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Hyperlipidemia-associated acute pancreatitis (HLAP), an acute inflammatory 
disorder triggered by dyslipidemia, has witnessed a rising global incidence with 
significant health implications. The pathogenesis of HLAP involves complex 
interactions among lipid metabolism dysregulation, inflammatory cascades, and 
oxidative stress. Conventional therapeutic approaches, while providing partial 
symptomatic relief, exhibit limitations in addressing individual variability. Precision 
nutrition management emerges as a novel paradigm integrating multi-omics 
profiling (genomic, metabolomic) and clinical parameters to develop personalized 
intervention strategies. This comprehensive review analyzes the pathophysiological 
mechanisms linking lipid dyshomeostasis to HLAP progression, systematically 
evaluates the scientific foundation for precision nutrition interventions, and identifies 
key gaps in current implementation strategies. Furthermore, we examine current 
research limitations and outline future avenues for enhancing therapeutic efficacy 
via personalized nutritional interventions.
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1 Introduction

Acute pancreatitis (AP), a gastrointestinal emergency with multifactorial etiology, 
demonstrates increasing epidemiological association with hyperlipidemia (1). Globally, 
hyperlipidemia accounts for 10% of AP cases, characterized by heightened clinical severity 
and elevated recurrence rates (2). In China, hyperlipidemia has surpassed alcohol consumption 
to become the second most prevalent AP etiology following cholelithiasis (3). A retrospective 
Chinese cohort study (2001–2016, n = 475 moderate–severe AP patients) revealed 108 HLAP 
cases (22.7%), with HLAP prevalence increasing from 14.3 to 35.5% during the study period, 
contrasting with declining rates of biliary pancreatitis (4). Epidemiological trends further show 
a 2.6-fold increase in HLAP incidence over the past decade, coinciding with the global rise in 
metabolic syndrome and obesity (5).

The pathognomonic feature of HLAP involves serum triglyceride (TG) concentrations 
exceeding 11.30 mmol/L (1,000 mg/dL) after excluding biliary, alcoholic, and other 
etiologies (6). Mechanistically, excessive TG hydrolysis generates cytotoxic free fatty acids 
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that induce pancreatic capillary endothelial damage and acinar cell 
apoptosis (7). Clinically, HLAP demonstrates greater propensity for 
progression to necrotizing pancreatitis compared to other AP 
subtypes (8). Population-level analyses reveal a dose-dependent 
relationship between hypertriglyceridemia and AP risk: each 
100 mg/dL increment above normal TG levels (150 mg/dL) elevates 
AP risk by 4%, with exponential risk escalation beyond 
500 mg/dL (9).

The hypercatabolic state in early HLAP induces rapid-onset 
negative nitrogen balance and hypoalbuminemia, exacerbating 
malnutrition while compounding gastrointestinal complications 
including abdominal pain, intestinal mucosal barrier dysfunction, and 
malabsorption (10). Traditional nutritional interventions, although 
temporarily alleviating hyperlipidemia and inflammation, lack 
personalization and frequently result in suboptimal, inconsistent 
clinical outcomes. This is primarily due to the inadequate integration 
of individual metabolic phenotypes, genetic susceptibilities, and 
inflammatory profiles (11).

The advent of precision medicine has catalyzed paradigm shifts in 
therapeutic approaches. Precision nutrition management employs 
multi-omics integration (genomic, metabolomic, and clinical data) to 
formulate tailored dietary regimens (12). This strategy shows 
particular promise in HLAP management by addressing individual 
variations in lipid metabolism pathways, inflammatory responses, and 
nutrient utilization efficiency. Compared to conventional one-size-
fits-all approaches, precision nutrition offers mechanistic-driven 
solutions to optimize therapeutic outcomes and prevent 
disease recurrence.

2 Pathogenesis of HLAP

The pathophysiological mechanisms of HLAP are complex, 
involving dysregulated lipid metabolism, inflammation activation, 
pancreatic microcirculatory disturbances, oxidative stress, and insulin 
resistance, among multiple interacting pathways (13–16). The core 
pathological processes revolve around excessive free fatty acids (FFA) 
release, microcirculatory damage, and the amplification of systemic 
inflammatory responses (Figure 1).

2.1 Cytotoxicity of FFA

In hyperlipidemic conditions, elevated TG levels in the bloodstream 
are hydrolyzed by pancreatic lipase, releasing large amounts of 
FFA. These FFA, primarily composed of palmitic acid (PA), are 
unsaturated fatty acids (17). Under normal conditions, FFA bind to 
plasma albumin for systemic transport and oxidation. However, when 
the concentration of FFA exceeds the binding capacity of albumin, 
excess FFA remain unbound in the bloodstream, leading to cytotoxic 
effects on pancreatic acinar and vascular endothelial cells through lipid 
peroxidation of cell membranes (18). Studies have shown that 
unsaturated fatty acids exhibit higher toxicity than saturated fatty acids 
(19). Damage to pancreatic capillaries results in pancreatic ischemia, 
intracellular pH reduction in acinar cells, and the formation of an acidic 
environment, which further activates trypsinogen and enhances FFA 
toxicity, leading to autodigestion of pancreatic acinar cells. Additionally, 
excessive FFA and TG levels increase blood viscosity, further impairing 

FIGURE 1

The pathogenesis of HLAP. This figure illustrates the core mechanisms of HLAP, including elevated triglyceride hydrolysis into free fatty acids, acinar cell 
injury, endothelial dysfunction, oxidative stress, and activation of inflammatory pathways. Created with Figdraw.com.
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pancreatic circulation and exacerbating local inflammation (20). 
Research on isolated pancreatic acinar cells has demonstrated that 
exposure to FFA significantly elevates levels of hydroperoxidized 
phosphatidylcholine, indicating that FFA mediate lipid peroxidation 
and disrupt cell membranes, causing direct injury to pancreatic acinar 
cells (21). Another study observed that adding FFA to cultured rat 
pancreatic acinar cells resulted in damage that was positively correlated 
with both FFA concentration and exposure duration (22). Excessive 
FFA also induce M1 polarization of macrophages and mediate 
inflammatory responses and pyroptosis in pancreatic acinar cells (23).

2.2 Pancreatic microcirculatory 
disturbances

Microcirculation refers to the network responsible for the 
transport of substances, energy, and signals at the tissue and cellular 
levels. Proper microcirculatory perfusion is crucial for maintaining 
normal physiological metabolism in organs (24). Hyperlipidemia 
increases plasma viscosity and reduces erythrocyte deformability, 
leading to decreased pancreatic microcirculatory perfusion (25). 
Furthermore, excessive FFA accumulation promotes platelet activation 
and the coagulation cascade, resulting in microthrombus formation, 
which aggravates pancreatic ischemia and hypoxia (8). Ischemic injury 
can cause acinar cell necrosis, exacerbating local inflammation and 
edema, and in severe cases, leading to necrotizing pancreatitis (26). 
Pancreatic microcirculatory disturbances manifest as chylomicron 
aggregation blocking capillaries, leading to abnormal hemorheology, 
hypercoagulation, and microthrombosis, as well as increased vascular 
permeability due to microvascular spasms and endothelial damage. 
Additionally, ischemia–reperfusion injury contributes to oxidative 
stress through increased free radical generation (27, 28).

2.3 Oxidative stress and inflammatory 
cascade response

Oxidative stress refers to an imbalance between oxidative and 
antioxidative processes within the body, with lipid peroxidation 
playing a pivotal role in HLAP progression (29). Excessive triglyceride 
oxidation in the pancreas generates reactive oxygen species (ROS) and 
lipid peroxidation products, further damaging DNA, proteins, and 
lipids, thereby exacerbating pancreatic injury (30). Moreover, FFA 
stimulate macrophage activation, triggering a systemic inflammatory 
response that leads to a “cytokine storm,” which can ultimately result 
in multiple organ dysfunction syndrome (MODS) and increased 
HLAP mortality (31). Animal studies have demonstrated that 
alleviating oxidative stress-related pancreatic damage can mitigate AP 
severity (32). Oxidative stress activation promotes the recruitment of 
inflammatory cells, further aggravating pancreatic tissue damage, 
whereas antioxidant therapy significantly reduces pancreatic and 
other organ injuries associated with AP (33).

2.4 Genetic and acquired lipid metabolism 
defects

Familial hypertriglyceridemia (HTG) has long been recognized as 
a disorder characterized by increased very-low-density lipoprotein 

(VLDL) particles and an autosomal dominant inheritance pattern 
(34). In the genomic era, it has been established that while familial 
HTG can be clustered within families, it is a polygenic disorder, with 
phenotypic expression influenced by environmental factors. Clinically, 
it is characterized by moderate HTG, which increases cardiovascular 
risk, while in rare cases, it presents with severe HTG and an elevated 
risk of AP (35). Some HLAP patients exhibit lipid metabolism-related 
genetic mutations, such as mutations in the LPL and APOC2 genes, 
which lead to impaired chylomicron clearance, resulting in familial 
chylomicronemia and significantly increasing the risk of HLAP (36–
39). Understanding these genetic factors is crucial for identifying 
high-risk individuals and implementing targeted preventive strategies.

3 Theoretical basis of precision 
nutrition management

An increasing number of studies suggest that an individual’s 
genetic background significantly influences their response to dietary 
interventions (40). For instance, the ability to digest lactose in 
adulthood is more common in Northern Europeans than in East 
Asians (41). Therefore, precise nutritional interventions should 
be tailored based on an individual’s genotype, metabolic phenotype, 
and lifestyle to enhance intervention effectiveness and prevent and 
treat related diseases (42).

3.1 Association between genomics and 
nutritional interventions

Recent genomic studies indicate that genes related to lipid 
metabolism, inflammatory responses, and autophagy regulation in 
pancreatic cells play crucial roles in the development and progression 
of HLAP (29, 43). Specific gene variants, such as APOE and LPL 
mutations, have been shown to be  closely associated with 
hyperlipidemia and pancreatitis (44–46). These genes are critical in 
lipid metabolism, cholesterol transport, and pancreatic cell injury 
repair. Polymorphisms in the FTO gene have been linked to fat 
accumulation and obesity, while variations in the APOA5 gene affect 
triglyceride metabolism and regulate lipid levels (47, 48). 
Nutrigenomics explores how dietary factors influence gene expression, 
subsequently affecting protein and metabolite levels (49). The 
interaction between genes and diet may play a vital role in metabolic 
and inflammatory responses, providing a theoretical foundation for 
developing precision nutritional intervention strategies.

3.2 Metabolomics as a new target for 
personalized interventions

Metabolomics is a high-throughput analytical science that 
systematically identifies and quantifies small-molecule metabolites 
(<1,500 Da) within biological systems to understand their dynamic 
changes in response to genetic, environmental, or pathological 
perturbations. It plays a key role in precision nutrition development, 
primarily focusing on food intake biomarkers, metabolic phenotypes, and 
responses to interventions (50). Studies have revealed metabolic 
reprogramming in multiple pathways in HLAP patients, particularly in 
fatty acid metabolism, cholesterol metabolism, and amino acid 
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metabolism (14, 51, 52). For instance, abnormal elevations in triglycerides 
(TG) and low-density lipoprotein (LDL), along with imbalances in insulin 
resistance markers (e.g., branched-chain amino acids) and oxidative stress 
products (e.g., malondialdehyde), provide potential targets for 
personalized interventions (53, 54). These metabolic features not only 
reveal core disease mechanisms—such as chylomicronemia-induced 
pancreatic microcirculatory disturbances—but also guide targeted 
nutritional regulation strategies, such as increasing omega-3 fatty acids to 
modulate lipid metabolism, supplementing dietary fiber to enhance short-
chain fatty acid (SCFA) production by gut microbiota, or using 
antioxidant nutrients (e.g., vitamin C) to mitigate oxidative damage (55–
58). Comprehensive metabolite analysis in patients enables a more 
accurate assessment of individual metabolic states, providing a scientific 
basis for personalized nutritional interventions.

3.3 Integration of microbiome and 
precision nutrition management

Emerging research suggests that the microbiome can potentially 
influence human physiology by participating in digestion, nutrient 
absorption, mucosal immune responses, and the synthesis or regulation 
of various bioactive compounds (59–61). Consequently, diet-induced 
microbial changes may contribute to disease onset and progression (62). 
The gut microbiota plays a significant role in the development of AP, 
characterized by a reduction in beneficial bacteria and an increase in 
opportunistic pathogens. This imbalance leads to decreased SCFA 
secretion and epithelial damage, thereby compromising the intestinal 
mucosal barrier (63). One study found that 59% of AP patients exhibited 
intestinal barrier damage and increased mucosal permeability, leading to 
bacterial translocation, pancreatic necrosis, infection, and multiple organ 
dysfunction syndrome (MODS) (64). A randomized controlled trial 
demonstrated that probiotics improved gut barrier function and 
modulated microbiota composition in severe AP (SAP) patients, reducing 
inflammatory cytokine levels, alleviating abdominal pain, mitigating 
pancreatic edema, and shortening bowel movement recovery time and 
hospital stays (65). Similar results were observed in another randomized 
controlled trial involving mild AP (66). Soluble dietary fiber (SDF) 
influences intestinal integrity and regulates gut microbiota (67). A single-
blind randomized controlled study found that SDF reduced the time 
needed to achieve energy targets during enteral nutrition (EN), improved 
gut permeability and motility disorders, and decreased feeding intolerance 
in SAP patients (68). Therefore, the microbiome provides a “microbiota-
metabolism” regulatory target for the personalized nutritional design of 
HLAP, advancing a more precise disease management model.

4 Precision nutritional interventions 
for HLAP

4.1 Conventional nutritional support

The primary management goals in the acute phase of HLAP are 
to minimize pancreatic stimulation, control inflammatory responses, 
and support energy metabolism. Previous studies have suggested 
that higher serum triglyceride (TG) levels are associated with a 
greater tendency for HLAP to become severe, a shorter time to 
systemic inflammatory response syndrome (SIRS), and a higher 

incidence of multiple organ dysfunction syndrome (MODS) (69). 
During fasting in AP patients, negative nitrogen balance is common, 
making nutritional support an essential component of HLAP 
management (70). During the course of pancreatitis, pancreatic 
exocrine function is suppressed; thus, food intake or artificial 
nutrition does not stimulate exocrine secretion (71). For patients 
who can tolerate oral feeding, an initial low-fat solid diet is 
recommended (72). Early oral feeding may shorten hospital stays in 
these patients (73).

For patients with severe acute pancreatitis, appropriate clinical 
nutrition strategies are necessary, with enteral nutrition (EN) being 
preferred (74, 75). EN helps maintain intestinal mucosal integrity, 
stimulates intestinal motility, increases visceral blood flow, prevents 
bacterial overgrowth, and reduces microbial translocation (76). Studies 
have shown that initiating nutrition within 24–72 h of admission reduces 
bacterial translocation, thereby mitigating systemic inflammation while 
preserving intestinal integrity and microbiome composition (77). 
Compared to parenteral nutrition (PN), EN is more effective in 
maintaining gut barrier function and reducing the risk of infections and 
pancreatic complications (78). A systematic review provided strong 
evidence supporting the advantages of EN in reducing infectious 
complications and mortality in AP patients (79). Special formulations 
with low fat and low osmolarity are recommended to minimize the 
burden on pancreatic enzyme secretion. For patients without respiratory 
failure, who are conscious, free from nausea and vomiting, and without 
significant gastrointestinal obstruction, an oral nutrition trial should 
be initiated immediately (80). In summary, guidelines recommend that 
AP patients receive EN rather than PN unless contraindications or 
intolerance to EN exist (81, 82). The European Society for Clinical 
Nutrition and Metabolism (ESPEN) recommends early EN via 
nasogastric tube, with nasojejunal feeding preferred if intolerance occurs 
(82). Given that “waking up the gut” is more beneficial than “gut rest,” 
patients with mild HLAP should be allowed oral feeding within 24 h if 
tolerated. However, patients with moderate to severe HLAP (acute 
physiology and chronic health evaluation II (APACHE-I) >8) who 
experience hemodynamic instability and require vasopressor support are 
often unable to tolerate oral feeding due to the increased risk of 
non-occlusive mesenteric ischemia (3). For these patients, EN should 
be initiated via a feeding tube within 24 h of hemodynamic stabilization 
(83, 84). Studies have shown that the improvement in nutritional status 
and tolerance of EN in HLAP patients is related to the choice between 
nasogastric and nasojejunal feeding tubes (85). Currently, high-quality 
evidence comparing nasogastric and nasojejunal tube feeding is lacking. 
Although nasojejunal feeding reduces the risk of aspiration and 
pancreatic stimulation, its placement requires endoscopic and/or 
fluoroscopic guidance or specialized equipment. In contrast, nasogastric 
tubes are easier to insert and can be placed at the bedside (Table 1) (86).

4.2 Immunonutrition support

Immunonutrition involves the addition of immune-enhancing 
nutrients to conventional nutrition, aiming to improve inflammatory 
responses, malnutrition, metabolic abnormalities, and immune 
imbalances (87, 88). Recent studies have highlighted the benefits of 
immunonutrition (89–91). Key immunonutrients include omega-3 
fatty acids, glutamine, arginine, and nucleotides (92). Omega-3 fatty 
acids competitively inhibit the arachidonic acid metabolic pathway, 
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reducing the synthesis of pro-inflammatory prostaglandins and 
leukotrienes, thereby mitigating pancreatic inflammation (93, 94). 
Glutamine, a non-essential amino acid, plays a role in protein 
synthesis, energy supply, and immune support, with increased 
demand during stress conditions (95). As the primary energy source 
for intestinal immune cells, glutamine helps maintain gut barrier 
integrity and reduces bacterial translocation and infections (96). 
However, studies comparing EN with and without glutamine 
supplementation have shown no significant advantage with glutamine 
(97, 98). Nonetheless, compared to standard PN, PN supplemented 
with glutamine and omega-3 fatty acids has been associated with 
improved outcomes (99, 100). Arginine, a conditionally essential 
amino acid found in meat, fish, and nuts, promotes nitric oxide (NO) 
synthesis, improves microcirculation, and enhances T-cell and 
macrophage function (101, 102). Some studies have linked 
immunonutrition to reduced AP mortality, lower infection rates, and 
shorter hospital stays (103). However, a meta-analysis found no 
significant benefit of immunonutrition over standard EN in terms of 
overall infection rates and mortality (104). The safety and efficacy of 
immunonutrition remain inconclusive, requiring further research 
(Table 2) (105).

4.3 Precision nutrition strategies

Precision nutrition emphasizes individualized nutritional 
interventions based on lipid metabolism characteristics, genetic 
susceptibility, inflammatory status, and gut microbiota composition 
to optimize triglyceride levels, reduce pancreatic inflammation, and 
promote pancreatic recovery (Figure 2) (106).

To facilitate clinical translation and decision-making, a 
personalized nutrition framework for HLAP management can 
be  constructed with four key components: (1) lipid source 
optimization, (2) macronutrient regulation, (3) gut microbiota 
modulation, and (4) genotype-based dietary customization. Each 
component is tailored to the patient’s metabolic and genomic profile.

First, optimizing fat sources is crucial. Saturated and trans fats 
should be  avoided, while foods rich in omega-3 fatty acids (e.g., 
deep-sea fish, flaxseeds, walnuts) should be  increased (107, 108). 
Omega-3 fatty acids reduce inflammation and improve lipid 
metabolism (109). Additionally, medium-chain triglycerides (MCTs), 
which are directly metabolized by the liver and do not require 
pancreatic lipase, may serve as a safer fat source for HLAP patients 

(110). Second, carbohydrate intake should be regulated, with total 
carbohydrate intake kept below 50–60% of daily calories and primarily 
sourced from whole grains, fruits, and vegetables rich in fiber (111). 
One study suggested that replacing 1% of energy intake from 
carbohydrates with fat sources could reduce serum TG levels by an 
estimated 1–2% (112).

Regulating gut microbiota is another key component of precision 
nutrition. Gut dysbiosis in HLAP exacerbates inflammation, so 
supplementing with probiotics (e.g., Bifidobacterium, Lactobacillus) 
and prebiotics (e.g., fructooligosaccharides, inulin), as well as 
consuming foods rich in SCFA (e.g., oats, nuts), may help maintain 
gut barrier function and reduce enterogenic infections (113). 
Furthermore, personalized nutrition interventions should incorporate 
genomic and metabolomic profiles. For instance, patients with 
APOA5 gene mutations should strictly limit saturated fat intake and 
increase omega-3 fatty acid consumption (48). Meanwhile, in 
individuals with PPARG gene mutations, omega-3 fatty acids have 
been shown to regulate lipid metabolism, significantly reducing 
LDL-C, total cholesterol, and serum TG levels within 3 months 
(Table 3) (114). This integrative framework allows clinicians to match 
specific nutritional components with the patient’s phenotype and 
genotype, forming the basis for truly personalized dietary therapy. 
Overall, precision nutrition offers an individualized strategy for HLAP 
management. By integrating lipid metabolism regulation, 
inflammation control, gut microbiome balance, and genetic analysis, 
tailored nutritional plans can be developed to minimize pancreatic 
damage, enhance treatment efficacy, and improve long-term health 
outcomes while reducing HLAP recurrence.

Despite the promising theoretical and experimental foundation, 
the clinical implementation of precision nutrition in HLAP remains 
at an early stage. Translating these strategies into routine practice 
requires a critical evaluation of existing barriers.

5 Limitations and future directions

First, the heterogeneity of HLAP pathophysiology (e.g., genetic 
background, metabolic phenotypes, and secondary factors) results 
in insufficient evidence for individualized interventions. Most 
existing studies focus on “triglyceride thresholds,” with limited 
stratified research on lipid tolerance dynamics, specific fatty acid 
effects, and varying nutritional needs across different disease 
phases (acute vs. chronic). Second, technical barriers exist in 

TABLE 1 Comparison of conventional nutritional support strategies.

Intervention Key points Evidence basis Clinical recommendations

Enteral nutrition (EN)

Maintains gut barrier function, reduces 

infection risk; low-fat, low-osmolarity 

formulas recommended

Reduces pancreatic complications 

and mortality (74–79)

Prioritize EN over PN (unless contraindicated); 

initiate within 24–72 h in acute phase

Parenteral nutrition (PN)
Reserved for EN intolerance/

contraindications; may increase infection risk

Evidence supports EN over PN in 

reducing infections (78, 79)
Avoid early use; monitor metabolic complications

Early oral feeding
Shortens hospital stay; low-fat solid diet (mild 

HLAP) recommended

Reduces SIRS duration and MODS 

incidence (72, 73)

Initiate oral feeding within 24 h if hemodynamically 

stable without vomiting/obstruction

Nasogastric vs. nasojejunal 

tubes

Nasogastric tubes are easier to place; 

nasojejunal tubes reduce aspiration risk; no 

significant efficacy difference

Limited high-quality comparative 

evidence (85, 86)

Nasogastric as first-line; switch to nasojejunal if 

intolerance occurs
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integrating multimodal data, such as real-time metabolic 
monitoring (lipidomics, gut microbiota metabolites), clinical 
adoption challenges, and the absence of quantitative models for 
gene–environment interactions, restricting dynamic precision 

adjustments. Additionally, clinical implementation faces challenges 
such as balancing strict fat restriction in the acute phase with the 
risk of malnutrition, poor dietary adherence in the chronic phase, 
and the lack of multidisciplinary collaboration mechanisms. 

FIGURE 2

Precision nutrition strategy for HLAP patients. The diagram outlines four components of precision nutrition: (1) lipid source optimization, (2) 
macronutrient regulation, (3) gut microbiota modulation, and (4) genotype-based dietary adjustment. Created with Figdraw.com.

TABLE 3 Precision nutrition strategy framework.

Strategy Interventions Mechanism Recommendation basis

Fat source optimization
Increase omega-3 (deep-sea fish, flaxseeds); replace 

long-chain fats with MCTs

Reduces inflammation; bypasses 

pancreatic lipase (107–110)
Safe source of fat

Carbohydrate regulation
Total carbs ≤50–60% of calories; high-fiber sources 

(whole grains, vegetables)

Reduces postprandial TG spikes (111, 

112)

Replacing 1% carbs with fats lowers TG 

by 1–2%

Gut microbiota 

modulation

Probiotics (Bifidobacterium/Lactobacillus), prebiotics 

(FOS), SCFA-rich foods (oats, nuts)
Reduces bacterial translocation (113)

Critical for severe HLAP with gut 

dysfunction

Genomic integration
APOA5 mutations: restrict saturated fats; PPARG 

mutations: omega-3 supplementation

Corrects lipid metabolism defects (48, 

114)

Requires dynamic metabolomic 

monitoring

TABLE 2 Immunonutrients: mechanisms and evidence status.

Immunonutrient Mechanism Research Findings Current Evidence 
Status

Omega-3 fatty acids
Inhibit pro-inflammatory prostaglandins; 

modulate lipid metabolism

Reduce inflammatory markers; improve outcomes in 

severe cases (93, 94, 99, 100)

Effective in PN; inconclusive for 

EN

Glutamine
Primary energy source for gut immune cells; 

maintains barrier integrity

Reduces infections in PN; no significant benefit in EN 

(95–100)

Recommended for PN; 

insufficient evidence for EN

Arginine
Promotes NO synthesis; enhances T-cell 

function

Mixed results: some studies show reduced mortality, 

meta-analyses show no benefit (101–104)

Safety concerns; requires 

individualized use
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Moreover, several practical barriers hinder the clinical translation 
of precision nutrition. High costs and limited accessibility of 
genomic and metabolomic testing restrict large-scale screening, 
especially in resource-limited settings. Real-time monitoring of 
lipid metabolism and gut microbiota remains technically complex 
and is not yet feasible in most clinical workflows. To address these 
gaps, future studies should incorporate stratified randomized trials 
based on genetic and metabolic profiles, develop point-of-care 
tools for dynamic lipid and microbiota monitoring, and apply 
predictive models (e.g., machine learning) to guide individualized 
nutrition. Real-world studies assessing feasibility, adherence, and 
cost-effectiveness will be essential to support clinical translation.

6 Conclusion

HLAP is a complex disease requiring multidisciplinary 
collaboration. Precision nutrition, an emerging therapeutic strategy, 
integrates genomics, metabolomics, and gut microbiome data to 
provide personalized nutritional interventions. With advances in 
technology and further clinical research, precision nutrition has the 
potential to significantly improve HLAP treatment outcomes, enhance 
patient prognosis, and reduce recurrence rates.
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