, and a higher serum folate level is 
negatively correlated with MASLD (2). Therefore, a better 
understanding of the mechanism of folate in regulating lipid 
metabolism during the development of MASLD may help identify 
new treatment strategies. In our previous published review, we had 
summarized the role of folate in various liver diseases through 
different mechanisms, but less mention has been made of the 
mechanisms of folate regulating hepatic lipid metabolism (3). In this 
review, we review the roles of folate on hepatic lipid metabolism, and 
the potential efficacy of folate supplementation in the treatment of 
MASLD. We  focus on the direct effects of folate on hepatic lipid 
metabolism, and suggest that targeting folate may have a significant 
effect on alleviating MASLD.

2 Folate in physiology

Folate, chemically known as pteroylglutamate, is a water-soluble 
B-family vitamin. As a group of methyl transmitters in one-carbon 
metabolism (OCM), folate is involved in purine and pyrimidine 
synthesis, as well as DNA methylation. Natural folate is found in 
various reduced forms in vegetables, fruits and other foods, it is 
unstable and easily degraded when exposed to acid, heat or light. 
Synthetic folate, known as folic acid, is found mainly in 
pharmaceuticals and some fortified foods. Compared with natural 
folate, it has the advantages of stability and high absorption. Folate 
intake is mainly metabolized and converted in the liver. After ingested 
dietary natural folate enters the intestine, polyglutamic acid needs to 
be hydrolyzed to monoglutamic acid, and then absorbed by active 
transport through the intestinal mucosa (4). Before entering the 
blood, the monoglutamate form is reduced to 5-methyltetrahydrofolate 
(5-MTHF) in the liver, which is mediated by methionine synthase 
(MTR), which transfers a methyl group to homocysteine (Hcy) to 
produce tetrahydrofolate (THF) and methionine. THF is the active 
form of folate. It is an important intermediate involved in OCM, and 
can be used in the synthesis of purine and thymidylate. 5-MTHF also 
participates in the synthesis process from deoxyuridine 
monophosphate (dUMP) to thymidylic acid (dTMP). The deficiency 
of 5-MTHF leads to the obstruction of dTMP synthesis (5). Therefore, 
folate are essential for the synthesis and repair of DNA damage and 
for the subsequent methylation of DNA and other molecules.

The methionine produced by folate metabolism in the liver is 
further converted to S-adenosylmethionine (SAMe). As a methyl 
donor of SAM-dependent methyltransferases (MTases), SAMe 
transfers methyl groups to nucleophilic receptors and initiates the 
methylation process. Methylation is one of the most important 
chemical reactions, which is involved in almost all life processes, and 
most of the methylation reactions are made of SAMe as the methyl 
source. After methyl transfer, SAMe is transformed into S-adenosyl-
l-homocysteine (SAH), which is then hydrolyzed to Hcy 
and adenosine.

Vitamins play a crucial role in lipid metabolism, which are 
involved in the synthesis and oxidation of fatty acids and regulate lipid 
metabolism through various mechanisms. Vitamin C promotes the 
conversion of cholesterol into bile acid by participating in the 
microsomal respiratory chain (6). Vitamin D regulates adipose 

differentiation, adipokine secretion, and inflammation in adipose 
tissue (7). B-family vitamins provide methyl radicals necessary for 
balanced phospholipid biosynthesis through conversion to coenzymes 
such as vitamin B12 and folate through methionine synthesis. Obese 
people are generally deficient in micronutrients, and their serum level 
and intake of folate are low.

3 Folate in hepatic lipid metabolism

3.1 Hepatic lipid metabolism

Hepatic lipid metabolism mainly includes de novo synthesis of 
fatty acids using acetyl-CoA as raw materials, fatty acid uptake, very 
low density lipoprotein (VLDL) secretion, and fatty acid β oxidation 
(8). Fatty acids are mainly synthesized from carbohydrates in fat 
tissue, liver and lactating mammary glands. Carbohydrates are 
converted to acetyl-CoA through glycolysis. Acetyl-CoA is then 
generated by the tricarboxylic acid (TCA) cycle to produce citric acid, 
which is subsequently converted back into acetyl-CoA by ATP-citrate 
lyase in the cytoplasm. This process further elongates the fatty acid 
chain by two carbons. Under the catalysis of fatty acid synthase, 
malonyl-CoA and one acetyl-CoA are condensed to form palmitic 
acid. Palmitic acid undergoes C-chain extension and desaturation 
through essential fatty acid desaturases, such as stearoyl-CoA 
desaturase-1 (SCD1) and fatty acid desaturases (FADs), to generate 
various other fatty acids. Fatty acids are transported to hepatocytes 
primarily by membrane-binding transporters. Fatty acid uptake is 
mediated by various transporters such as the fatty acid receptor CD36, 
fatty acid transport proteins (FATPs), and fatty acid-binding proteins 
(FABPs). FABPs allow fatty acids to remain soluble and be transported 
to individual organelles. FATPs are transporters responsible for 
transporting long-chain fatty acids. Abnormally elevated transporters 
increase fatty acid uptake and lipid accumulation in hepatocytes, 
promoting the occurrence and development of MASLD.

Fatty acid oxidation is the primary process of hepatic lipid 
metabolism, by which fatty acids break down into CO2 and H2O, 
releasing large amounts of ATP. Fatty acids are catalyzed to form fatty 
acyl-CoA by fatty acyl -CoA synthase, which is located in the 
endoplasmic reticulum and the outer membrane of mitochondria. 
After entering the mitochondrial matrix, the fatty acyl-CoA is 
catalyzed by the fatty acid β-oxidation system to from β-ketoacyl-CoA, 
then being decomposed to produce acetyl-CoA and fatty acyl-
CoA. Acetyl-CoA, the product of fatty acid oxidation, enters the TCA 
cycle and undergoes complete oxidation. FATPs are regulated by 
nuclear receptor peroxisome proliferation-activated receptor-α 
(PPARα). When deficient in nutrients, PPARα in the cytoplasm 
translocates into the nucleus and upregulates the expression of genes 
related to fatty acid oxidation, thus facilitating fatty acid oxidation to 
uphold the homeostasis of hepatic lipid metabolism (9).

The MASLD is characterized by the excess accumulation of fat in 
hepatocytes and may progress to metabolic dysfunction-associated 
steatohepatitis (MASH). If the accumulated lipids in the liver cannot 
be metabolized and cleared in time, the accumulation of lipids will 
lead to hepatic steatosis, which is an important component of MASLD 
and MASH, is caused by an imbalance between intrahepatic TGs 
production and secretion. Altered lipid profiles in the progression of 
MASLD to MASH. An increase in the levels of molecular species of 
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TGs containing shorter-chain saturated and monounsaturated fatty 
acids was observed in patients with MASLD. Nevertheless, decreased 
levels of TGs containing polyunsaturated fatty acids (PUFAs), 
including ω-3 and ω-6 fatty acids were found in patients with 
MASH. However, the ω-6 to ω-3 ratio in TGs was elevated in patients 
with MASH. Given the relevance of TGs content to the development 
of MASLD and MASH, these lipids may be used as biomarkers for the 
non-invasive diagnosis of MASLD and MASH (10). The various steps 
of hepatic lipid metabolism are regulated by the interaction of 
hormones, nuclear receptors, intracellular signaling pathways, and 
transcription factors.

3.2 Low levels of folate in MASLD

MASLD exhibits pathological characteristics related to fat 
degeneration and storage. According to the progression, MASLD 
mainly consists of three stages: non-alcoholic fatty liver (NAFL), 
MASH, and hepatic fibrosis. MASLD is the result of a combination of 
genetic, environmental, and dietary factors. Its pathogenesis and 
development mainly involve insulin resistance (IR), abnormal lipid 
metabolism, oxidative stress, inflammation, and disorders in 
intestinal flora.

Clinically, patients with MASLD are often associated with obesity, 
diabetes, or metabolic syndrome. Obese and overweight patients have 
significantly lower serum folate levels (11). One study including 146 
adult participants aged 20 years and older in the National Health and 
Nutrition Examination Survey (NHANES) from 2011 to 2018 
concluded that serum folate and 5-MTHF levels were also negatively 
correlated with MASLD (2). Depending on the further progression, 
MASH can advance rapidly, leading patients to develop hepatic 
fibrosis and cirrhosis. Advanced hepatic fibrosis (AHF) is closely 
associated with the prognosis and mortality of patients with 
MASLD. A cross-sectional study of 5,417 participants aged 18 years 
and older based on 2011–2018 NHANES data showed that people 
with high serum folate levels had a reduced risk of developing MASLD 
and AHF (12), whereas in this report, abnormally high serum folate 
levels (> 50 ng/mL) was excluded. A cross-sectional analysis of 6,610 
participants aged 18 years and older in the NHANES database from 
2011 to 2018 found that serum total folate and 5-MTHF were 
negatively correlated with the prevalence of MASLD, while a higher 
unmetabolized folate (UMFA) concentration was significantly 
correlated with a higher prevalence of MASLD (13). Analyzing 549 
participants in the 2017–2018 NHANES database, it showed that BMI 
significantly mediates the relationship between 5-MTHF and hepatic 
fibrosis. Serum total folate or 5-MTHF is negatively associated with 
hepatic steatosis or fibrosis in adolescents (14).

Animal experiments have verified the above conclusions. 
Increased liver lipid accumulation and decreased liver and serum 
folate levels were also found in a high-fat diet (HFD)-induced obesity 
mouse model (15). Folate deficiency decreased the activity of 
glutathione peroxidase and increased lipid peroxidation in the liver. 
The increase of plasma Hcy and the decrease of plasma and liver folate 
levels in folate-deficiency rats were significantly correlated with the 
increase of lipid peroxidation in the liver (16).

Reduced serum folate levels have been observed in patients with 
MASLD and animal models, indicating a possible relationship 
between disruptions in folate status and the progression of 

MASLD. Therefore, folate supplementation may be expected to reduce 
liver injury and slow the progression of MASLD.

3.3 Gut microbiota-folate-liver axis 
regulates lipid metabolism

In addition to dietary nutrients, the synthesis of B-family vitamins, 
including folate, by gut microbiota has been recognized. As a result, 
germ-free animals lacking microbiota require supplements of vitamin 
K and certain B vitamins that their traditional counterparts with intact 
microbiota do not need. The genera of bacteria commonly found in 
the distal intestine, including Bacteroides, Bifidobacterium, and 
Enterococcus, can synthesize vitamins (17). An in-depth analysis of 
vitamins produced by human gut microbes highlights the importance 
of evaluating the folate synthesis capacity of various gut cells. Many 
common human gut bacteria have the ability to synthesize B vitamins, 
and the metabolism of B vitamins by intestinal flora also varies with 
age. The infant intestinal flora is rich in genes for de novo synthesis of 
folate, while the adult flora is rich in genes related to the metabolism 
of folate and its reduced form THF (18).

A large number of animal experiments have been reported, 
changes in intestinal flora may affect lipid metabolism, which could 
play a crucial role in the onset and progression of MASLD. Changes 
in microbiota composition through the use of prebiotics, such as 
inulin-type fructans, can decrease steatosis and lipogenesis (19). In 
rats fed with a HFD, supplementation with the prebiotic 
fructooligosaccharide (FOS) reduced body weight and fat content, and 
increased CD36 expression in the small intestine. Both FOS altered 
the small intestine microbiota and increased the relative abundance of 
Bifidobacterium. Bifidobacterium pseudolongum can enhance small 
intestinal nutrient sensing and regulate food intake to improve energy 
homeostasis (20). The levels of TGs and VLDL in the plasma of rats 
fed with prebiotics decreased. Prebiotics, as probiotic stimulants, have 
the function of promoting the proliferation of probiotics and 
improving intestinal flora. Specific probiotics such as 
Lactiplantibacillus, Lactococcus and Bifidobacterium are highly 
efficient in synthesizing folate. These microbial folate, due to their 
natural structure, are more readily absorbed into the intestines than 
chemically synthesized folic acid and avoid the risk of toxicity 
associated with the accumulation of unmetabolized folic acid. 
Prebiotics also inhibited enzymes associated with lipogenesis, such as 
acetyl-CoA carboxylase (ACC) and FAS (21), which led to the 
inhibition of fatty acid synthesis and consequently reduced 
TGs content.

Clinical trials also demonstrated that prebiotic feeding for 8 weeks 
significantly reduced liver inflammation, decrease of hepatic enzymes 
and steatosis and fibrosis (22). Supplementation with Bifidobacterium 
and prebiotics to regulate the gut microbiota significantly reduced the 
levels of inflammatory factors, steatosis, and MASH (23). Therefore, 
target the metabolic activity of microorganisms may help regulate liver 
fat production and potentially hinder the development of steatosis.

The progression of MASLD is also accompanied by changes in 
intestinal microbes, and intestinal microbial transplantation can 
inhibit the progression of MASLD. In the MASLD mice induced by a 
HFD, it was found that there is a positive correlation between the 
abundance of Bacteroides thetaiotaomicron and the remission of the 
metabolic syndrome. B. thetaiotaomicron regulates the intestinal 
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microbial composition and induces a decrease in the Firmicutes/
Bacteroidetes ratio in the gut of mice with MASLD. Bacteroides 
thetaiotaomicron reduces body weight and fat accumulation, lowers 
hyperlipidemia and insulin resistance, and prevents hepatic 
steatohepatitis and liver injury. In addition, B. thetaiotaomicron can 
also enhance enterohepatic folate and unsaturated fatty acid 
metabolism to improve MASLD (24). Ganoderma lucidum 
heteropterpene inhibits de novo lipogenesis in the liver, promotes fatty 
acid oxidation and low-density lipoprotein transport, and has a 
significant effect on inhibiting hepatic steatosis. Oral ganoderma 
meroterpene derivatives (GMD) improved MASLD by reducing 
endotoxemia, enhancing lipid oxidation, and decreasing lipid 
synthesis and output in the liver. The enrichment of GMD bacteria 
such as B. thetaiotaomicron, Bacteroides dorei, and Bacteroides 
uniformis is the primary factor contributing to the increased intestinal 
folate levels. At the same time, the folate-mediated OCM was also 
significantly enhanced (25). These results suggest that folate synthesis 
by intestinal bacteria mediates OCM and regulates hepatic lipid 
metabolism, which is also one of the main mechanisms of folate in 
slowing down the progression of MASLD. In addition, the low-carb 
diet, which limits carbohydrates, also promoted a significant increase 
in the abundance of folate-producing Streptococcus in the gut 
microbes of patients. The increase in folate concentration would lead 
to changes in hepatic metabolism, inhibiting lipid synthesis, and 
accelerating the oxidative decomposition of lipids. Some studies have 
found that an increase in serum folate accounts for 35.4% of the 
reduction in liver fat content. A low-carb diet can quickly shift 
intestinal microbes toward folate production, significantly inhibits 
fatty acid synthesis, and promotes fatty acid oxidation (26). Thus, 
regulating folate and folate metabolism by interfering with gut 
microbes such as Bacteroides, Bifidobacterium, and Enterococcus 
may help ameliorate MASLD (Figure 1).

3.4 Folate metabolism regulates lipid 
metabolism

3.4.1 Folate regulates lipid metabolism
Low serum folate levels are often associated with obesity. Increased 

liver lipid accumulation and decreased liver and serum folate levels 
were found in HFD-induced obese mice. The obstruction of folate 
transport results in reduced folate storage in the liver (19). Lack of 
folate can induce increased secretion of pro-inflammatory factors and 
impair hepatic lipid metabolism, resulting in hepatic lipid 
accumulation and fibrosis. Rats fed a folate-deficient diet exhibited 
fatty infiltration, increased TGs, and decreased phospholipid 
methylation of the liver. It suggests that folate deficiency blocks 
phospholipid synthesis in the liver. Folate consumption is associated 
with high expression of genes involved in lipid biosynthesis. Dietary 
folate deficiency leads to changes in hepatic fatty acid metabolism, 
DNA synthesis, and circadian rhythm (27). In addition, VLDL 
transport was impaired in folate-deficient mice (28), suggesting that 
folate may be involved in regulating VLDL synthesis and transport. 
Folate is essential for the synthesis of SAMe from methionine. 
Phosphatidyl ethanolamine N-methyltransferase (PEMT) utilizes 
SAMe as a methyl donor to catalyze the methylation of phosphatidyl 
ethanolamine (PE) to phosphatidylcholine (PC) (29), a process 
essential for VLDL formation in hepatocytes. As showed in Figure 2. 

The process of PC synthesis is impaired in folate deficiency, leading to 
a decrease in the PC/PE ratio. This imbalance may impact the lipid 
production of VLDL and contribute to hepatic lipid accumulation 
(30). Loss of folate transporter solute carrier family 19 member 1 
(SLC19A1) in hepatocytes reduces intracellular folate levels, impairs 
lipid metabolism, and leads to the accumulation of lipid droplets in 
hepatocytes (31). The mitochondrial folate enzyme aldehyde 
dehydrogenase 1 family member L2 (ALDH1L2) converts 
10-formyltetrahydrofolate (10-formyl-THF) to THF and carbon 
dioxide. Mitochondrial overexpression of ALDH1L2 produces 
sufficient NADPH to maintain high levels of glutathione, which is 
essential for supporting high levels of cysteine, the precursor of 
coenzyme A. Abnormalities in hepatic lipid metabolism were found 
in ALDH1L2 knockout mice. Knockout of ALDH1L2 led to 
dysregulated lipid metabolism and reduced ATP levels in the 
mitochondria (32). This finding also confirms that folate metabolism 
regulates lipid metabolism and energy homeostasis in the liver.

Folate deficiency also affects fetal development. The folate and 
methionine cycles are activated in the maternal liver, and low folate 
levels may alter maternal hepatic metabolism. SREBP1 and ACC1 
expression is reduced in the livers of pregnant rats fed a folate-deficient 
diet. Folate deficiency inhibits lipid synthesis, leads to disturbed 
protein regulation and abnormal gene expression in the liver, which 
elevates TGs levels and lowers plasma HDL, resulting in steatosis (33). 
Besides, folate deficiency increases lipid accumulation and leptin 
production in fat cells (34). Thus, changes in hepatic lipid metabolism 

FIGURE 1

Role of folate produced by gut microbiota in MASLD. Dietary and 
drugs induce alterations of the intestinal microenvironment and 
changes in the composition of gut microbiome, increase the number 
of folate-producing organisms, Bacteroides, Bifidobacterium, and 
Enterococcus, and then folate is involved in the regulation of MASLD 
onset and progression.
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may indirectly affect fetal development. The dietary with high folate 
and low vitamin B12 reduced total fatty acids and desaturase activity 
in the maternal liver, but had the opposite effect on the offspring. An 
unbalanced prenatal and postnatal folate/vitamin B12 diet plays a 
crucial role in regulating hepatic desaturase gene expression and 
enzyme activity associated with lipid metabolism in the adult 
offspring (35).

3.4.2 Methionine metabolism regulates lipid 
metabolism

Methionine is an essential amino acid. In addition to serving as a 
substrate for protein synthesis, methionine is a primary methyl donor. 
The folate cycle coupled with the methionine cycle involves 
5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), 
which catalyzes the transfer of a methyl group from 5-MTHF to Hcy. 
Methionine can be  further activated and converted into SAMe, a 
crucial substrate that regulates methylation. Lipid metabolism is the 
main biological process affected by methionine restriction (MR) (36). 
In adipose tissue, MR increases adipogenesis and fatty acid oxidation. 
The expression of rate-limiting enzymes involved in fatty acid 
synthesis, such as FAS and ACC1, as well as SCD1, involved in TGs 
synthesis, are increased. In the preadipose cell line 3 T3-L1, 
methionine deprivation negatively affects the activity of lipoprotein 
lipase (LPL) and hormone-sensitive lipase (HSL) (37), which are key 
enzymes for the hydrolysis of TGs in serum and adipocytes, 
respectively. Methionine deprivation leads to lipid accumulation in 
adipose tissue.

But the hepatic lipid metabolism is not quite the same as that of 
adipocytes. MR decreased plasma leptin and increased adiponectin 
were found in Fischer 344 rats feeding an-MR diet. Uncoupling 

protein 1 (UCP1), which is specifically and highly expressed in brown 
adipose tissue (BAT), was increased in epididymal and inguinal white 
adipose tissue (WAT) (38). SCD1 is a key enzyme involved in 
monounsaturated fatty acid synthesis. MR diet reduced SCD1 
expression in the liver and decreased the expression of enzymes 
involved in lipid synthesis. Therefore, MR influences the expression of 
genes regulating lipid metabolism and promotes the shift from fatty 
acid synthesis to fatty acid oxidation in the liver. Dietary MR has a 
protective effect on hepatic steatosis in mice (39). Methionine 
deficiency increased SAH and Hcy levels, altered the expression of 
genes involved in OCM and lipid metabolism, leading to lipid 
accumulation, activated oxidative stress, and endoplasmic reticulum 
stress responses in the liver (40). This indicates that abnormal 
methionine levels can lead to lipid accumulation in the liver and 
contribute to the development of MASLD.

In addition, folate is important for inhibiting MASH and hepatic 
fibrosis. As people with chronic liver disease are often comorbid with 
intrahepatic cholestasis (IHC) clinically, and IHC can further 
exacerbate liver injury. Folate promotes the production of SAMe, and 
reduced level of SAMe can bring about cholestasis. SAMe reduces the 
cholesterol/phospholipid ratio of hepatocyte and erythrocyte cell 
membranes, improve the fluidity of hepatocyte membranes, and also 
increase glutathione levels, improve the anti-free radical and 
detoxification ability of hepatocytes. SAMe is conducive to promoting 
the regeneration of normal hepatocytes and the repair of damaged 
hepatocytes, and inhibit inflammatory cytokines. Besides, SAMe 
inhibited human hepatic stellate cells (HSCs) activation and 
proliferation (41), reduced of carbon tetrachloride-induced liver 
injury and liver fibrosis (42), and inhibited collagen processing leading 
to increased ubiquitination and decreased type I collagen secretion 

FIGURE 2

Folate mediates methionine metabolism to promote VLDL synthesis. Methionine from dietary can be converted into SAMe, SAMe is catalyzed by 
methyltransferase, SAMe demethylates to produce SAH, SAH deadenosine to produce Hcy. Hcy accepts methyl group to reproduce methionine, this is 
methionine cycle. Through the folate cycle, MTR catalyzed the transfer of methyl group from 5-MTHF to Hcy, and change to THF. PEMT used SAMe to 
catalyze the methylation of PE into PC, thus promoting the synthesis of VLDL.
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(43). This in turn inhibits the onset and progression of liver fibrosis 
and cirrhosis.

3.5 Folate regulates insulin resistance

The liver is an important target organ for insulin. Insulin inhibits 
glycogenolysis and gluconeogenesis in the liver and promotes 
glycogen synthesis. When the function of insulin is weakened, it fails 
to inhibit hepatic glucose output, leading to hepatic IR. Hepatic IR 
leads to disturbances in glucose and lipid metabolism, and increased 
lipid synthesis results in hepatic lipid deposition. IR is the pathogenesis 
of T2DM and the pathological basis of many metabolic-related 
diseases, such as obesity and MASLD. A cross-sectional study of 1,530 
adults enrolled in the NHANES between 2011 and 2012 found an 
inverse association between serum folate levels and IR in non-diabetic 
patients (44). Systematic literature search on PubMed, Web of Science, 
and EMBASE, as well as previous systematic reviews and meta-
analyses indicated that folate supplementation significantly decreased 
insulin and HOMA-IR levels. These results suggest that folate 
supplementation may benefit glucose homeostasis and reduce IR (45). 
A folate/vitamin B12 diet was found to significantly decreased insulin, 
HOMA-IR, and TGs levels (46). However, other studies have reached 
different conclusions. Folate supplementation was found to have no 
significant effect on serum liver enzyme levels, hepatic steatosis, IR, 
and lipids in MASLD patients. A study of olderly Thailand people 
revealed a significant negative correlation between folate and Hcy 
levels, serum Hcy levels increased with age. Besides, folate deficiency 
significantly increases the risk of developing HHcy (47). According to 
epidemiological studies, the role of folate in the treatment of MASLD 
is still controversial. Calcium/calmodulin-dependent protein kinase 2 
(CAMKK2) is the primary target of calmodulin, which binds to Ca2+ 
and plays a crucial role in calcium signal transduction pathways by 
modifying various target proteins, such as kinases or phosphatases. 
CAMKK2 is involved in regulating key metabolic processes such as 
obesity and glucose homeostasis. Folate deficiency leads to reduced 
CAMKK2 methylation. However, CAMKK2 methylation is negatively 
correlated with HOMA-IR index (48). This also suggests that folate 
can influence the expression of genes related to lipid metabolism and 
IR by regulating methylation.

3.6 One-carbon metabolism (OCM) in lipid 
metabolism

Disruption of folate metabolism leads to MASLD, including 
steatosis, steatohepatitis, fibrosis, and cirrhosis. Folate-mediated 
OCM is also involved in regulating lipid metabolism. A study 
recruited 421 participants aged 20–40 years in Poznań, Poland, from 
2016 to 2018revealed that serum folate was associated with lower 
total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), 
TGs, and triglyceride glucose index in overweight/obese individuals, 
but not in the normal population. The associations between OCM 
markers, fatty liver index, and lipids differed between normal-
weight and overweight populations (49). Low levels of endogenous 
folate in rodents disrupt OCM, and may be  associated with the 
development of metabolic diseases such as MASLD (50). As 
methionine, serine, glycine, and choline are the main sources of 

one-carbon units, methionine and choline deficiency diet model is 
the most common MASLD model. Drugs such as methotrexate, that 
disrupt OCM, induce liver injury and fatty liver diseases (51). The 
one-carbon unit transfer mediated by folate through SHMTs is also 
essential for mitochondrial biological processes. Reduced 
mitochondrial content impairs nutrient oxidation and leads to 
lipid accumulation.

MASLD is associated with dietary folate deficiency and mutations 
in genes required for OCM. Methionine synthase reductase (MTRR) 
is a crucial regulator of the methionine and folate cycles, and MTRRgt 
mutations disrupt folate metabolism and alter overall and locus-
specific DNA methylation. MTRRgt mutations previously disrupted 
OCM, resulting in a wide range of developmental phenotypes and 
late-onset macrocytic anemia in adulthood. Adult mice with MTRRgt 
mutation showed decreased glycogen and reduced fatty acid 
β-oxidation in eosinophilic hepatocytes (52).

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme 
in folate metabolism. It catalyzes the reduction of 5,10-MTHF to 
5-MTHF and to provide methyl donors for the synthesis and 
methylation of SAMe. 5-MTHF is the primary form of folate, playing 
a crucial role in numerous vital biochemical reactions. Thus, there 
may be a link between altered serum 5-mTHF levels and MASLD 
progression. Serum5-MTHF was negatively associated with hepatic 
steatosis or fibrosis (13, 14). All of these indicate that increasing serum 
5-mTHF levels may potentially reduce the prevalence of MASLD. Loss 
of MTHFR enzyme activity is primarily due to genetic mutations. An 
MTHFR gene mutation leads to low level of folate, and high level of 
tHcy. Over time, this improper induces higher risk for a variety of 
diseases. There are many types of mutations in the MTHFR gene, with 
the most common being the C-T mutation at the 677th nucleotide of 
exon 4 (C677T). This mutation increases the thermal instability of 
MTHFR and significantly reduces the enzyme activity of 
MTHFR. Folate deficiency predisposes men to hepatic fibrosis, which 
is exacerbated by the MTHFR 677TT mutation. In contrast, the 
MTHFR 677TT mutation predisposes women to steatosis by altering 
choline metabolism, leading to abnormal expression of lipid 
metabolism genes, and promoting hepatocyte steatosis (53). In 
addition to the mutation in C677T, the mutation in A1298C of 
MTHFR also affects the MTHFR enzyme activity. When both 
mutations in C677T and A1298C are present, the effect on the reduced 
enzyme activity will also be superimposed. MTHFR deficiency results 
in decreased SAMe, increased SAH, decreased methylation. MTHFR 
deficiency may exacerbate liver injury through alterations in 
methylation, inflammatory response, and lipid metabolism. 
Individuals with MTHFR variants may have an increased risk of liver 
cirrhosis and its complications (54). In addition, mutation of MTHFR 
leads to a decrease in the conversion from 5,10-MTHF to 
5-MTHF. This reduction lowers the active folate levels and increases 
tHcy. Therefore, folate supplementation may reduce the elevated 
serum tHcy levels induced by MTHFR mutation. When excessive 
folate is supplemented, the level and activity of the MTHFR are 
inhibited, resulting in accelerated adipogenesis and reduced 
cholesterol catabolism. Moreover, the effect was more significant in 
MTHFR-deficient mice (55). In MTHFR-knockout mice, high folate 
intake hinders the expression of genes involved in cholesterol synthesis 
and disrupts cholesterol homeostasis in the liver (56). This also 
suggests that folate deficiency is as harmful as excess, and that excess 
folate are more harmful to MTHFR-deficient individuals.
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3.7 Folate regulates signaling pathways in 
hepatic lipid metabolism

Lipid metabolism includes biological processes involved in lipid 
synthesis and metabolism of fatty acids, and several different signaling 
pathways are involved in regulating hepatic lipid metabolism.

3.7.1 AMPK signaling pathway
Adenosine 5′-monophosphate (AMP)-activated protein kinase 

(AMPK) is a key regulator of metabolism, associated with energy 
balance (57). Abnormalities in hepatic lipid metabolism are often 
associated with dysregulation of AMPK. AMPK inhibits cholesterol 
and fatty acid synthesis in the liver (Figure 3). AMPK phosphorylates 
and inhibits the activity of two rate-limiting enzymes: 
hydroxymethylglutaryl-CoA synthase (HMG-CoA) and ACC. Long-
term activation of AMPK also inhibits the expression of cholesterol 
regulatory SREBP-1, and down-regulates the expression of lipid-
related genes such as FAS, pyruvate kinase (PK), HMG-CoA, and 
ACC. In addition to inhibiting the production of fatty acids, AMPK 
also inhibits the production of TGs. TGs levels were abnormally 
elevated, and liver fatty acid production was enhanced when AMPKα2 
knockout. AMPK inhibits the transcriptional activity of ChREBP, 
thereby reducing the conversion of carbohydrates to fat. Meanwhile, 
AMPK reduced TGs synthesis by inhibiting the glycerol triphosphate 
acyltransferase (GPAT) of liver mitochondria through 
phosphorylation (58). These results suggest that AMPK regulates fat 
deposition in the liver by reducing fatty acid production and 
promoting fatty acid oxidation. In HFD-induced MASLD, AMPK 

inactivation is associated with hepatic lipid accumulation, 
hyperglycemia, and hyperinsulinemia. Folate supplementation 
restored AMPK activation, thereby improving hyperinsulinemia and 
lipid and glucose metabolism in HFD-induced mouse (15).

3.7.2 PPARα signaling pathway
MASLD is primarily linked to the downregulation of lipid 

catabolic pathway genes regulated by PPARα. Methionine metabolism 
produces SAMe, which is essential for DNA methylation. Methionine 
supplementation decreased DNA methylation level and promoted the 
up-regulation of PPARα target genes angiopoietin like 4 (ANGPTL4), 
fibroblast growth factor 21 (FGF21), and phosphoenolpyruvate 
carboxykinase 1 (PCK1) in the liver. Methionine supplementation 
may activate the PPARα signaling pathway through the synthesis of 
SAMe. The up-regulation of liver PPARα is associated with the 
improvement of lipid metabolism and immune function (59). These 
findings suggest that PPARα-regulated metabolic signaling pathways 
are one of the key mechanisms determining severity of MASLD.

PPARα plays a role in the oxidation and metabolism of fatty acids 
(Figure 4). Activating PPARα promotes the oxidation of fatty acids 
and reduces the synthesis of fatty acids, thereby decreasing the level of 
triacylglycerol. PPARα acts as a transcription factor to stimulate the 
transcription of target genes. PPARα binds and activates its ligand, 
then binds to the coactivator to form the PPARα/ligand complex, 
which enters the nucleus and binds to the PPRE of target gene. The 
activation of PPRE promotes fatty acid oxidation and reduce fatty acid 
synthesis (60). PPARα is associated with fatty acid transport, 
mitochondrial fatty acid oxidative metabolism, inflammatory 

FIGURE 3

Folate regulates lipid metabolism through AMPK signaling. AMPK appears as a heterotrimer complex containing a catalytic α subunit and regulatory β 
and γ subunits. Folate deficiency inhibits CAMKK2 methylation and the binding of CAMKK2 to calmodulin. Phosphorylation of CAMKK2 activates AMPK. 
The α subunit of AMPK is also easily activated by phosphorylation of upstream kinase LKB1. Activation of AMPK inhibits the expression and activities of 
lipid metabolism genes, GPAT, SREBP1, HMG-CoA, ACC, and FAS.
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response, and fibrogenesis. PPARα stimulates fatty acid catabolism by 
regulating the expression of LPL, apolipoprotein genes (APOA1, 
APOA2, and APOA5), fatty acid transport and oxidation genes 
(FABP1, FABP3, ACS, ACO, CPT1, and CPT2), and genes for HDL 
metabolism (phospholipid transfer protein, PLTP) and ketone 
synthesis (3-hydroxymethylglutaryl-CoA synthase 2, HMGCS2) (60). 
Therefore, PPARα may be a key factor in inhibiting liver lipid synthesis 
and oxidative stress. Kupffer cells, also known as Kupffer-Browicz 
cells, are macrophages found in the sinusoids of the liver, also play an 
important role in the development of MASLD. Kupffer cells produce 
IL1β, inhibit PPARα-dependent fatty acid oxidation, leading to lipid 
accumulation and TGs synthesis, and promote hepatic steatosis (61). 
Besides, folate-mediated DNA methylation of PPARα decreased after 
a folate-restricted diet in pregnant rats and reversed after folate 
supplementation in the liver. Prenatal nutrition induced differential 
changes in CpG dinucleotide methylation of the PPARα promoter in 
the liver of young rats, which persisted into adulthood (62).

3.7.3 Others
Chronic inflammation is an important pathogenic factor in the 

liver and accelerates the progression of MASLD and MASH, serum 
levels of many inflammatory markers and mediators, including 
C-reactive protein (CRP), tumor necrosis factor α (TNFα), IL6 and 
IL8, Interleukin-1 receptor antagonist (IL1RA) and C-X-C motif 
chemokine ligand 10 (CXCL10), have been examined as diagnostic 
markers. As MASLD and MASH is associated with an underlying 
inflammatory metabolic state, these markers reflect underlying disease 
pathways, including apoptosis, inflammation, oxidative stress, and 

abnormal signaling pathways are involved. Serum aminotransaminases 
(ATs) levels are the most commonly used for assessment of chronic 
liver diseases, including MASLD and MASH. In a rat model of 
HFD-induced MASLD, the serum IL22 level decreased, and the 
autophagy protein LC3B increased in the liver. Folate supplementation 
significantly reduced the expression of pro-inflammatory cytokines 
TNFα, C-X-C motif chemokine ligand 8 (CXCL8), and LC3B, and 
improved hepatitis in a dose-dependent manner (63). A HFD leads to 
lipid accumulation, activation of the transcription factor nuclear 
factor kappa-B (NFκB), and increased expression of inflammatory 
genes in hepatocytes. Supplementing with folate inhibits NFκB 
activation and significantly reduces the levels of inflammatory 
cytokines, as well as decreases the accumulation of liver lipids and 
inflammation (64), and provides antioxidant activity that may help 
enhance the oxidative decay of mitochondria caused by pro-oxidants 
(65). This suggests that folate supplementation may regulate the 
production of pro-inflammatory factors and autophagy, and alleviate 
the progression of MASLD.

These studies all suggest that folate affects liver function and lipid 
metabolism by regulating various signaling pathways, thereby 
influencing the progression of MASLD.

3.8 Folate regulates immune response in 
hepatic lipid metabolism

In addition to hepatocytes, hepatic sinusoidal endothelial cells and 
HSCs are present in liver tissues and are important cell types involved 

FIGURE 4

Folate and methionine regulate hepatic lipid homeostasis through the activation of PPARα. Supplementation of folate and methionine activates PPARa, 
which binds to retinol X-receptor (RXR) to heterodimerize, and PPAR-RXR dimer binds to DNA response element (PPRE) located in promoter or intra 
gene region to initiate target gene transcription. Target genes are mainly involved in inflammation, fatty acid transportation, fatty acid synthesis, 
adipogenesis, fatty acid oxidation, lipolysis, and HDL metabolism.
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in the transformation of the hepatic inflammatory response to hepatic 
fibrosis. The liver is also an important immune organ, containing 
immune cells such as natural killer cells, macrophages and regulatory 
T lymphocytes (Tregs), which are involved in the inflammatory 
response during MASH. Kupffer cells are the most numerous immune 
cells present intrinsically in the liver and phagocytose dead cell debris 
and pathogens. Kupffer cells in the initial phase of MASH increase the 
number of monocytes through the secretion of cytokines, such as 
TNFα, and monocyte chemotactic proteins (MCPs). Monocyte 
infiltration of peripheral blood origin, and the use of drugs to target 
and selectively remove macrophages in vivo to attenuate the chronic 
inflammatory response induced by obesity can reduce liver fibrosis 
and cirrhosis.

3.8.1 T lymphocytes in MASLD
T lymphocytes are derived from hematopoietic pluripotent stem 

cells in the bone marrow, are classified as CD4+ T and CD8+ T cells. In 
the MASLD mouse model of disordered lipid metabolism, the decline 
of CD4+ T cells in the liver can be related to the exacerbation of their 
apoptosis by high levels of fatty acids, whereas by inhibiting ROS, it is 
possible to restore the number of CD4+ T cells and to delay the 
tendency to transform into HCC (66). Thus the absence of CD4+ T 
cells in the hepatic microenvironment may be  one of the factors 
responsible for the important immunomodulatory abnormalities in 
the progression of MASLD to cirrhosis and HCC. Tregs are a group of 
immunomodulatory cells, are present in visceral adipose tissue of 
adult mice. The number of Tregs in the liver of obese mice with 
MASLD was decreased, suggesting that Tregs influence liver injury 
during MASLD (66). Th17 cells are a class of T helper cells, secreting 
a variety of cytokines such as IL17, IL21, and IL22. In MASLD 
patients, Th17 cells have increased infiltration in the liver and promote 
localized inflammatory responses by secreting IL17, exacerbating the 
transition from fatty liver to MASH (67). Other immune cells, 
including neutrophils, dendritic cells, and natural killer cells have also 
been found to play an important role in the development and 
progression of MASLD.

3.8.2 Folate regulates immune cells in MASLD
Although no direct effect of folate on the proportion and number 

of immune cells in the liver has been reported, a large number of 
studies have found that folate is involved in the regulation of immune 
responses. Folate supplementation can increase resistance to infection 
and enhance immune cell function, indicating that folate is necessary 
for the proper functioning of the immune system. Folate metabolism 
is involved in the regulation of antiviral natural immunity, and folate 
metabolism negatively regulates the antiviral protein 2′-5′ 
oligoadenylate synthetase (OAS)-mediated antiviral natural immunity 
by inducing en-dsRNA accumulation (68). In tumor cells, MTHFD2 
can efficiently drive the folate cycle and stimulate PDL1 expression to 
promote tumor immune escape (69). In addition, tumor-associated 
macrophages (TAMs) express folate receptor β (FRβ), which mediates 
folate uptake, suggesting that folate conjugates of therapeutic agents 
are potential immunotherapeutic tools for targeting TAMs (70). Folate 
deficiency may exert pro-inflammatory signaling by enhancing the 
monocyte–macrophage system, and the production of the 
inflammatory mediators, IL1β, IL6, TNFα, and MCP1, and monocytes 
were significantly increased when folate deficiency (71). Deficiency of 
folate leads to a decrease in CD8+ T cells and their ability to respond 

to mitogens is inhibited (72), increasing CD4+ T/CD8+ T cell ratio, 
which is associated with an increased risk of cancer (73). Although a 
large number of studies have confirmed that immune cells play an 
important role in the occurrence and development of liver diseases, 
there is a lack of reports on the direct regulation of folate on immune 
cells in MASLD.

3.8.3 OCM regulates immune cells
In addition, studies have reported that the expression of folate 

transporter proteins varies between macrophage subtypes, with higher 
levels of 5-MTHF in M2 macrophages, suggesting that folate levels 
may be associated with the stage of macrophage polarization (74). The 
OCM enzyme MTHFD2 regulates T cell function, MTHFD2 activates 
purinergic synthesis and signaling in T cells, promoting inflammatory 
factor production. In Th17 cells, MTHFD2 inhibits aberrant 
upregulation of FoxP3. In addition, MTHFD2 deficiency also 
promotes Treg cell differentiation (75). Blockade of MTHFD2 may 
curb pro-inflammatory CD4+ T cells, while redirecting them toward 
a regulatory T cell phenotype (76).

Based on the above reported regulatory effects of folate 
metabolism on immune cells, we hypothesized that folate metabolism 
may also be involved in regulating the function of immune cells in the 
liver, which in turn affects liver metabolism. Targeting folate 
metabolism may delay the onset and progression of liver disease by 
regulating the number and proportion of immune cells in the liver.

4 Target folate on lipid metabolism in 
MASLD

Nutrition and diet are crucial factors in the prevention and 
development of MASLD. There are significant differences in the intake 
of macronutrients and micronutrients between patients with MASLD 
and HCV.

4.1 Folate supplementation regulates lipid 
metabolism

The progression of MASLD is closely related to the composition 
of dietary intake (77). Adequate intake of folate may help prevent 
MASLD (74). Dietary folate and serum folate levels were evaluated in 
3,706 adults aged ≥ 20 in the NHANES, serum folate was negatively 
correlated with TGs and LDLC, and positively correlated with 
HDLC. Dietary folate was negatively correlated with TC and LDLC 
(78). Dietary micronutrient supplementation, which generally 
includes folate, vitamin B6, choline, betaine, and zinc, can reduce 
weight gain and obesity, improve glucose metabolism, and enhance 
liver antioxidant capacity and lipid metabolism (79). Supplementation 
with folate reduced liver adipogenesis and inhibited the proliferation 
and differentiation of adipocytes (80). Folate supplementation inhibits 
the synthesis of fatty acids in hepatocytes and coordinates the 
promotion of hydrolysis and output of TGs to reduce the deposition 
of TGs. Folate also inhibits the production of fatty acids by weakening 
the insulin/IGF signal mediated by the PI3K/AKT/SREBP pathway. In 
addition to folate, inhibitors of IGF2 and PI3K may also prevent the 
development of MASLD by reducing TGs deposition (81). Oxidative 
stress in the liver is associated with increased expression of NADPH 
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oxidase. A HFD is associated with weight gain, hepatic lipid 
peroxidation, liver injury, and significantly increased liver NADPH 
oxidase activity. Folate supplementation promotes the transcriptional 
regulation of NADPH oxidase and has a protective effect on liver 
oxidative stress and liver injury induced by a HFD (82). This also 
indicates that folate supplementation not only regulates hepatic lipid 
metabolism by inhibiting lipid synthesis and promoting fatty acid 
metabolism but also involves a variety of different 
regulatory mechanisms.

4.2 Folate supplementation targets 
methionine metabolism

Folate is a methyl donor required for the synthesis of methionine, 
a precursor of SAMe, a substrate for methylation in epigenetic and 
epigenomic pathways. Methyl donor deficiency can lead to hepatic 
steatosis and a predisposition to metabolic syndrome. Folate 
deficiency promotes a decrease in methionine synthase activity, SAMe 
and SAMe/SAH ratios, hypomethylation of PGC1α, impaired 
mitochondrial fatty acid oxidation, and induced hepatic steatosis. Hcy 
is an intermediate metabolite of methionine, and elevated levels of 
total serum homocysteine (tHcy) regulate cholesterol synthesis in the 
liver. Folate supplementation reduces Hcy levels, and oral folate 
supplementation significantly decreases tHcy, serum folate and TC 
levels in children with hyperhomocysteinemia (HHcy) (83). Folate 
deficiency increases oxidative stress and Hcy levels. Folate also 
protects the liver from cholestasis by reducing serum tHcy levels 
through its antioxidant properties. Folate supplementation inhibits 
liver fibrosis and improves liver function in rats with cholestasis (84). 
A high methionine diet induces HHcy, leading to liver injury in rats 
(85). Liver NADPH oxidase is activated in HHcy, resulting in 
increased superoxide anion production and peroxynitrite formation. 
The level of lipid peroxide in the liver of HHcy rats was significantly 
increased. Folate supplementation can effectively inhibit NADPH 
oxidase-mediated superoxide anion production, thereby reducing 
hepatic lipid peroxidation.

4.3 Folate supplementation regulates 
signaling pathways

PPARs are a class of nuclear receptors involved in the 
physiological processes of lipid metabolism, cell proliferation and 
differentiation. Folate supplementation may regulate lipid 
metabolism through PPARs signaling. PPARa regulates the 
expression of fatty acid oxidation-related genes to promote fatty acid 
oxidation and maintain hepatic lipid metabolism homeostasis. Folate 
upregulates PPARα through a SIRT1-dependent mechanism, 
improves hepatic lipid metabolism, restores hepatic OCM and 
intestinal flora diversity, and thus alleviates HFD-induced MASH in 
rats (86). Fenofibrate is a lipid-lowering drug and one of the PPARα 
agonists, which is a drug target for MASLD. Fenofibrate causes a 
significant increase in plasma tHcy, which reduces its efficacy in the 
treatment of hyperlipidaemia. Folate supplementation significantly 
improves the lipid-lowering and hepatotoxic effects of fenofibrate. 
This is mainly due to folate-promoting PPARα activation (87). Folate 
induced a dose-dependent decrease in peroxisome 

proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding 
protein α (C/EBPα) gene expression and downstream fatty acid 
synthetase transcription. Folate supplementation increased 
adipocyte proliferation and increased the expression of genes 
involved in OCM, resulting in increased methylation of the C/EPPα 
promoter during differentiation and decreased expression of 
PPARγ (88).

Additionally, as AMPK is an endogenous energy sensor that 
regulates lipid and carbohydrate metabolism, Folate mediates AMPK 
activation by promoting AMP elevation and activation of its upstream 
kinase liver kinase B1 (LKB1), Folate supplementation restores AMPK 
phosphorylation activation and reduces blood glucose and liver 
cholesterol levels. Folate promotes AMPK-dependent phosphorylation 
of HMG-CoA reductase, resulting in reduced hepatic cholesterol 
synthesis during HFD feeding (89). Folate supplementation in high-
fructose-fed rats increased the phosphorylation levels of AMPK and 
LKB1 and inhibited the phosphorylation of ACCs in the liver, then 
significantly increases hepatic SAMe, inhibits hepatic lipogenesis and 
thus ameliorates hepatic steatosis (90).

4.4 Folate supplementation regulates OCM 
and DNA methylation

Folate is an important cofactor in methyl metabolism, providing 
methyl donors to methyltransferases and promoting DNA 
methylation, affecting DNA mutation rates and genome-wide 
methylation. Studies have reported that both high and low folate 
intakes increase de novo mutation rates and disrupt genomic DNA 
methylation in offspring. High folic acid diets significantly increased 
whole blood folate concentrations, contributing to a 1.8-fold increase 
in DNA mutation rates. In contrast, the low folic acid diet significantly 
decreased whole blood folate concentrations, and mice in the low dose 
group had a 2-fold increase in DNA mutation rates (91). Significant 
hypermethylation of DNA repair genes in high folic acid diets suggests 
that excessive folic acid supplementation may impair DNA repair 
activity by affecting de novo mutation rates through downregulation 
of DNA repair gene expression. In addition, the inability to generate 
the BER response to oxidative stress in a folate-deficient environment 
leads to the accumulation of DNA repair intermediates, inducing 
DNA strand breaks. Folate deficiency inhibits the upregulation of 
β-pol expression in response to oxidative stress (92). And excessive 
folate concentrations lead to DNA base excision to repair DNA 
damage induced by gene expression. This suggests that folate 
supplementation should be limited to the desired benefit.

Folate also mediates OCM, regulates DNA methylation and affects 
hepatic lipid metabolism. Methyl donor supplementation decreased 
overall DNA methylation levels in the liver of MASLD rats, and 
methylation levels at specific CpG sites in the promoter regions of 
genes involved in lipid metabolism, such as LEPR, SREBF2, AGPAT3 
and ESR1, were altered by obesity diet and methyl donor 
supplementation, thereby regulating blood lipids, liver weight and fat 
content (93). The expression profile of folate-treated hepatocytes 
showed that folate inhibited lipid deposition by regulating DNA 
methylation, affecting the transcription and protein levels of genes 
related to lipid metabolism and the autophagy pathway (94). These 
studies may provide evidence for the beneficial effects of folate 
supplementation in the treatment of MASLD.
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There is a strong link between maternal lipid metabolism leading 
to obesity and the development of MASLD in offspring (95). A study 
from the University of Washington School of Medicine has shown for 
the first time that genetic variations caused by pre-pregnancy obesity 
in women can be passed through the bloodstream for more than three 
generations, leading to obesity and insulin resistance in offspring and 
increasing the risk of obesity-related diseases in future generations 
(96). Maternal and post-weaning folate supplementation can 
significantly modulate global and gene-specific DNA methylation of 
liver in rat offspring. Maternal one-carbon supplement altered the 
offspring phospholipid profile programmed by maternal HFD. The 
maternal HFD elevated sphingomyelin (SM) and 
dihydrosphingomyelin (DSM) and reduced the proportions of PE and 
ethyl-linked PE (ePE). The one-carbon supplement normalized SM 
and DSM, reversed the lower levels of glycerophosphoglycerols (PG) 
and ePE which were caused by maternal HFD. Besides, one-carbon 
supplement enhanced PE and increased phosphatidylserine (PS), 
glycerophosphoinositols (PI), ethyl-linked PS (ePS), and phosphatidic 
acid (PA), and decreased PC and ethyl-linked PC (ePC) in the 
offsprings. DNA methylation of PRKCA, DGKH, PLCB1, and DGKI 
were identified associating with phospholipid metabolism (97). It 
suggests that maternal HFD disrupts the phospholipid profile of the 
offspring, leading to exacerbation of hepatic steatosis. Maternal 
one-carbon supplementation may inhibit hepatic steatosis by 
regulating DNA methylation modification to prevent phospholipid 
metabolism disorders.

Mutations in the MTHFR gene lead to a decrease in the activity 
of the enzyme MTHFR, which affects the decreased production of 
5-MTHF, the active form of folate, and affects the normal methylation 
and synthesis of DNA, as well as leading to an increase in the 
concentration of tHcy, which is closely associated with the 
development of HHcy. The encoding of MTHFR appears to 
be polymorphic, such as gene site C677T, one of the most studied and 
clinically important variant in exon 4. The C677T variant lowers the 
affinity of MTHFR and its cofactor, which promotes the thermolability 
and diminishes the enzyme activity. Comparing with wild genotype 
(CC), the heterozygote (CT) and mutation homozygote (TT) lead to 
the decline of enzyme activity by about 34 and 75%. Another common 
polymorphism is A1298C, which also diminishes the enzyme activity. 
Homozygous individuals showed 61% of wild-type (98). Therefore, 
before supplementing with folate, it is necessary to determine the 
MTHFR gene mutation. If MTHFR mutations are present, tHcy levels 
also need to be  tested. High-dose folic acid supplementation is 
recommended for MTHFR mutations accompanied by elevated tHcy. 
Folic acid is not physiologically active and conversion is limited, which 
can result in an excess buildup of inactive folic acid that may negatively 
affect the immune system. For people with MTHFR mutations 
accompanied by elevated blood homozygosity, supplementation with 
active folate, 5-MTHF, is more desirable. Consumption of folate-rich 
foods will also support the health of the methylation cycle, thereby 
reducing the negative effects of MTHFR mutations.

4.5 Folate supplementation slows aging

As a central metabolic organ, the liver shows signs of progressive 
metabolic disorders during aging, such as enhanced TGs 
accumulation, inhibition of fatty acid oxidation, and impaired 

lipolysis. In 2024, a striking study reported that mice undergo 
lipidomic changes during aging, with large lipid accumulations in 10 
different tissues, including muscle, kidney, liver, and heart, and in 
particular, a complex lipid called bis(monoacylglycero)phosphate 
(BMP) is particularly noteworthy (99). Recently, it has been suggested 
that dietary folate intake is strongly associated with aging. A cross-
sectional study based on the NHANES database from 2007 to 2016, 
including 10,278 adults, found that higher dietary folate intake was 
positively associated with elevated serum levels of the longevity factor 
Klotho. It suggests that higher dietary intake of folate may help to 
elevate Klotho levels, thereby slowing down aging to some extent 
(100). The same conclusion was reached in another study that 
analyzed the folate intake of 18,889 participants from the 2003–2018 
NHANES database and found a correlation between higher folate 
intake and slower biological aging, especially when natural food 
sources of folate intake were more helpful in slowing down aging 
(101). Besides, elderly people supplemented with folic acid (400 ug/
day) had significantly stronger natural killer cells (NK cells) function 
and were less susceptible to infections than their peers who were not 
supplemented with folic acid (102). In addition, folate-mediated 
one-carbon metabolites affect biological lifespan. It is reported that 
regulation of the folate cycle represents a shared causal mechanism of 
longevity and proteoprotection in Caenorhabditis elegans (103). In a 
word, moderate folate supplementation can provide strong support for 
slowing down aging and reducing the risk of age-related diseases.

4.6 Prenatal folate supplementation

There is a strong link between maternal lipid metabolism leading 
to the development of MASLD in offspring. Folate supplementation 
effectively improved hepatic lipid accumulation and inflammatory 
infiltration in male offspring of mothers with a HFD, and maternal 
folate supplementation reduced the abundance of Desulfobacterota 
and the ratio of Firmicutes/Bacteroidetes in male offspring (104). 
These results indicated that folate supplementation during pregnancy 
could regulate the gut microbiota of male offspring and improve gut 
barrier integrity, and folate inhibited the expression of the TLR4/
NFκB pathway in the liver, thereby ameliorating lipid metabolic 
disorders and alleviating hepatic steatosis. Folate is a methyl donor 
required for the synthesis of methionine, a precursor of SAMe, a 
substrate for methylation. Methyl donor deficiency can lead to hepatic 
steatosis and a predisposition to metabolic syndrome. Folate 
deficiency promotes a decrease in methionine synthase activity, 
impaired mitochondrial fatty acid oxidation, and induced 
hepatic steatosis.

When developing a nutritional program for pregnancy 
preparation in dailylife, it has been found that there is a fundamental 
difference in folate supplementation goals for men and women. Folate 
has an important role in the development of the neural tube. When 
folate levels are significantly decreased, the 5-MTHF metabolic 
pathway is blocked and the SAMe/SAH ratio is down-regulated, 
which inhibits methyltransferase activity and disrupts DNA 
methylation homeostasis thus leading to delayed closure of the neural 
tube, and ultimately to the formation of neural tube defects (NTDs) 
(105). Therefore, women take folate supplements primarily to reduce 
the risk of fetal NTDs. Sperm DNA damage is a common cause of 
male infertility. Folate deficiency increases methylation levels in the 
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Rad54 promoter region, increases γ-H2AX and induces DNA damage 
(106). Therefore men take folate supplements to improve sperm DNA 
fragmentation rates. Although no significant gender differences have 
been found to exist in liver diseases. However, one study found a sex 
difference in folate dietary treatment, with male mice being more 
sensitive to high folate dietary treatment compared to female mice. 
This difference may be related to sex differences in germline stem cell 
proliferation, as male mice continue to produce new sperm (91).

4.7 Opposite opinion on folate 
supplementation

It is now widely recognized that folate supplementation can 
mitigate the development and evolution of metabolic diseases. 
However, other reports have come to the opposite conclusion. A 
review of randomized controlled trials published in the PubMed, 
EMBASE, Web of Science and Cochrane Library databases concluded 
that folate supplementation had no effect on blood pressure and lipids 
in patients with metabolic diseases (95). This suggests that folate 
supplementation should be carefully considered in various diseases, 
especially in patients with metabolic diseases. In some clinical 
situations, folate may have adverse effects. Folate administration was 
associated with increased hepatic inflammation and apoptosis and 
exacerbated fibrosis in CCL4-treated rats (107). Therefore, folate 
supplementation has certain limitations in the treatment of patients 
with chronic liver diseases.

Although prenatal folate supplementation is recommended in 
many countries, a number of studies have found some drawbacks to 
folate supplementation. Prenatal folate supplementation in female 
Sprague–Dawley rats on a HFD significantly increased serum and 
hepatic TGs levels in their male offspring. Prenatal folate 
supplementation is necessary. However, excessive folate 
supplementation leads to mild dyslipidaemia diabetes in male 
offspring, and increasing the dose of folate may lead to further fat 
accumulation in the liver (108). Although prenatal folate 
supplementation is recommended in many countries, a number of 
studies have found some drawbacks to folate supplementation. 
Prenatal folate supplementation in female Sprague–Dawley rats on a 
HFD significantly increased serum and hepatic TGs levels in their 
male offspring. Maternal prenatal folate supplementation induced 
aberrant DNA methylation of adipose triglyceride lipase (ATGL) in 
the liver and LPL in white adipose tissue, resulting in a significant 
decrease in the expression of ATGL and LPL, exacerbating the adverse 
effects of HFD on lipid metabolism in their offspring (109). Maternal 
high-fat, high-sugar diet alters insulin sensitivity and hepatic de novo 
lipogenesis in offspring, while prenatal folate supplementation induces 
IR (110). Therefore, in addition to prenatal folate supplementation, 
dietary modifications may need to be  considered to ensure lipid 
metabolic homeostasis in the offspring.

5 Anti-MASLD/MASH drugs

Oxidative stress, inflammation, obesity, T2DM, IR, gut 
microbiology, and epigenetic regulation are all thought to play roles 
in the onset and progression of MASLD and MASH. There are three 
main kinds of drugs currently used against MASLD and MASH: 

metabolic regulators including drugs that regulate glucose, lipid, and 
bile acid metabolism, antifibrotic drugs, and anti-inflammatory drugs 
(Figure 5).

Metabolic regulators target abnormalities in glucose, lipid, and 
bile acid metabolism in order to restore normal liver function. 
Glucagon-like peptide-1 receptor (GLP1R) agonists, fibroblast growth 
factor 21 (FGF21), and sodium-glucose cotransporter protein 2 
(SGLT2) inhibitors are used to improve insulin sensitivity, regulating 
glucose metabolism and reducing hepatic fat accumulation. Thyroid 
hormone receptor β (THRβ) agonists, and ACC inhibitors are used to 
reduce hepatic fat synthesis and promote fatty acid oxidation, thereby 
reducing hepatic fat content. PPAR agonists and farnesol X receptor 
(FXR) agonists are used to improve lipid homeostasis and inhibit 
inflammatory responses by regulating bile acid synthesis, secretion 
and metabolism. Anti-fibrotic drugs block or reverse the process of 
hepatic fibrosis, such as Galatin-3 antagonists, CCR2/CCR5 
antagonists and PPAR agonists, which slow or reverse the progression 
of fibrosis by inhibiting HSCs activation, decreasing collagen 
deposition and inhibiting inflammatory signaling. Besides, anti-
inflammatory drugs including CCR2/CCR5 antagonists, FGF19 and 
FGF21 mimetics, and TNFα antagonists, which alleviate the 
inflammatory by inhibiting the infiltration of inflammatory cells, 
modulating the immune response, and reducing inflammatory 
mediators (111, 112). In addition, metformin is often used in the 
treatment of T2DM, also improves MASLD by reducing hepatic 
gluconeogenesis and TGs production. Anti-oxidants such as vitamin 
E is capable of repairing oxidizing radicals and prevent lipid 
peroxidation (113). Gut microbes play a role in the development of 
MASLD and MASH. Gut microbe-modulating drugs, such as 
prebiotics, probiotics, and specific antibiotics, may positively affect 
MASLD and MASH by altering gut microbial composition.

Folate regulates hepatic lipid metabolism by modulating a variety 
of mechanisms in MASLD, such as inhibiting fatty acid synthesis, 
promoting fatty acid oxidation, mediating OCM affects DNA 
methylation, regulating mitochondrial function and influencing hepatic 
metabolism (7). Folate regulates PPAR and AMPK signaling pathways, 

FIGURE 5

Folate inhibits fatty acid β-oxidation and de novo lipogenesis in the 
liver.
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which in turn affect HSCs activation, and have a role in the development 
of MASLD to MASH. HHcy correlated with hepatic inflammation and 
fibrosis in MASH. Elevated Hcy induced and exacerbated MASH. HHcy 
plays a key role in the pathogenesis of MASH via Syntaxin 17 (Stx17) 
homocysteinylation. Dietary vitamin B12 and folate, which promotes 
enzymatic conversion of Hcy to methionine, decreased HHcy, and 
restored Stx17 and autophagy, stimulated β-oxidation of fatty acids, and 
improved hepatic histology in mice with pre-established MASH (114), 
suggesting that vitamin B12 and folate could have therapeutic potential 
for the prevention or treatment of MASH. These suggest that folate has 
the potential to serve as a potential therapeutic agent for the 
development of MASLD and the onset of MASH. Anti-MASLD/MASH 
drugs as shown in Figure 6.

6 Concluding remarks

According to the mechanism of MASLD, drugs for MASLD are 
mainly targets the gut-liver axis to treat MASH by regulating the 
interaction between the intestine and the liver, improving metabolism, 
adjusting metabolic abnormalities associated with MASH 
pathogenesis, and anti-inflammatory drugs that inhibit the chronic 
inflammation that accompanies MASH. Rezdiffra, which is the first 
and the only one approved by the FDA for the treatment of MASH, is 
a partial agonist of THRβ that acts on thyroid hormone receptors in 
the liver. Though this review summarizes the role of folate in 
regulating hepatic lipid metabolism in the onset and development of 

MASLD, through different mechanisms, such as regulation of hepatic 
lipid metabolism, signaling pathways, OCM, aging, etc. Folate is still 
not a treatment drug for MASH, it should only be  used as an 
adjunctive therapy. For patients with MASH, proper supplementation 
of folate can prevent the symptoms of anemia that may occur. Besides, 
folate can help repairing and regenerating liver cells when liver is 
impaired. Both studies emphasized the importance of natural food 
sources of folate, rather than folic acid supplements (100, 101), and 
that higher natural food folate intake, and lower folic acid supplements, 
are what help to slow down aging. The reason why natural folate is 
significantly more effective than folic acid supplements may be due to 
the fact that folic acid supplements are metabolized to produce 
products such as tetrahydrofolate, which can have adverse health 
effects. Keeping a balanced diet and consuming folate from everyday 
foods may be a better choice for boosting Klotho levels and promoting 
normal lipid metabolism. Folate-rich foods such as green leafy 
vegetables, citrus fruits, legumes, nuts and whole grains should be a 
daily choice in our diet. As MTHFR gene mutation leads to low levels 
of folate and vitamin B, and high levels of tHcy. The use of blood 
MTHFR genotype testing has the potential to help identify the cause 
of the disease by clarifying whether MTHFR mutations are present 
and affecting the way the body processes folate, which can help in the 
treatment of the disease. Some daily habits can also help to minimize 
the effects of the MTHFR mutation.

Despite the known beneficial effects of folate, there are still some 
limitations to folate supplementation, and appropriate clinical trials 
are necessary to determine the optimal dosage of folate 

FIGURE 6

Anti-MASLD/MASH drugs.
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supplementation for specific populations to minimize adverse effects. 
In general, folate regulates hepatic lipid metabolism through a variety 
of mechanisms, playing a role in delaying liver metabolism, inhibiting 
fatty acid synthesis, promoting fat oxidation, and reducing oxidative 
stress and inflammation. The multifaceted effects suggest that folate 
supplementation may have a potential impact on the treatment 
of MASLD.
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