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Background: Vitamin B1 deficiency is closely linked to damage in

the cardiovascular system. However, the relationship between dietary

Vitamin B1 intake and the risk of stroke remains ambiguous and requires

further investigation.

Methods: This study analyzed data from participants in the National Health

and Nutrition Examination Survey (NHANES: 2005–2018) to investigate the

relationship between dietary vitamin B1 and ischemic stroke. Weighted

multivariable logistic regression models and restricted cubic spline (RCS)

regression were employed to explore potential nonlinear relationships, and

subgroup analyses were conducted to assess the robustness of the results.

Additionally, the Least Absolute Shrinkage and Selection Operator (LASSO) was

utilized for feature selection. Eight machine learning methods were employed

to construct predictive models and evaluate their performance. Based on the

best-performing model, we further examined variable importance and model

accuracy, employing Shapley Additive Explanations (SHAP) analysis to interpret

the model. Finally, a nomogram was created to enhance the readability of the

predictive model results.

Results: After controlling for various variables, vitamin B1 exhibited a significant

linear negative correlation with stroke risk. In comparison to the lowest quartile,

the adjusted odds ratio (OR) for the fourth quartile was notably reduced to 0.66

(95% CI: 0.46, 0.94). Restricted cubic spline (RCS) analysis further confirmed a

linear inverse relationship between vitamin B1 levels and stroke risk. Moreover,

the Gradient Boosting Machine (GBM) model demonstrated robust predictive

e�cacy, achieving an area under the curve (AUC) of 91.9%.

Conclusion: A large-scale study based on NHANES indicates that as dietary

intake of vitamin B1 increases, the risk of stroke shows a gradual decline.

Therefore, appropriately increasing dietary intake of vitamin B1 may reduce the

risk of stroke occurrence.
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1 Introduction

Stroke, clinically referred to as a cerebrovascular accident, is a syndrome of brain

dysfunction resulting from pathological events in the cerebral blood vessels, including

arterial embolism, small vessel disease, or cerebral infarction. Clinically, it is primarily

categorized into two types: hemorrhagic and ischemic, which account for 20 and 80% of
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all strokes, respectively (1). According to the World Health

Organization (WHO), ∼15 million individuals experience a stroke

annually, with around 6 million of these cases resulting in death (1,

2). While the incidence of stroke typically increases with age, recent

trends indicate a rising incidence among younger populations (3).

The primary risk factors for stroke include hypertension, diabetes,

high cholesterol, and smoking (4).

B vitamins play a unique and essential role in both the central

nervous system (CNS) and the peripheral nervous system (PNS).

Studies have demonstrated that a deficiency in B vitamins can

result in elevated levels of homocysteine in the blood, and high

homocysteine levels are associated with an increased risk of stroke

(5, 6). This may occur through mechanisms such as endothelial

dysfunction, oxidative stress, and inflammatory responses (7). As

a vital component of the B vitamin group, the active form of

vitamin B1 is thiamine, which is involved in glucose metabolism,

the maintenance of neural membrane function, and the synthesis

of myelin and several neurotransmitters, including acetylcholine,

serotonin, and amino acids (8, 9). Additionally, thiamine provides

restorative capabilities, leading to the hypothesis that it may

possess antioxidant effects, thereby protecting nerve cells (10, 11).

This may be closely related to stroke prevention. Although some

epidemiological studies have explored the relationship between B

vitamins and stroke, the majority of research has concentrated on

folic acid, niacin, vitamin B6, and vitamin B12 (12–14). However,

the link between vitamin B1 and stroke remains largely unexplored.

This study aims to re-examine the relationship between vitamin

B1 and stroke in the general population by analyzing data from the

National Health and Nutrition Examination Survey (NHANES).

We will employ advanced analytical methods to process the data

and ensure its quality and reliability. Simultaneously, this study

seeks to create and evaluate a proficient and interpretable machine

learning (ML) system for predicting stroke risk. Our research

findings offer a novel approach for the early identification of stroke

and contribute to the advancement of ML in clinical research on

brain diseases.

2 Methods

2.1 Study population

NHANES is conducted biennially by the Centers for Disease

Control and Prevention (CDC) to assess the health and nutritional

status of the U.S. population. This study utilized data from

NHANES, provided by the National Center for Health Statistics

(NCHS). NHANES is a comprehensive survey designed to collect

representative information on the health and nutritional status of

the civilian, non-institutionalized population in the United States,

encompassing demographics, socioeconomic status, dietary habits,

and health-related issues. To ensure sample diversity, NHANES

employs a stratified, multistage probability sampling method to

select nationally representative participants. The study protocol

received approval from the CDC NCHS Ethics Review Board, and

all participants provided written informed consent. The data are

publicly accessible at https://www.cdc.gov/nchs/nhanes/.

This study primarily analyzed adult health data from NHANES

2005–2018. The original cohort included 80,312 participants.

FIGURE 1

A detailed flow chart of participant recruitment.

Initially, individuals under the age of 20 were excluded, followed

by the exclusion of those lacking data on stroke, dietary vitamin

B1, and related covariates. Ultimately, 13,055 participants were

included in the final analysis. The sample selection flowchart is

presented in Figure 1.

2.2 Dietary vitamin B1 intake

The NHANES study employed a 24-h dietary recall

questionnaire, accessible to all participants, which facilitated

the collection of comprehensive data regarding the types and

quantities of foods consumed in the preceding 24 h. All NHANES

participants were eligible for two 24-h dietary recall interviews,

and the data collected were utilized to determine each individual’s

daily vitamin B1 intake. The initial dietary recall interview was

conducted face-to-face at the Mobile Examination Center (MEC),

while the second interview took place via telephone within a span

of 3–10 days. Dietary vitamin B1 intake was assessed by calculating

the average of the data obtained from the two 24-h dietary recalls.

Participants were categorized based on their vitamin B1 intake.

2.3 Diagnosis of stroke

In this study, stroke identification relies on individuals

disclosing previous diagnoses made by healthcare professionals

during face-to-face interviews. Those who answered affirmatively
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TABLE 1 Baseline characteristics grouped by stroke.

Characteristic Overall, N = 13,055
(100%)a

Non- stroke,
N = 12,556 (97%)a

Stroke, N = 499 (3.1%)a P-valueb

Age, years 27.00 (13.00, 41.00) 26.00 (13.00, 41.00) 34.00 (8.00, 51.00) 0.3

Age, group, n (%) <0.001

40–60 4,361.00 (38.25%) 4,246.00 (38.56%) 115.00 (28.63%)

≥60 4,354.00 (27.42%) 3,990.00 (26.20%) 364.00 (65.61%)

20–40 4,340.00 (34.32%) 4,320.00 (35.24%) 20.00 (5.76%)

Sex, n (%) 0.032

Female 6,812.00 (52.36%) 6,557.00 (52.12%) 255.00 (59.79%)

Male 6,243.00 (47.64%) 5,999.00 (47.88%) 244.00 (40.21%)

Race, n (%) 0.008

Non-Hispanic White 5,975.00 (69.92%) 5,716.00 (69.91%) 259.00 (70.09%)

Non-Hispanic Black 2,647.00 (10.37%) 2,507.00 (10.21%) 140.00 (15.41%)

Mexican American 1,960.00 (7.60%) 1,914.00 (7.68%) 46.00 (5.23%)

Other 1,297.00 (7.04%) 1,271.00 (7.05%) 26.00 (6.84%)

Other Hispanic 1,176.00 (5.07%) 1,148.00 (5.15%) 28.00 (2.43%)

BMI, n (%) 0.011

Obese (30 or greater) 4,961.00 (36.71%) 4,730.00 (36.40%) 231.00 (46.44%)

Overweight (25 to <30) 4,304.00 (32.76%) 4,155.00 (33.00%) 149.00 (25.47%)

Normal (18.5 to <25) 3,589.00 (28.98%) 3,479.00 (29.09%) 110.00 (25.58%)

Underweight (<18.5) 201.00 (1.55%) 192.00 (1.52%) 9.00 (2.50%)

Alcohol, n (%) <0.001

No 8,993.00 (64.47%) 8,576.00 (63.96%) 417.00 (80.54%)

Yes 4,062.00 (35.53%) 3,980.00 (36.04%) 82.00 (19.46%)

Smoke, n (%) <0.001

Never 7,152.00 (53.57%) 6,956.00 (54.07%) 196.00 (37.99%)

former 3,316.00 (26.36%) 3,133.00 (26.07%) 183.00 (35.29%)

Current 2,587.00 (20.08%) 2,467.00 (19.86%) 120.00 (26.72%)

Educational, n (%) <0.001

≥High school 10,115.00 (85.24%) 9,794.00 (85.66%) 321.00 (71.94%)

<High school 2,940.00 (14.76%) 2,762.00 (14.34%) 178.00 (28.06%)

PIR 94.00 (1.00, 231.00) 94.00 (1.00, 231.00) 94.00 (24.00, 232.00) 0.2

Hypertension, n (%) <0.001

No 8,302.00 (66.14%) 8,177.00 (67.31%) 125.00 (29.64%)

Yes 4,753.00 (33.86%) 4,379.00 (32.69%) 374.00 (70.36%)

Diabetes, n (%) <0.001

No 10,729.00 (86.40%) 10,428.00 (87.08%) 301.00 (65.29%)

Yes 2,326.00 (13.60%) 2,128.00 (12.92%) 198.00 (34.71%)

TC, mg/dL 53.00 (25.00, 91.00) 53.00 (25.00, 91.00) 60.00 (22.00, 106.00) 0.2

HDL-C, mg/dL 19.00 (9.00, 33.00) 19.00 (9.00, 33.00) 23.00 (8.00, 38.00) 0.4

LDL-C, mg/dL 46.00 (21.00, 79.00) 46.00 (21.00, 78.00) 50.00 (23.00, 93.00) 0.069

WBC,×109/L 22.00 (9.00, 40.00) 22.00 (9.00, 40.00) 23.00 (9.00, 45.00) 0.4

RBC,×109/L 59.00 (26.00, 106.00) 59.00 (26.00, 106.00) 70.00 (29.00, 119.00) 0.004

(Continued)
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TABLE 1 (Continued)

Characteristic Overall, N = 13,055
(100%)a

Non- stroke,
N = 12,556 (97%)a

Stroke, N = 499 (3.1%)a P-valueb

PLT,×106/L 77.00 (36.00, 135.00) 77.00 (36.00, 135.00) 78.00 (31.00, 147.00) 0.6

Vitamin B1, mg 1,261.00 (528.00, 2,470.00) 1,264.00 (534.00, 2,488.00) 1,059.00 (433.00, 2,080.00) <0.001

aMedian (IQR) for continuous; n (%) for categorical. bDesign-based Kruskal Wallis test; Pearson’s X∧2: Rao & Scott adjustment CI, confidence interval; BMI, body mass index; PIR Ratio

of family income to poverty; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; RBC, red blood cells; WBC, white blood cells;

PLT, platelets. Values in bold are statistically significant (p < 0.05).

to the question, “Has a doctor or healthcare provider ever told

you that you had a stroke?” were classified as having a history of

stroke. It is important to acknowledge that the use of self-reported

data may be subject to memory bias, which could potentially affect

the interpretation of the information (15). Although the NHANES

database lacks specific details regarding the types of strokes, the

relatively high prevalence of ischemic stroke among stroke patients

suggests that a significant proportion of participants diagnosed

with stroke may have experienced ischemic stroke.

2.4 Covariates

Demographic data were collected using a standardized survey

that encompassed gender, race/ethnicity, educational background,

smoking habits, alcohol consumption, poverty income ratio (PIR),

bodymass index (BMI), blood pressure (BP), total cholesterol (TC),

LDL-C, and HDL-C. Alcohol consumption status was determined

from two 24-h dietary recalls, with participants classified as

alcohol users if they reported consuming alcohol in at least one

of the dietary recalls (16). Smoking status was categorized into

three groups: never smoker (<100 cigarettes), former smoker

(individuals who are not currently smoking but have smoked

100 or more cigarettes), and current smoker (those who have

smoked 100 or more cigarettes and currently smoke either daily

or occasionally). Diabetes was defined based on the fulfillment

of any of the following criteria: (1) HbA1c levels of 6.5% or

greater; (2) fasting plasma glucose (FPG) levels of 7.0 mmol/L or

higher; (3) random plasma glucose (RPG) levels of 11.1 mmol/L

or above or an oral glucose tolerance test (OGTT) result of

11.1 mmol/L or higher; (4) a diagnosis of diabetes made by a

physician; or (5) the current use of antidiabetic medication or

insulin (17).

2.5 Statistical analysis

Due to the complex sampling methodology employed by the

NHANES survey, our analytical approach incorporated sample

weights specifically tailored for the study period to ensure accurate

calculations of health-related statistics. These weights were adjusted

for survey design, non-response, and post-stratification to ensure

that the results are representative of the U.S. population. Weighted

averages and 95% confidence intervals were utilized to represent

the variables, ensuring that our estimates accurately reflect the

population parameters.

Participants were divided into two groups based on the

presence or absence of stroke and further categorized into four

groups according to vitamin B1 quartiles. Continuous variables

were assessed using the weighted Student’s t-test or analysis of

variance, while categorical variables were evaluated using the

weighted chi-square test. For continuous variables that did not

conform to a normal distribution, the weighted Kruskal-Wallis

test was employed. In descriptive analyses, continuous variables

were expressed as weighted means ± standard deviations, and

categorical variables were reported as weighted percentages. To

investigate the relationship between vitamin B1 and the risk

of diabetes, we initially constructed three multivariate logistic

regression models. Model 1 was unadjusted, while Model 2

was adjusted for gender, age, and race. Model 3 included

further adjustments for education level, smoking status, alcohol

consumption, body mass index (BMI), diabetes, and hypertension.

To explore the potential nonlinear association between vitamin

B1 scores and stroke, we employed restricted cubic spline (RCS)

regression, with knots placed at the 5th, 35th, 65th, and 95th

percentiles of the vitamin B1 score distribution. Additionally,

subgroup analyses were conducted to examine whether significant

interactions existed between these covariates and the association of

vitamin B1 with stroke.

Traditional statistical methods are typically suitable for small

datasets but struggle to interpret complex interaction patterns in

high-dimensional data. Machine learning methods, on the other

hand, are well-suited for large-scale data and can automatically

adjust models to optimize performance through techniques such

as parameter tuning and cross-validation (18, 19). This technology

has been proven to perform well across multiple fields (20).In

this study, we constructed a predictive model for stroke based

on the variables included. We utilized univariate analysis and

LASSO regression to identify the most significant characteristics

associated with stroke risk. Subsequently, we employed eight

machine learning (ML) algorithms: Logistic Regression (LR),

Gradient Boosting Machine (GBM), Extreme Gradient Boosting

(XGBoost), Support Vector Machine (SVM), Neural Network

(NNET), Adaptive Boosting (AdaBoost), Light Gradient Boosting

Machine (LightGBM), and Categorical Boosting (CatBoost) to train

and develop ML models using a 10-fold cross-validation method.

The model’s performance was evaluated using various metrics,

including the area under the receiver operating characteristic

curve (ROC), accuracy, sensitivity, specificity, F1 score, calibration

curve, decision curve, clinical impact curve, and confusion matrix.

Shapley Additive Explanations (SHAP) analysis was conducted to

interpret the model, elucidating the importance of each feature and

the rationale behind the model’s decisions. Finally, a nomogram
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TABLE 2 Basic characteristics of participants by vitamin B1 quartile.

Characteristic Overall,N=13,055
(100%)a

Q1, N = 3,584
(25%)a

Q2, N = 3,325
(25%)a

Q3, N = 3,147
(25%)a

Q4, N = 2,999
(25%)a

P-
valueb

Age, years 27.00 (13.00, 41.00) 27.00 (12.00, 42.00) 26.00 (12.00, 42.00) 27.00 (13.00, 42.00) 26.00 (13.00, 40.00) 0.5

Age, group, n (%) <0.001

40–60 4,361.00 (38.25%) 1,148.00 (37.87%) 1,080.00 (36.27%) 1,082.00 (38.56%) 1,051.00 (40.32%)

≥60 4,354.00 (27.42%) 1,351.00 (30.84%) 1,223.00 (31.14%) 1,017.00 (26.78%) 763.00 (20.92%)

20–40 4,340.00 (34.32%) 1,085.00 (31.29%) 1,022.00 (32.59%) 1,048.00 (34.65%) 1,185.00 (38.76%)

Sex, n (%) <0.001

Female 6,812.00 (52.36%) 2,470.00 (71.77%) 1,969.00 (60.21%) 1,527.00 (49.23%) 846.00 (28.20%)

Male 6,243.00 (47.64%) 1,114.00 (28.23%) 1,356.00 (39.79%) 1,620.00 (50.77%) 2,153.00 (71.80%)

Race, n (%) <0.001

Non-Hispanic White 5,975.00 (69.92%) 1,440.00 (64.75%) 1,522.00 (70.37%) 1,498.00 (71.14%) 1,515.00 (73.41%)

Non-Hispanic Black 2,647.00 (10.37%) 948.00 (14.66%) 685.00 (10.36%) 572.00 (9.14%) 442.00 (7.32%)

Mexican American 1,960.00 (7.60%) 530.00 (7.77%) 493.00 (7.11%) 449.00 (7.51%) 488.00 (8.01%)

Other 1,297.00 (7.04%) 313.00 (7.13%) 332.00 (7.30%) 341.00 (7.28%) 311.00 (6.45%)

Other Hispanic 1,176.00 (5.07%) 353.00 (5.68%) 293.00 (4.86%) 287.00 (4.93%) 243.00 (4.81%)

BMI, n (%) 0.3

Obese (30 or greater) 4,961.00 (36.71%) 1,473.00 (39.20%) 1,305.00 (37.79%) 1,156.00 (35.43%) 1,027.00 (34.41%)

Overweight (25 to <30) 4,304.00 (32.76%) 1,129.00 (30.98%) 1,095.00 (32.67%) 1,054.00 (33.45%) 1,026.00 (33.95%)

Normal (18.5 to <25) 3,589.00 (28.98%) 919.00 (28.34%) 883.00 (28.27%) 886.00 (29.39%) 901.00 (29.91%)

Underweight (<18.5) 201.00 (1.55%) 63.00 (1.49%) 42.00 (1.27%) 51.00 (1.72%) 45.00 (1.73%)

Alcohol, n (%) <0.001

No 8,993.00 (64.47%) 2,641.00 (69.41%) 2,311.00 (65.01%) 2,132.00 (64.03%) 1,909.00 (59.43%)

Yes 4,062.00 (35.53%) 943.00 (30.59%) 1,014.00 (34.99%) 1,015.00 (35.97%) 1,090.00 (40.57%)

Smoke, n (%) <0.001

Never 7,152.00 (53.57%) 1,951.00 (50.95%) 1,848.00 (54.95%) 1,745.00 (53.64%) 1,608.00 (54.73%)

Former 3,316.00 (26.36%) 827.00 (24.50%) 843.00 (26.02%) 826.00 (27.24%) 820.00 (27.67%)

Current 2,587.00 (20.08%) 806.00 (24.56%) 634.00 (19.02%) 576.00 (19.13%) 571.00 (17.59%)

Educational, n (%) <0.001

≥High school 10,115.00 (85.24%) 2,612.00 (81.09%) 2,574.00 (84.84%) 2,509.00 (87.72%) 2,420.00 (87.30%)

<High school 2,940.00 (14.76%) 972.00 (18.91%) 751.00 (15.16%) 638.00 (12.28%) 579.00 (12.70%)

PIR 94.00 (1.00, 231.00) 96.00 (9.00, 225.00) 92.00 (1.00, 220.00) 94.00 (1.00, 233.00) 93.00 (1.00, 242.00) 0.4

Hypertension, n (%) <0.001

No 8,302.00 (66.14%) 2,145.00 (61.95%) 2,080.00 (65.80%) 2,043.00 (67.66%) 2,034.00 (69.16%)

Yes 4,753.00 (33.86%) 1,439.00 (38.05%) 1,245.00 (34.20%) 1,104.00 (32.34%) 965.00 (30.84%)

Diabetes, n (%) <0.001

No 10,729.00 (86.40%) 2,871.00 (84.54%) 2,674.00 (85.12%) 2,634.00 (87.74%) 2,550.00 (88.21%)

Yes 2,326.00 (13.60%) 713.00 (15.46%) 651.00 (14.88%) 513.00 (12.26%) 449.00 (11.79%)

TC, mg/dL 53.00 (25.00, 91.00) 56.00 (25.00, 93.00) 57.00 (28.00, 95.00) 50.00 (24.00, 89.00) 50.00 (22.00, 86.00) 0.003

HDL-C, mg/dL 19.00 (9.00, 33.00) 21.00 (10.00, 36.00) 19.00 (9.00, 32.00) 19.00 (10.00, 33.00) 18.00 (8.00, 32.00) <0.001

LDL-C, mg/dL 46.00 (21.00, 79.00) 46.00 (22.00, 79.00) 48.00 (22.00, 81.00) 44.00 (22.00, 77.00) 44.00 (20.00, 76.00) 0.020

WBC,×109/L 22.00 (9.00, 40.00) 24.00 (11.00, 43.00) 23.00 (10.00, 41.00) 21.00 (9.00, 38.00) 21.00 (9.00, 38.00) <0.001

RBC,×109/L 59.00 (26.00, 106.00) 57.00 (24.00, 106.00) 60.00 (25.00, 107.00) 60.00 (26.00, 105.00) 61.00 (28.00, 106.00) 0.6

(Continued)
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TABLE 2 (Continued)

Characteristic Overall,N=13,055
(100%)a

Q1, N = 3,584
(25%)a

Q2, N = 3,325
(25%)a

Q3, N = 3,147
(25%)a

Q4, N = 2,999
(25%)a

P-
valueb

PLT,×106/L 77.00 (36.00, 135.00) 81.00 (37.00, 140.00) 77.00 (36.00, 134.00) 76.00 (35.00, 136.00) 73.00 (34.00, 131.00) 0.044

Stroke, n (%) <0.001

No 12,556.00 (96.90%) 3,395.00 (95.37%) 3,189.00 (96.79%) 3,043.00 (97.25%) 2,929.00 (98.17%)

Yes 499.00 (3.10%) 189.00 (4.63%) 136.00 (3.21%) 104.00 (2.75%) 70.00 (1.83%)

aMedian (IQR) for continuous; n (%) for categorical.
bDesign-based Kruskal Wallis test; Pearson’s X∧2: Rao & Scott adjustment. CI, confidence interval; BMI, body mass index; PIR Ratio of family income to poverty; TG, triglycerides; LDL-

C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; RBC, red blood cells; WBC, white blood cells; PLT, platelets. Values in bold are statistically significant

(p < 0.05).

TABLE 3 Weighted logistic regression analysis of vitamin B1 and stroke.

Non-adjusted model Model I Model II

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Vitamin B1 0.64 (0.53, 0.76) <0.001 0.77 (0.64, 0.93) 0.007 0.84 (0.71, 1.00) 0.048

Quartile

Q1 Ref. Ref. Ref.

Q2 0.68 (0.48, 0.97) 0.035 0.72 (0.50, 1.04) 0.081 0.79 (0.53, 1.17) 0.210

Q3 0.58 (0.40, 0.86) 0.007 0.68 (0.46, 1.01) 0.056 0.79 (0.53, 1.16) 0.200

Q4 0.38 (0.28, 0.53) <0.001 0.55 (0.39, 0.78) <0.001 0.66 (0.46, 0.94) 0.022

P for trend <0.001 <0.002 0.033

Data are expressed as OR (95% CI). Model I was adjusted for age, gender and race/ethnicity. Model II adjusted for age, sex, race/ethnicity, education level, smoking status, alcohol consumption,

BMI, diabetes, and hypertension.

was constructed to enhance the interpretability of the predictive

model results. Statistical analysis was conducted using R software

version 4.4.2, with a two-sided p-value of <0.05 considered

statistically significant.

3 Results

3.1 Baseline characteristics of participants

This study included a total of 13,055 participants, comprising

12,556 non-stroke individuals and 499 stroke patients. Compared

to the non-stroke group, stroke patients were predominantly

female, over the age of 60, overweight, and had higher

incidences of diabetes, hypertension, and smoking, along with

lower educational attainment. These findings are consistent with

common perceptions. Conversely, we observed that the incidence

of stroke was lower among individuals who consumed alcohol

and those with lower vitamin B1 intake. This discrepancy may

be attributed to our definition of alcohol consumption, wherein

individuals who consumed alcohol within 48 h, as recorded in the

dietary data, were classified as drinkers. Further details can be

found in Table 1.

To investigate the relationship between vitamin B1 and the

risk of stroke, participants were divided into four quartiles (Q1-

Q4) based on their vitamin B1 levels. The results indicated

that participants in the higher quartiles of vitamin B1 exhibited

significantly lower levels of total cholesterol (TC), platelet

count (PLT), white blood cells (WBC), low-density lipoprotein

cholesterol (LDL-C), and high-density lipoprotein cholesterol

(HDL-C) compared to those in the lower quartiles (p <

0.05). Furthermore, significant differences were observed in the

distribution of gender, race, education level, smoking status, and

the prevalence of hypertension and diabetes (p < 0.05). Notably,

as the quartiles of vitamin B1 increase, the prevalence of stroke

significantly decreases (1.83 vs. 4.63%, p < 0.001). For further

details, please refer to Table 2.

3.2 Association between the vitamin B1 and
stroke

A weighted multiple logistic regression analysis was conducted

to examine the relationship between vitamin B1 and stroke,

considering variables such as age, sex, race, educational level,

smoking, alcohol consumption, hypertension, and diabetes. Our

findings indicate that vitamin B1 intake was negatively associated

with the risk of stroke both before (OR: 0.64; 95% CI: 0.53–0.76)

and after (OR: 0.84; 95% CI: 0.71–1.00) adjusting for covariates.

Furthermore, participants were evenly divided into quartiles based

on their vitamin B1 intake, and the results demonstrated that

individuals with higher vitamin B1 intake had a lower risk of stroke

both prior to and following the adjustment for covariates (Table 3).

Through RCS analysis, we identified a negative linear

relationship between vitamin B1 intake and stroke risk in the

unadjusted model (Figure 2A), Model I (Figure 2B), and Model II

(Figure 2C) (P < 0.05 for linear trend). This linear relationship

remained consistent when all variables were included in the analysis

(Figure 2D), demonstrating the stability of this association. Prior
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FIGURE 2

Analysis of the nonlinear relationship between vitamin B1 and stroke risk. (A) No adjustments made. (B) Adjusted for age, gender and ethnicity. (C)

Adjusted for age, sex, race, education level, smoking, alcohol use, high blood pressure, diabetes. (D) Adjusted for all covariates.

to the inflection point (1.42mg) of the negative linear relationship

between vitamin B1 intake and stroke risk, there was a significant

decreasing trend in stroke risk with increasing vitamin B1 intake.

However, after the inflection point, the rate of decrease in stroke

risk slowed with increasing niacin intake (Figure 2). Additionally,

we found that this relationship persisted when the number of knots

was set to 3 (Supplementary Figure S1).

As shown in Figure 3, none of the stratified variables—

including gender, age, race/ethnicity, BMI, smoking status, alcohol

consumption, diabetes, and hypertension—significantly affected

the association between vitamin B1 and stroke (all P-values for

interaction > 0.05).

3.3 Development and validation of machine
learning predictive models

Due to the imbalance of binary classification labels in the initial

dataset, SMOTE was employed to improve the performance of the

machine learning (ML) model. By utilizing the SMOTE method,

we synthesized samples to achieve a 1:1 class balance ratio in the

final processed training set. A standard scale was determined for

the selected features, and the data was randomly split into training

and testing sets in a 7:3 ratio. Eight ML algorithms were developed

in the training set to predict the risk of stroke occurrence. The

algorithms used in this study applied the constructed models to

the testing set. In this study, we employed univariate analysis to

screen relevant variables, which were subsequently incorporated

into LASSO regression for the selection of final feature variables

(Figure 4). The lambda.1se parameter was chosen, resulting in

the identification of seven variables: Diabetes, Hypertension,

Smoking, Alcohol consumption, PIR, Age, and Vitamin B1. These

selected clinical features were utilized to construct a stroke risk

prediction model. The model’s performance was evaluated using

Decision Curve Analysis (DCA), Calibration Curve (CC), and

the Area Under the Receiver Operating Characteristic (ROC)

Curve (AUC) (Figure 5). The model was evaluated using accuracy,

AUC, precision, recall, and F1 score (Table 4). We used 10-fold

cross-validation to assess the model’s performance, and the results

showed that the GBM model achieved an accuracy of 84.2% and

an AUC of 91.9%. The model’s performance was compared with

traditional methods, and the results indicated that it has superior

predictive capability. The calibration curve is closely aligned with
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FIGURE 3

Subgroup analysis of the association between vitamin B1 and stroke. The analysis was stratified by sex, age, race, BMI, smoking, alcohol use,

hypertension, and diabetes. Logistic regression analysis adjusted for age, sex, race, education, smoking, alcohol use, hypertension, and diabetes.

the diagonal, suggesting that the model is well-calibrated and does

not exhibit significant overfitting. Consequently, GBMwas selected

for the subsequent phase of analysis.

To enhance the model’s interpretability, we used SHAP values

to analyze the contribution of each feature to the model’s output.

The results showed that the vitamin B1 feature has a significant

impact on the prediction (Figure 6). Individuals with high values

primarily provide a negative contribution, while those with low

values contribute positively. Given the commendable performance

of the traditional logistic regression model in the preliminary

analysis, we then proceeded to develop a nomogram based on

the seven identified risk factors. By incorporating these seven risk

factors, the nomogram facilitates a more precise estimation of the

likelihood of specific outcomes (Figure 7).

4 Discussion

In this study, we conducted a cross-sectional analysis to

investigate the relationship between dietary vitamin B1 intake

and the risk of stroke. Our findings revealed a negative linear

correlation between vitamin B1 intake and stroke incidence,

which remained consistent even after adjusting for covariates.

Subsequent subgroup analyses further confirmed the stability of
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FIGURE 4

LASSO penalized regression analysis was used to identify factors associated with stroke risk. (A) The coe�cient trajectory for each variable as Log

Lambda changes. (B) Cross Validation Error (CVM) plot for di�erent Log Lambda values, green dashed line represents minimum error (Log Lambda _

min), blue dashed line represents a standard error threshold selected by the model (Log Lambda_1se).

FIGURE 5

Performance and comparison of 8 di�erent prediction models. (A) ROC curve. (B) Calibration curve. (C) Decision curve.

this correlation across diverse groups. We conducted a secondary

analysis using interview data collected by trained CDC personnel

as part of NHANES, and employed univariate analysis alongside

the LASSO regression model to screen pertinent clinical variables.

The identified significant variables were utilized to develop

predictive models using eight machine learning methods, including

Logistic Regression (LR), Gradient Boosting Machine (GBM),

XGBoost, Support Vector Machine (SVM), Neural Networks

(NNET), AdaBoost, LightGBM, and CatBoost. This multi-model

comparative validation underscored the importance of various

key predictive factors and provided a valuable auxiliary tool for

clinical decision-making.

Stroke is the second leading cause of death worldwide.

According to the Global Burden of Disease Study (GBD),

while the prevalence of stroke has decreased, the age, gender,

and geographical distribution of patients suggest that the

socioeconomic burden of stroke has risen over time (21). The

pathological mechanism is closely associated with oxidative

stress, endothelial dysfunction, vascular wall damage, and platelet

activation and aggregation, ultimately resulting in intravascular

thrombosis (22). The risk of stroke increases with age, doubling for

both men and women after the age of 55 (23). Individuals suffering

from conditions such as hypertension (21, 24, 25), coronary artery

disease (26), or hyperlipidemia (27) face an increased risk of

stroke. Notably, nearly 60% of stroke patients have a history of

transient ischemic attack (TIA). While some stroke risk factors are

immutable, others can be modified.

Vitamin B1, also known as thiamine, is an essential water-

soluble vitamin for the human body, primarily involved in energy

metabolism, the maintenance of nervous system health, and

the regulation of cardiovascular functions (28–30). The earliest

recorded accounts of thiamine deficiency can be traced back to

the 3rd century; nonetheless, it was during the 19th century

that the condition became notably more common, especially
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among sailors whose diets were limited to repetitive and bland

foods. Researchers proposed that beriberi resulted from inadequate

nutrition. It was put forward that the consumption of rice bran,

which is usually eliminated in the process of converting brown

rice into white rice, might help in avoiding this illness. Many

efforts were undertaken to isolate and characterize specific chemical

components found in rice bran, culminating in the discovery

of the “anti-beriberi compound.” The definitive structure of this

compound was established in 1936 and given the name thiamine.

Hence, ensuring the inclusion of whole grains or fortified processed

foods to avert thiamine deficiency is crucial. Thiamine significantly

promotes cellular energy metabolism and, as a crucial cofactor in

carbohydrate conversion, aids in providing energy to nerve cells,

thereby maintaining their normal morphology and function (31).

Furthermore, vitamin B1 indirectly participates in the synthesis

of energy-consuming nucleic acids, neurotransmitters, and myelin

sheaths. It also contributes to the speed of nerve conduction by

maintaining myelin sheaths (32). Thiamine exerts a protective

effect on the proliferation of human arterial smooth muscle cells

mediated by glucose and insulin, which further prevents the

occurrence of vascular atherosclerosis and reduces the risk of stroke

TABLE 4 Performance comparison of eight machine learning (ML)

models.

Model AUC Accuracy Sensitivity Specificity F1

Logistic 0.840 0.787 0.863 0.674 0.83

SVM 0.836 0.787 0.873 0.659 0.831

GBM 0.919 0.842 0.837 0.85 0.864

Neural

Network

0.851 0.787 0.798 0.771 0.818

Xgboost 0.846 0.775 0.783 0.763 0.807

Adaboost 0.771 0.721 0.711 0.736 0.754

LightGBM 0.866 0.835 0.924 0.703 0.871

CatBoost 0.855 0.792 0.812 0.761 0.824

(33). Thiamine functions as thiamine triphosphate (TTP) in neural

membrane activity. It generates reducing power during glucose

metabolism, thereby protecting cells from the damaging effects

of oxidative stress and consequently safeguarding endothelial and

vascular wall cells from oxidative stress injury. This mechanism

is likely a key factor in its association with a reduced incidence

of stroke. In a retrospective study (34), we found that vitamin B1

deficiency negatively impacts the rehabilitation treatment of stroke

patients. However, the role of thiamine in the pathogenesis of stroke

requires further exploration.

The complex of B vitamins consists of eight distinct vitamins

(B1, B2, B3, B5, B6, B7, B9, and B12) that, although they do

not share chemical similarities, are categorized together mainly

because of their common coenzyme activities. These B vitamins

are vital for numerous physiological processes in the human

body and also have specific roles related to the nervous system.

Commonly known as “neurotrophic” B vitamins, they are essential

for the proper functioning of both the central nervous system

(CNS) and the peripheral nervous system (PNS).In previous

studies, we demonstrated that supplementation with B vitamins—

specifically, vitamin B9 (folic acid), vitamin B12, and vitamin

B6—can significantly reduce the overall relative risk of stroke

by lowering the total homocysteine (tHcy) concentration in the

blood (35). Despite some preliminary findings, there is currently

a lack of literature reporting the effects of vitamin B1 on

stroke risk. Our research indicates a significant linear negative

correlation between dietary vitamin B1 intake and stroke incidence,

suggesting that increasing dietary vitamin B1 may positively

influence the reduction of stroke risk. However, this association,

along with its specific mechanisms, requires further investigation.

It is noteworthy that mammals cannot synthesize B vitamins

independently and must obtain adequate amounts through their

diet, highlighting the importance of dietary interventions.

In this study, we utilized national data combined with sample

weights to assess the correlation between dietary vitamin B1 intake

and the occurrence of stroke, thereby enhancing the generalizability

of our findings to the U.S. population. The regression analysis,

adjusted for covariates, along with the large sample size,

enabled us to perform subgroup analyses that confirmed the

FIGURE 6

Interpretability analysis of the model. (A) SHAP tree diagram of GBM model characteristics. (B) Ranking of importance of GBM model features.
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FIGURE 7

Nomograms from multiple logistic regression models for stroke risk prediction.

robustness of our results. Furthermore, by comparing eight

machine learning algorithms, we constructed a predictive model

for stroke prevalence, ultimately identifying the most effective

model. This model offers a practical approach for predicting

stroke in individuals, thereby facilitating the development of

targeted prevention and intervention strategies. Although our

model performed well on this dataset, its generalizability may be

somewhat limited due to the size and diversity of the dataset.

However, this study has specific limitations. Firstly, it is a

cross-sectional study, which precludes causal inferences. Further

prospective research is warranted to validate these findings.

Secondly, the majority of the predictors utilized in our study

were derived from self-reported data, which may introduce bias.

Lastly, we conducted internal validation solely on the study

dataset and lack an external cohort for further evaluation of the

model’s performance. Moreover, the sample was sourced from

a single center, potentially limiting the generalizability of the

research findings. Future studies should consider incorporating

prospective designs and multi-center data, alongside integrating a

broader range of patient data and employing advanced machine

learning techniques. This approach would enhance the robustness

and generalizability of the findings and ultimately contribute to

the development of more personalized and precise treatment

management strategies for stroke patients.

5 Conclusion

Our research indicates a significant linear negative correlation

between dietary vitamin B1 intake and the prevalence of stroke

among American adults. The machine learning model based on the

Gradient Boosting Machine (GBM) method demonstrates strong

predictive performance. However, further studies are needed to

validate these findings, explore the underlying mechanisms, and

assess the therapeutic potential.
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