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A bioenergetic approach favors 
the preservation and protection 
of prey, not cooking, as the 
drivers of early fire
Miki Ben-Dor * and Ran Barkai 

Department of Archaeology, Tel Aviv University, Tel Aviv, Israel

Introduction: The use of fire marks a critical milestone in human evolution, with 
its initial purposes debated among scholars. While cooking is often cited as the 
primary driver, this study proposes that meat and fat preservation, and predator 
protection were more likely the initial motivations for fire use by Homo erectus 
during the Lower Paleolithic (1.9–0.78 Ma).

Methods: Employing a bioenergetic approach, we  compared the energetic 
returns of hunting versus plant gathering using ethnographic data, adjusted for 
Lower Paleolithic conditions. Caloric content of East African prey was calculated 
to assess consumption duration. Archeological evidence from early fire sites 
was analyzed for associations with large fauna.

Results: Hunting large prey (>100 kg) yielded significantly higher energetic 
returns (16,269 ca/h) than plant gathering (1,443 ca/h), with megaherbivores like 
hippopotamus providing sustenance for up to 22 days for a group of 25. Early 
fire sites consistently contained large fauna remains, suggesting prolonged prey 
consumption. Cooking offered modest energetic gains (e.g., ~1,200 ca/h for meat), 
insufficient to offset fire maintenance costs, unlike preservation and protection.

Discussion: The substantial energetic disparity supports hunting as a dominant 
subsistence strategy, with fire enhancing efficiency by preserving meat and 
deterring predators. The prevalence of megaherbivores in Lower Paleolithic sites 
and heightened predation risks underscore these priorities over cooking, which 
likely emerged as a secondary benefit. Ethnographic analogies underrepresent 
these dynamics due to megafaunal extinctions altering the environment and prey 
availability.

Conclusion: Meat preservation and predator protection, rather than cooking, 
were likely the primary drivers of early fire use, aligning with Homo erectus’ 
specialization in large prey acquisition. This reframes fire’s role in human 
evolution, suggesting it supported a hypercarnivorous lifestyle and potentially 
influenced cognitive development.

KEYWORDS

fire, cooking, predators, human evolution, bioenergetics

1 Introduction

The utilization of fire stands as a pivotal technological advancement in human history. 
Some scholars argue that rather than a sudden discovery, the mastery of fire’s control and 
application for human needs occurred gradually, with its origins dating back to the early 
Pleistocene (1–3). Substantial evidence supports the early use of fire by our ancestors during 
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Lower Paleolithic times, starting about 1 million years before the 
present (4–9), although opposing perspectives exists (10). The 
significance of fire use in reconstructing early human adaptation 
strategies and capabilities holds paramount importance within 
Pleistocene archeology.

Wrangham, Jones (11, 12) hypothesized that the control of fire for 
cooking plants and meat was a driving force behind crucial 
adaptations in Homo erectus, including a reduction in digestive system 
size and an increase in brain size. This hypothesis, known as ‘the 
cooking hypothesis,’ has been a subject of debate and inquiry 
(2, 13–17).

The findings by Henry (18), and Henry, Büdel (19) that in some 
circumstances, the production of fire incurs higher bioenergetic costs 
than the benefits of cooking encourage reinvestigation of the reason 
for the use of fire by early to middle Lower Paleolithic humans. 
Assuming that fire was produced and maintained in the Lower 
Paleolithic, there is a need to consider alternative utilities or set of 
utilities that have rendered the acquisition and maintenance of fire 
economically profitable.

We employ a bioenergetic approach to explore the relative 
likelihood of cooking, meat and fat preservation, and protection from 
predators as drivers for the early use of fire. Based on accepted 
evidence of fire in archeological sites, we define the early use of fire as 
spanning from 1.9 to 0.78 million years ago (Ma), with relevance to 
Homo erectus (sensu lato).

2 Materials and methods

The need to preserve and protect acquired prey arises when it 
is large enough to provide food for the group for several days. The 
extent of human involvement in acquiring large prey remains a 
subject of ongoing debate within the scholarly community [e.g., (20, 
21)]. However, for this study, it suffices to acknowledge that early 
humans, specifically Homo erectus, did consume meat and fat of 
large prey. Lower Paleolithic sites are notably characterized by a 
substantial presence of megaherbivores, and other large animals’ 
remains, some of which exhibit cut marks as well as other evidence 
of human manipulation [e.g., (22–24)]. Smaller animal taxa were 
also found at Lower Paleolithic sites. However, it was demonstrated 
that the caloric contribution of megaherbivores was unprecedented 
[e.g., (25, 26)].

The relevance of ethnographic data to Lower Paleolithic 
circumstances is contested (27–29). In many cases, the basic 
preconditions for analogy of similarity in technological and 
environmental circumstances are unmet, specifically as they relate to 
large herbivores exploitation (30).

To arrive at relative energetic returns of gathering versus hunting, 
we used only the closest analogous available ethnographic data to the 
early to middle Lower Paleolithic circumstances. We  based our 
calculations on data assembled by Kelly (31) (Table 4–5) and Morin, 
Bird (32) (Supplementary ESM4).

Kelly (31) dataset comprises 105 data points detailing energetic 
returns on plant gathering and 25 data points of hunting medium-
sized prey as no data on large prey exists. Notably, the dataset does not 
specify the weight of the animals in question. In our analysis, 
we classified medium-sized animals as roughly equivalent to the size 
of sheep and larger.

Morin, Bird (32) dataset encompassed 129 data points. It 
encompasses returns derived from various hunting methods, including 
using guns, dogs, traps, and bow/spear, across multiple biomes, 
including the rainforest biome. It encompasses records of hunting a 
diverse range of fauna, from birds, reptiles, and rodents to larger prey. 
We computed average returns to ensure our results align as closely as 
possible with the early to middle Lower Paleolithic context. In Morin, 
Bird (32) dataset, hunting with firearms yielded returns above the 
average, while hunting in rainforests yielded returns much below the 
average, showing that technology and environment are substantial 
factors in generating energetic returns. Consequently, we calculated 
the average returns within Morin, Bird (32) dataset as follows:

 1 The average return of the dataset (N = 129)
 2 The average return on hunting with bows/spears (N = 38)
 3 The average return on hunting prey, larger than 100 kgs in a 

non-rainforest biome with bows and spears (N = 8). 
We  consider this sample to be  the closest to Lower 
Paleolithic conditions.

To ascertain the period of consumption that prey provides to a 
typical group of 25 individuals (33), we calculated the caloric content 
of typical East African prey animals. The raw data comes from Ledger 
(34), who dissected 252 East African herbivores of 16 species.

In the computation of averages within category 3 (prey >100 kg, 
non-rainforest), sourced from the Morin, Bird (32) table, we deliberately 
excluded prey weighing less than 100 kilograms. This exclusion is justified 
because prey in the 100-kilogram range typically contains approximately 
60,000 calories, which a group of hunter-gatherers can reasonably 
consume in a single day. In stark contrast, a single 1.5-ton Hippopotamus, 
yielding about a million calories, can sustain such a group for 22 days 
(Table 1). Consequently, the relative economic significance of protection 
from predators and preservation in the context of medium-small prey 
would have been considerably lower, compared to larger prey.

While it is true that bows were not accessible to hunters in the early 
to middle Lower Paleolithic, energetic return data exclusively focusing on 
spear employment is notably absent. Furthermore, the other categories 
encompassed within the hunting technology parameter, namely guns, 
held even less relevance in hunting large prey during the early to middle 
Lower Paleolithic. Mass hunting, traps, and hand digging, the remaining 
categories, were predominantly employed for hunting small animals in 
the dataset, rendering them equally irrelevant in the analogy.

3 Results

3.1 Days of storage of prey by size

To demonstrate the relative duration of the predation risk and 
preservation need, we calculated in Table 1 the days of subsistence that 
prey in Ledger (34) dataset would provide a group with 25 members 
(26). Early Lower Paleolithic elephants (Elephas racki) could weigh 10 
tons, so several times the heaviest animal in the data set (Hippopotamus 
amphibius at 1.4 tons), so they would have provided meat and fat for 
a much longer period. However, the hunting of large prey motivated 
several contemporary hunting groups to consolidate at the hunting 
site (35), so by analogy, the figures might have been lower than 
calculated but in any case, remain high.
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3.2 The difference between hunting and 
plant gathering returns

Table 2 presents the average bioenergetic return derived from 
plant gathering and prey hunting, quantified in calories per hour 
(ca/h) and the corresponding 95% confidence intervals (95% CI). 
It is evident from Table 2 that hunting in a rainforest biome yields 
a substantially lower average return of 3,342 ca/h, albeit still 
double that of plant gathering. Plant gathering yields an average 
return of 1,443 ca/h with minimal disparity in the returns from 
various plant foods, such as seeds and tubers, as indicated by the 
narrow 95% confidence interval range of 1,025–1861 ca/h. It is 
less than one tenth of the return of 16,269 calories per hour on 
hunting >100 kgs prey with bow and arrows in non-rainforest 
biomes. It also less than one tenth of the average of the energetic 
return on the whole dataset of 14,877 calories per hour.

3.3 The association between fire remains 
and large prey

In an ideal scenario, our approach would involve compiling a 
list of early and middle Lower Paleolithic sites featuring large 
fauna and examining the presence or absence of fire in these 
archeological contexts. However, undertaking such an endeavor 
would prove futile due to the significantly poorer preservation of 
fire evidence than faunal remains. This challenge is particularly 
pronounced in open-air sites, which predominantly characterize 
the early to middle Lower Paleolithic period, as opposed to cave 
sites which usually reveal better fire preservation (14, 36). 

Following these preservation limitations, we have assembled in 
Table 3 a list of all reported earliest sites (dating back to before 
0.78 million years ago) where fire has been claimed to be present 
and for which a faunal record is available. Remarkably, our 
examination of these sites reveals a consistent pattern—all 
contain remains of very large herbivores. It should be noted that 
early fire does not lend itself easily to be identified, so it might 
be  the case that other Lower Paleolithic sites bearing large 
mammals did contain a fire that was not recognized. Under 
different circumstances, as a different number of individual prey 
animals hunted, the size of the group, and the time spent at the 
site, different decisions regarding the use of fire would have been 
taken. We  suggest that in cases where the consumption of 
megaherbivores was planned for a prolonged duration, the use of 
fire was highly likely to preserve meat and fat and to keep 
predators away (37). Interestingly, Bellomo (38) (p. 194) analyzed 
the potential use of fire in Koobi Fora FXJ20 Main and after 
eliminating several uses states: “It is most likely that the early 
hominids at FxJj 20 Main primarily used fire as a source of 
protection, a source of light, and/or as a source of heat.”

3.4 The energetic return on cooking

A consensus exists in the literature that cooking enhances the 
bioavailability of energy from plant-based foods, such as tubers and 
seeds (39–42). While the denaturation of proteins and the loss of 
structural integrity in meat are expected to augment its energetic value 
when cooked, several factors, including the toughening of meat fibers, 
Maillard reactions, and particularly the loss of fat during field roasting, 
counteract these benefits. Experimental studies involving mice fed 

TABLE 1 Caloric content of selected East African prey [based on data in (34); see Supplementary material].

Common name Scientific name Body weight (kg) Caloric content 
(kilocalories)

Days of consumption

Hippopotam (F) Hippopotamus amphibius 1,277 1,093,457 22

Buffalo (M) Syncerus caffer 753 525,022 10

Eland (M) Taurotragus oryx 508 406,518 8

Oryx (F) Oryx beisa 161 141,299 3

Topi (F) Damaliscus lunatus 104 57,127 1

Impala (M) Aepyceros melampus 57 32,539 0.5

Thomson’s Gazelle (M) Eudorcas thomsonii. 25 14,741 0.3

F, Female; M, Male. Consumption days for a group of 25 people at an average of 2000 calories per day (26).

TABLE 2 Average energetic returns (calories per hour) from plant gathering and prey hunting (31, 32).

Category N Average energetic return ca/h 95% CI

Kelly plants 105 1,443 1,025–1861

Kelly medium-size prey 25 19,227 13,846– 24,608

Morin et al. Total sample 129 14,877 11,138–18,615

Morin et al. Guns 35 27,007 17,694–37,425

Morin et al. Bow/spear rainforest 26 3,342 1807–4,877

Morin et al. bow/spear >100 kg 9 15,509 14,815–9,679

Morin et al. bow/spear >100 kg in non-rainforest 8 16,269 5,424–27,113

See Supplementary material for raw data.
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cooked and uncooked meat—designed to eliminate the variable of fat 
loss—have yielded inconclusive results regarding the net energetic 
contribution of cooked meat. Moreover, these studies have not 
quantified the magnitude of any such contribution (17, 40).

Bioenergetic returns for both plant-based and animal-based foods 
are commonly calculated based on their theoretical maximum caloric 
content rather than their actual digestible caloric contribution, which 
remains empirically undetermined. Consequently, the values presented 
in Table 2 represent maximal estimates. Given the low initial average 
bioenergetic return of 1,443 ca/h for plant-based foods and a narrow 
95% confidence interval (1025–1861 ca/h), the caloric gains attributable 
to cooking plants are likely to be minimal compared to those for meat. 
Magargal (42) (Table 3) quantifies the increase in digestibility due to 
cooking as 14–23%, 12.7, and 3.7% for starch, protein, and lipid 
components of plant foods, respectively. This energetic increase equates 
to a modest increase in energetic return, on the order of a few hundred 
calories per hour. Even if these digestibility gains were doubled, they 
would still be insufficient to offset the caloric cost of maintaining a fire, 
estimated to be  in the high hundreds of calories per hour (18, 19) 
(Table 3) or be comparable to the return benefits of preservation and 
predator protection of large prey. While using smaller, short-term fires 
for episodic cooking could potentially reduce collection costs, it is less 
probable that such fires would leave detectable traces hundreds of 
thousands of years later (43).

As for meat, the positive impact of cooking on protein 
digestibility (12.7%) is relevant to only half of the caloric content 
in large animals (44) (Table 1). The remaining caloric content is 
lipid-based, for which cooking enhances digestibility by a mere 
3.7%. Consequently, the weighted average increase in digestibility 
due to cooking would contribute approximately 8%, or around 
1,200 ca/h, to the overall energetic return. Consequently, 
energetic return for uncooked meat would approximate 15,000 
ca/h (i.e., ~16,200 ca/h minus 1,200 ca/h).

The energic cost of maintaining fires is highly variable and 
contingent upon environmental factors, making it difficult to 
quantify precisely. Nevertheless, even under the assumption of 
low cost for cooking plants, the energetic return from uncooked 
meat remains over 10 times greater than that from cooked plants 
(~15,000 ca/h versus 1,443 ca/h). In summary, whether cooked 
or uncooked, the bioenergetic yield from hunting substantially 
surpasses that from plant gathering.

4 Discussion

4.1 Energetic return and behavior

According to the Optimal Foraging Model (OFM) (45), the 
pronounced disparity in energetic returns between plant gathering 
and prey hunting suggests a predominance of hunting in early human 
subsistence strategies.

The OFM model employs the relative availability of prey and plant 
resources to predict dietary choices based on a priori rankings of food 
items. It is thus crucial to note that the abundance of large prey was 
considerably higher in periods preceding the Late Quaternary, prior 
to the megafaunal extinction events (23, 46–48). The extinction of 
megaherbivores led to a significant reduction in the faunal carrying 
capacity of ecosystems while concurrently increasing the vegetation 
carrying capacity (49–52). Consequently, large prey was more readily 
available to early humans than in contemporary settings, and its 
relative abundance compared to plant resources was likely higher.

4.2 Large prey consumption in the lower 
Paleolithic

A conspicuous presence of large and very large prey in early to middle 
Lower Paleolithic archeological sites is very common. Recent analyses of 
the archeozoological and paleontological East African record portray 
H. erectus as a habitual hunter of large prey (24, 53, 54). Preference for 
large prey animals during the Pleistocene is a conventional interpretation 
of archeological assemblages [e.g., (55, 56)]. Large animals, including 
elephants, are a common feature in African early Pleistocene sites (55, 
57–59) and sites outside Africa, such as Latame, Ubeidiya, Revadim and 
Gesher Benot Yaaq’ov in the Levant, Dmanisi in Georgia (25, 60–64), 
Marathousa in Greece (65, 66), 21 sites with Mommuyhus meridionalis 
remains in association with Acheulean or Oldowan stone tools in Spain 
(67), Castel de Guido and eight other elephant butchering sites in Italy 
(68) and Schoningen in Germany (69, 70). Indeed, according to Werdelin 
and Lewis (71), beginning 1.5 Mya, humans became members of the 
hypercarnivore guild, specializing in acquiring large herbivores, as 
evidenced by the extinction of sabertooth predators and some hyenas. At 
the same time, there was no unusual decline in the under-21 kg hypo-
carnivore group. A similar phenomenon of large carnivore extinction a 

TABLE 3 Early and middle lower Paleolithic sites with evident traces of fire and the presence of large fauna.

Site Age Large Fauna References

Wonderwerk stratum 10,11,12, S. 

Africa

1.0–1.96 Ma Equidae, Large Bovidae (4, 109)

Koobi Fora, Kenya FXJj 20 AB, 1.5 Ma Hippopotamidae, Giraffidae, Rhinoceratidae in 

FwJj14A, FwJj14B, and GaJi14

(110–112)

Koobi Fora, Kenya FXJj 20 Main, 1.5 Ma (38)

Gesher Benot Ya’acov, Israel 0.78 Ma Elephants, Hippopotamus (9, 60)

Swartkrans, Member 3, S. Africa 1–1.5 Ma Elephas, Equus, Hippopotamus, (113, 114)

Gadeb 8E, Ethiopia 1 Ma Hippopotamus, Elephant, Equus (115, 116)

Chesowanja, Kenya 1.42 Bovids, equids, hippopotamus (7)

Evron Quarry, Israel 1.0–0.8 Ma Elephant, Hippopotamus (6, 117)

Cueva Negra, Spain 0.78–0.98 Ma Stephanorhinus, Bison, (5, 118)
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few hundred thousand years after humans’ arrival was recently described 
in Spain (72). The decline of large carnivores in conjunction with human 
peopling and competition was also identified in Italy (73). Large animals, 
including elephants, continued to be a visible component of archeological 
sites worldwide throughout the Pleistocene (23, 67, 68, 74–78). Stiner (79) 
(p. S288) writes, “… hominins were big-game hunters, and they were 
rather specialized in their focus on ungulate prey.”

A multidisciplinary literature review including evidence from 
human physiology and genetics, archeology, paleontology, and zoology 
found that H. erectus was likely a hypercarnivore, consuming over 70% 
of his energy from meat and fat and specializing in obtaining large prey 
(80). We conclude that large prey contributed significantly to humans’ 
bioenergetic economy during the studied period. Consequently, large 
prey preservation by smoking and protection must have been a 
significant economic need for Paleolithic hunter-gatherers.

4.3 Meat preservation

A prominent impetus for fire utilization could be its role in food 
preservation through smoking and drying, extending the shelf-life of 
energetically valuable resources. This fire use would render fire a more 
energetically efficient tool for preserving the yield of hunting activities 
than for cooking plants or meat. The early use of fire for meat 
preservation may be less controversial than for predator protection, as 
evidence suggests various methods of meat preservation were employed, 
including drying and smoking, by late Paleolithic and recent hunter-
gatherers (8, 43, 81, 82). Moreover, it was demonstrated that late Lower 
Paleolithic humans intentionally preserved marrow within fallow-deer 
limb bones for several weeks while stored in a cave, thus supporting the 
attention paid to food preservation in the Paleolithic (83). Additionally, 
there is proof that humans can consume putrid meat (84), and thus, 
prey consumption could be extended beyond our modern standards.

The paucity of fire evidence in early archeological sites could be due 
to the poor preservation of campfires (14), or it may indicate that fires 
were primarily employed in sites characterized by intensive large prey 
consumption, like Gesher Benot Ya’acov where the energetic costs of 
wood collection would have been justified in order to preserve and protect 
the huge quantities of meat and fat consumed at the site (9, 25, 60). While 
the use of torches for active scavenging to deter predators from hunted 
prey (85) or to impede the mobility of megaherbivores during hunts (86) 
is theoretically conceivable, empirical evidence for such practices remains 
conspicuously absent from the archeological record.

4.4 Anti-predation demands on Homo 
erectus

The threat posed to Homo erectus, and its possession of prey would 
have been substantial. Interspecific killings are common among 
carnivores with intermediate differences in body size and comparable 
predatory habits (87). Homo erectus, with an estimated body weight of 
60–70 kgs (88) and targeting large prey, meets this definition. Predatory 
species of the Hyaenidae family, such as the Hyaena hyaena and the 
Crocuta genus were kleptoparasites, and theft of prey was also observed 
in lions (89).

Mitigating predation pressure constitutes a significant facet of 
animal behavior, as extensively documented in the literature (90). For 
instance, chimpanzees employ arboreal nesting as a defensive strategy 

against predators (91). The transition to terrestrial sleep is generally 
attributed to Homo erectus (92). As an ancillary hypothesis, the 
necessity to guard large prey over extended periods by Homo erectus 
could have catalyzed this behavioral shift.

Notably, the risk profile for Homo erectus diverged substantially 
from that of other carnivores. Unlike many carnivores, humans often 
transported their kills to a centralized location (93). A single 
megaherbivore could contain calories ranging from 1 million to 
several million (25, 26, 94), thereby sustaining a community for an 
extended duration (Table 1). Consumption would span days, weeks, 
or even months. Gaudzinski-Windheuser, Kindler (26) (p. 11) posit 
that, based on the caloric content of Straight-tusked elephants at the 
Neumark-Nord 1 site, a local hunter-gatherer group of approximately 
25 individuals could be  sustained for a minimum of 3 months, 
contingent upon the availability of food preservation methods.

During this extended period, the partially consumed carcass would 
inevitably attract both predators and scavengers, thereby elevating the 
risk to both the prey and the human group. Disentangling the risk of prey 
theft from the risk of predation upon humans is both impractical and 
likely inconsequential. While the economic cost of theft can be quantified 
(Table 2), the risk to human life defies easy quantification. The presence 
of partially consumed megaherbivores would have intensified the 
predation risk, making it a more acute issue for Homo erectus compared 
to its predecessors, who generally targeted smaller prey (24).

In summary, the risk profile for Homo erectus extended beyond 
the immediate threat of loss of life to include the potential forfeiture 
of substantial energetic investments in procuring food. Moreover, the 
temporal proximity of predators shifted from intermittent episodes 
lasting minutes or hours to a near-constant presence, particularly if 
the habitual consumption of large prey constituted a significant 
portion of the diet. Thus, fire could provide a significant risk-reduction 
mean to humans in the discussed period. The partial transition to cave 
habitation during the Late Middle Pleistocene [e.g., (36)] mitigated 
predation risks by constraining the avenues of approach available to 
predators. While caves were frequented by apex predators such as cave 
lions, cave bears, and hyenas, partially consumed prey and preserved 
anatomical components [e.g., (83)] would have invariably attracted 
both predators and scavengers. Despite this, scant evidence suggests 
interspecific prey sharing within cave environments, possibly 
attributable to the use of fire [e.g., (95)].

Other uses of fire by current hunter gatherers such as warmth, 
ritual, raw material processing, light and protection from insect (43) 
cannot be ruled out but do not lend themselves to a simple economic 
modeling, the preferred method of investigation in this paper.

4.5 The relationship between prey 
preservation and protection hypothesis 
and the cooking hypothesis

We do not contend that fire was not used for cooking during 
the early to middle Lower Paleolithic periods and beyond. 
Empirical evidence indicates that fish cooking, for example, 
occurred at Gesher Benot Ya’akov approximately 780,000 years 
ago (96). Such culinary activities would not undermine our 
hypothesis; if a fire were available for prey preservation and 
protection, its multifunctional utility for cooking, warmth, 
illumination, and social cohesion would naturally be exploited at 
no additional cost. However, the assertion that Homo erectus’ 
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reduced masticatory requirements and capacity for high-quality 
food consumption were contingent upon cooking (12) is 
challenging to reconcile. Zink and Lieberman (97) demonstrated 
that the mechanical reduction of food by stone tools into smaller 
fragments could diminish masticatory demands. Significant 
consumption of soft fat tissue by Homo erectus due to limited 
protein metabolism capabilities (25, 80, 98) could also enable a 
smaller masticatory system.

Contrary to Wrangham’s original hypothesis, which posits cooking as 
the catalyst for key evolutionary adaptations in Homo erectus, our 
hypothesis redirects the focus toward specialization in large prey hunting. 
Consumption of plants by hominins continued as it had for millions of 
years, and when cooking had taken place, it could have been done on fires 
that were initiated to preserve and protect prey. We  have delineated 
additional, non-faunal evidence supporting Homo erectus’ specialization 
in large prey acquisition and describing possible adaptations that can 
be attributed to this specialization (44, 80). By specialization in large prey, 
we  mean that Homo erectus were adapted and likely energetically 
dependent on the acquisition of significant quantities of large prey. There 
is evidence that Homo erectus did acquire smaller prey and consumed 
plants (60, 99). The cognitive demands associated with fire production and 
maintenance for preservation and protection could have been instrumental 
in driving the observed protracted increase in average brain volume in 
Homo erectus (100). This hypothesis is not so different than Wrangham’s 
as it set the need to produce fire as one of the drivers of Homo erectus’ 
evolution. However, it emphasizes the specialization in acquiring large 
prey as its driver.

4.6 Discrepancy between 
ethnography-based protection needs and 
energetic return data and early Paleolithic 
conditions

Ethnographic analogies with Paleolithic circumstances have been 
used to argue that, in the Paleolithic, protection from predators was a 
negligible requirement (43), and that the energetic return on hunting 
was much lower than our prediction, around 980 calories per hour 
(101). The validity of analogies between recent and Paleolithic hunter-
gatherer behavior has been the subject of prolonged debate, sometimes 
leading to strong statements such as “To hell with Ethnoarchaeology” 
(27) and “The tyranny of ethnography” (28). Over 60 years ago, the 
founders of modern archeology established that any analogy between 
recent and later occurrence must meet the fundamental requirement 
of comparable environments and technologies (102). This is even 
more critical when seeking quantitative values like energetic returns, 
which are directly affected by environmental conditions and 
technological capabilities. We  addressed this lacuna in detail in a 
paper dedicated to this problem (30), so we will only briefly review the 
main arguments here.

Foraging optimization models often use energetic returns as a key 
factor in determining optimal strategies. Accordingly, prey is added to 
the diet in descending order of energetic return (103, 104). Thus, the 
pronounced disparity in energetic returns between plant gathering 
and prey hunting suggests a predominance of hunting in early human 
subsistence strategies.

Another factor in food items ranking is the relative availability of 
prey and plant resources. It is thus crucial to note that the abundance 
of large prey was considerably higher in periods preceding the Late 

Quaternary Megafaunal Extinction and later, Holocene extinctions 
(23, 46–48). The extinction of megaherbivores led to a significant 
reduction in the faunal carrying capacity of ecosystems while 
concurrently increasing the vegetation carrying capacity (49–52). 
Consequently, large prey was more abundant compared to plant 
resources before the Late Quaternary, increasing its relative acquisition 
in previous periods, compared to ethnography-based findings.

Large herbivores also create and maintain open landscapes, which 
affect the relative ease of searching for and acquiring prey and plants, 
and the relative faunal biomass, which tends to be higher in open 
landscapes (105).

Kraft, Venkataraman (101) dataset which claims average energetic 
return of 982 cal/h is largely composed of rainforest groups who practice 
part-time horticulture. As we saw in Table 2, energetic returns in rainforest 
are some five times lower than in open forests. Moreover, their extremely 
low 982 calories per hour return does not align with Morin, Bird (32) 
returns, even when we normalize them for the search costs included in 
Kraft et al.’s net calculations. For example, a common Paleolithic prey, a 
buffalo, contains 550,000 calories (Supplementary material). Morin et al.’s 
average of 14,877 calories means that handling and pursuit would have 
taken (550,000 / 14,877) 37 h to complete. Applying Kraft et al.’s 982 
calories per hour net return, including search, results in (550,000 / 982) 
560 h for handling, pursuit, and search, so (560–37) 523 h for search. 
Assuming 8-h search days, this equates to 65 days of search before hunters 
were supposed to hunt one buffalo, while a buffalo could last a 25-person 
group for about 9 days (550,000 / (25 × 2,500)). This example clearly 
shows that the return on hunting could not have been that low, or there 
would not have been evidence for the acquisition and exploitation of 
buffalo (or Bos/Bison) in the Paleolithic. In other words, Kraft, 
Venkataraman (101) results may be correct for hunting of small prey like 
squirrels and rodents in a South American Jungle, where search time per 
calorie could be substantial but not for large highly visible prey almost 
nine hundred kgs bigger, which lives in large herds in the African open 
savannahs. On a side note, it is doubtful that humans could survive in the 
rainforest solely on hunting and gathering with such low returns without 
the relatively high return on horticulture (101).

Regarding McCauley, Collard (43) claim of little fire use for protection 
in recent hunter-gatherers, the effects of the extinctions of large herbivores 
and the resulting non-analogous present environment (48) on the need for 
fire for preservation and protection are substantial. The megafauna 
extinction also caused the extinction of large carnivores (106). The decline 
in large prey led to the hunting of smaller prey that lasted for less time, 
hence reducing the need for protection and preservation. Coupled with the 
presence of dogs in many recent hunter-gatherer camps, the need for fire 
use for protection must have declined substantially, compared to 
earlier periods.

In summary, McCauley, Collard (43) results and Kraft, 
Venkataraman (101) cannot be used as an inference to the Lower 
Paleolithic period.

5 Conclusion and future research

The study connects early fire use to dietary strategies, 
emphasizing the nutritional importance of meat and fat from large 
prey in the Lower Paleolithic. It challenges assumptions about the 
primacy of cooking in shaping human nutritional evolution, 
potentially influencing how we understand dietary adaptations in 
Homo erectus.
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By focusing on bioenergetic costs and benefits, the paper reframes 
fire use as a strategic adaptation to maximize returns from hunting, a 
key subsistence activity for Homo erectus.

In archeology, behavioral ecology is often employed to elucidate 
decisions related to prey hunting and plant gathering (107).

In this context, we delved into the bioenergetic implications 
that sustaining fire incurs energetic costs, necessitating a net 
positive energetic return to justify its production and 
maintenance. Our hypothesis posits that the primary impetus for 
early fire use lay in the imperative to preserve and safeguard large 
prey from predators during the extended period of its 
consumption. We draw upon the significantly higher energetic 
returns associated with hunting prey than gathering plants to 
substantiate our hypothesis.

In recent hunter-gatherers, the average energetic yield from plant 
foraging is less than one-tenth of the return obtained from the most 
analogous hunting prey weighing over 100 kg in non-rainforest African 
environments (Table 2). Although we argue that ethnographic data may 
not serve as an ideal analogy for the Lower Paleolithic, the substantial 
disparity in energetic returns between plant gathering and hunting and 
the higher relative density of large herbivores in the earlier times suggests 
that a similar, sizable difference likely existed during the early to middle 
Lower Paleolithic. The present energetic return gap that is measured on a 
background of increased relative biomass of plants (106) strengthen the 
case for the existence of the plant animal return gap during the Paleolithic 
period when relative plants abundance was smaller.

The substantial evidence for the consumption of large prey by 
Homo erectus validates a need to preserve and protect prey remains for 
many days. The relative gain of energetic return from the prevention of 
prey deterioration and theft substantially outweighs the gains that 
cooking could provide and thus should have been a more likely driver 
of the production of fire. Other uses of fire like warmth and light do not 
lend themselves to simple economic modeling so could not be rejected 
or supported using our method.

Although cooking is stated as the most common use of fire among 
recent hunter-gatherers, we argued that the presence of dogs and of 
smaller prey due to the megafauna extinction throughout the 
Pleistocene and the Holocene have reduced the need for the preservation 
of prey and the protection from diminishing guilds of large predators.

Since there is little knowledge of the extent of which Early 
Pleistocene predators and scavengers would have been deterred by fire, 
the relative importance of preservation and protection in the early use 
of fire remains open.

The cognitive adaptations that presumably were required for fire 
production, combined with the need to adapt to acquire large prey, 
together may explain the marked increase in Homo erectus’ brain 
volume. In return, large fat and meat deposits, as well as fire protection 
and preservation, sustainably supported the extensive caloric demands 
of Homo erectus. This hypothesis is associated with our unifying 
hypothesis explaining human physiological and cultural evolution as an 
adaptation to varying prey sizes during the Paleolithic period (44, 108).

The hypothesis could be  further scrutinized by examining 
temporal trends in the co-occurrence of predator gnawing marks 
and human consumption marks on faunal remains and by 
contrasting gnawing rates at sites with and without fire traces. 
However, such testing is constrained by uncertainties surrounding 
the anthropogenic origins of fire at identified sites and the absence 
of fire at others. The scarcity of early sites with pertinent evidence 
further complicates empirical validation. However, the nexus 

between evidence of fire and the presence of large prey mammals at 
several early-middle Lower Paleolithic sites strongly supports the 
hypothesis presented here.

We hope the prey preservation and protection hypothesis will 
generate more relevant research and eagerly await further 
developments in the field.
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