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Background: Insulin-like Growth Factor I (IGF-I) and Vitamin D are crucial for 
growth and metabolism, with their levels declining with age. However, their 
mutual interactions and contributions to body composition remain unclear.

Objectives: To examine the relationships between IGF-I, Vitamin D, and body 
composition in geriatric outpatients, and to test the mediational role of IGF-I in 
the association between Vitamin D and Fat-Free Mass (FFM).

Methods: One hundred thirty patients were eligible at the Geriatric Outpatient 
Clinic at the Policlinico Umberto I, Sapienza University of Rome, Italy. 
Multimorbidity was evaluated with the Cumulative Illness Rating scale for 
Geriatrics (CIRS-G). Body composition was measured using bioelectrical 
impedance analysis. Complete blood count, metabolic panel, IGF-I, and 25(OH) 
Vitamin D were assessed.

Results: Ninety-one patients were included in the analysis. Mean age was 
74.4 ± 7.2 years; 50.5% female. Mean BMI was 28 kg/m2 ± 3.9. Mean CIRS-G 
total score was 14.14 ± 4.1, and Severity Index (SI) was 1.16 ± 0.32. Median 
IGF-I was 122.0 ng/mL (IQR, 69.8) with higher levels in males compared to 
females (p = 0.0096). Mean 25(OH) Vitamin D was 27.04 ng/mL ± 14.69 with 
no significant sex difference. Level of 25(OH) Vitamin D positively correlated 
with IGF-I (ρ = 0.317, p = 0.003), while no correlation was found between 
Vitamin D and body composition parameters. Patients with higher IGF-I 
exhibited higher Total Body Water (TBW) (p = 0.024), Intracellular Water (ICW) 
(p = 0.018), FFM (p = 0.022), and Muscle Mass (MM) (p = 0.017), Body Cell Mass 
(BCM) (p = 0.046). Linear regression analysis showed that IGF-I and male sex 
predicted FFM (B = 13.933, p < 0.001; B = 0.040; p = 0.034; respectively). The 
mediation analysis confirmed no significant direct effect of Vitamin D on FFM 
(direct effect, B = −0.058, p = 0.319, 95% CI: −0.175, 0.058); however, the effect 
was significant when mediated by IGF-I (indirect effect, B = 0.039, SE = 0.022, 
95% CI: 0.005, 0.091).

Conclusion: These findings provide further evidence of a positive correlation 
between IGF-I and lean body mass and suggest that IGF-I may mediate the 
physiological effect of Vitamin D on FFM, highlighting their potential roles in 
assessing pre-frailty and personalizing nutrition interventions.
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1 Introduction

Aging is a complex phenomenon characterized by the dynamic 
interplay among multiple biological processes, including alterations 
in mitochondrial function, loss of proteostasis, and dysregulated 
nutrient-sensing (1, 2). Over time, these mechanisms contribute to 
phenotypic changes such as modifications in body composition, 
which may increase the risk for sarcopenia and frailty (3–6). Reduced 
physical activity and age-related changes to metabolic and hormonal 
responses may further promote the loss of muscle mass (7–11). 
Insulin-like Growth Factor I (IGF-I) is a key regulator of growth and 
development and plays an essential role in the anabolic pathways (12, 
13). IGF-I is primarily produced in the liver, where it mediates the 
actions of Growth Hormone (GH) (14, 15). Furthermore, IGF-I exerts 
autocrine and paracrine effects in muscle cells, promoting cell 
differentiation, survival, and repair (16–18). Upon binding to its 
transmembrane receptors, which consist of two extracellular 
α-subunits and two transmembrane β-subunits with intrinsic tyrosine 
kinase activity, similar to other hormones (19), IGF-I modulates 
several intracellular signaling cascades (20, 21). The PI3K/Akt and 
MAPK/ERK pathways modulate protein synthesis (22), muscle 
hypertrophy (23), and satellite cell activation (24, 25), contributing to 
muscle homeostasis.

IGF-I levels fluctuate throughout the lifespan, beginning with low 
concentrations in infancy, peaking during adolescence, and tending 
to decline in adulthood (26, 27). However, the biological role of IGF-I 
in the aging process is complex, with its effects on health outcomes 
influenced by metabolic changes and the presence of chronic illnesses 
(28–30). For example, low IGF-I has been associated with low HDL 
cholesterol (31), and reduced insulin sensitivity (32), both of which 
are known risk factors for cardiovascular disease (CVD) and type 2 
diabetes mellitus (T2DM) (33–35). Additionally, low serum IGF-I has 
been linked to sarcopenia in both animal models and human studies 
(36, 37). In contrast, higher IGF-I levels have been associated with an 
increased risk of certain forms of cancer (28, 38).

A large prospective study involving over 7,000 individuals, 
stratified by age, described a U-shaped relationship between IGF-I 
levels and the risk of cancer, CVD, and all-cause mortality, suggesting 
that both low and high circulating IGF-I levels may increase the risk 
of such conditions (39). IGF-I levels are also influenced by factors such 
as physical activity and nutrient intake, further contributing to 
variability in research findings (40–44). In this regard, previous studies 
suggest a correlation between Vitamin D and IGF-I (45–48), although 
randomized controlled trials have yielded inconsistent results (49–51). 
Furthermore, the mechanisms underlying these observations remain 
elusive. Indeed, hepatocytes do not consistently express the nuclear 
Vitamin D receptor (VDR), while non-parenchymal liver cells have 
been shown to express VDR (52), suggesting a potential role of 
Vitamin D in modulating IGF-I bioavailability (53). Moreover, 
evidence suggests that IGF-I may stimulate the enzyme 
1-α-hydroxylase in the kidneys, which converts 25-hydroxyvitamin D 
(25 OH Vitamin D) into its active form, calcitriol 
(1,25-dihydroxyvitamin D) (54, 55). In addition to the described effect 

of IGF-I on body composition, Vitamin D deficiency has been 
associated with depressive symptoms (56), frailty (57), muscle 
weakness (58), and an increased risk for falls (59, 60). Given the 
age-associated decline of both IGF-I and Vitamin D (27, 61), this 
study aimed to (i) examine the relationships between IGF-I, Vitamin 
D, and parameters of body composition; (ii) explore the clinical 
variables associated with IGF-I levels; and (iii) test IGF-I as a mediator 
in the relationship between Vitamin D and FFM in geriatric outpatients.

2 Materials and methods

2.1 Study design and criteria

This cross-sectional study was conducted at the Geriatric 
Outpatient Clinic at Policlinico Umberto I University Hospital, Sapienza 
University of Rome, Italy. Participants with the following criteria were 
considered eligible: age ≥65 years, written informed consent to 
participate in the study, no contraindications to body composition 
analysis according to the device manufacturer instructions, and 
independence in both the activities of daily living (ADL) and the 
instrumental activities of daily living (IADL). Exclusion criteria were: 
a body mass index (BMI) > 40 kg/m2, a history of alcohol misuse 
(more than 7 standard drinks per week for women and more than 14 
standard drinks per week for men), alterations in liver enzymes such 
as alanine aminotransferase (ALT) and aspartate transaminase (AST) 
beyond the normal reference range, an estimated Glomerular 
Filtration Rate (eGFR) < 50 mL/min/1.73 m2, reported weight 
fluctuation in the past 3 months (>10% of total body weight), poorly 
controlled T2DM or individuals receiving insulin therapy, and history 
of cancer treated with radiation or chemotherapy in the past 5 years. 
Patients with acute medical conditions were excluded. A total of 130 
patients were consecutively enrolled. IGF-I measurements were 
completed for 92 patients due to an unexpected shortage of reagents 
in the laboratories. One patient was excluded for not meeting the 
study criteria, leading to 91 patients in the final analysis.

2.2 Assessments

A Comprehensive Geriatric Assessment (CGA) was performed 
for each participant, which included a detailed clinical history, 
physical examination, electrocardiogram, and a review of all relevant 
diagnostics. The Cumulative Illness Rating Scale for Geriatrics 
(CIRS-G) was then completed and reviewed by two physicians. Any 
discrepancies in the CIRS-G scores were resolved with a third 
physician. For the analysis, the CIRS-G was calculated excluding the 
psychiatric item (item 14), resulting in a 13-item scale. Physical 
activity levels were evaluated using the self-reported Physical Activity 
Scale for the Elderly (PASE). All patients provided their informed 
consent, and the study was approved by the local board of Sapienza 
University of Rome and conformed to the ethical guidelines of the 
Declaration of Helsinki.
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2.2.1 Body composition
After the initial visit, enrolled participants returned to the clinic 

for anthropometric measurements (i.e., weight, height, and waist 
circumference). Body composition was assessed using bioimpedance 
analysis (BIA 101, AKERN, Italy), conducted between 8:30 a.m. and 
11:00 a.m. with participants fasted overnight. BIA was performed 
following a 5-min rest in the supine position, with the participant’s 
upper limbs abducted at a 30° angle and lower limbs at a 45° angle. 
Bioelectrical data and body composition parameters were then 
collected, and reported as follows: Total Body Water (TBW) in liters, 
Intra- and Extracellular Water (ICW and ECW, respectively) in liters, 
Fat-Free mass (FFM) in kilograms, Muscle Mass (MM) in kilograms, 
Body Cell Mass (BCM) in kilograms, and Fat Mass (FM) in kilograms.

2.2.2 Blood tests and biomarkers
Blood samples were collected from the participants and sent to a local 

laboratory. All samples were handled and analyzed according to standard 
practices for measuring hematological parameters, including complete 
blood count, serum electrolytes, metabolic panel, albumin, folate, Vitamin 
B12, 25(OH) Vitamin D, IGF-I, and C-reactive protein (CRP).

2.3 Statistical analysis

Statistical analysis was performed using SPSS software (version 29.0.2; 
IBM, Armonk, NY, United  States). Descriptive statistics were used to 
summarize the data. Categorical variables were reported as frequencies or 
percentages, while continuous variables were presented as means and 
standard deviations (SD) or medians and interquartile ranges (IQR), 
depending on the distribution of the data. Spearman’s rank correlation was 
used to assess associations between variables. To compare numerical data 
between groups, either Student’s t-test or the Mann–Whitney U test was 
used, based on the normality of the data distribution. All tests were 
two-tailed, and a p-values less than 0.05 was considered statistically 
significant. To investigate the factors independently associated with FFM, 
a multivariate linear regression model was constructed using the variables 
of interest. Prior to analysis, the fundamental assumptions of linear 
regression were assessed. To test the hypothesis of IGF-I as a mediator in 
the relationship between Vitamin D and FFM, a mediation analysis was 
conducted using the model described by Preacher and Hayes (62). 
Specifically, we employed Model 4 of the SPSS PROCESS Macro to test the 
indirect effect of the independent variable [25(OH) Vitamin D] on the 
dependent variable (FFM) through the mediator (IGF-I) (63). The analysis 
utilized 5,000 bootstrap samples to estimate the indirect effect and construct 
95% confidence intervals (CIs) for the mediation effect. Original figures 
were prepared using GraphPad Prism (version 10.4.1 for Mac, GraphPad 
Software, Boston, Massachusetts, United States) and BioRender.

3 Results

3.1 Patient characteristics

The analysis included 91 patients (50.5% women). The mean age 
of participants was 74.4 ± 7.2 years, and the mean BMI was 
28.0 ± 3.9 kg/m2. The prevalence of hypertension was 76.9%, while 
dyslipidemia and Impaired Fasting Glucose (IFG)/T2DM were 
present in 59.3 and 28% of the participants, respectively. Atrial 

fibrillation, Coronary Heart Disease (CHD), and history of Transient 
Ischemic Attacks (TIA) were each present in 6.5% of participants. The 
mean CIRS-G score was 14.4 ± 4.1 while the severity index was 
1.16 ± 0.32, suggesting a moderate level of multimorbidity. Clinical 
characteristics of patients are reported in Tables 1, 2.

3.2 Relationship between IGF-I, vitamin D, 
and parameters of body composition

The median IGF-I level was 122.0 ng/mL (IQR, 69.8), while the 
mean 25(OH) Vitamin D level was 27.04 ng/mL (±14.69 SD). 

TABLE 1 Patient characteristics and blood parameters.

Parameters Participants (N = 91)

Age, years 74.4 ± 7.2

Females, n (%) 46 (50.5)

BMI, kg/m2 28 ± 3.9

Body weight, kg 73 ± 12.5

Waist circumference, cm 99.2 ± 10.2

Blood count

Hemoglobin, g/dL 13.8 ± 1.23

Lymphocytes,103/μL 2 ± 0.83

Platelets, 103/μL 223 (74.5)

Kidney and liver function

Creatinine, mg/dL 0.88 ± 0.2

eGFR (CKD-EPI), mL/min/1.73 m2 81.67 ± 19.4

AST, U/L 21.3 ± 11.2

ALT, U/L 19.5 ± 16

Hormones, metabolism and inflammation

Fasting plasma glucose, mg/dL 94.4 ± 17.7

Fasting Insulin, μUI/mL 9.3 (7.5)

Hemoglobin A1c, % 5.6 (0.53)

IGF-I, ng/mL 122 (69.8)

Cholesterol, mg/dL 196.5 ± 33.8

LDL, mg/dL 117.3 ± 33.3

HDL, mg/dL 58 ± 13

Triglycerides, mg/dL 111 ± 40

CRP, μg/L 2000 (2525)

Nutrition and physical activity

Total Protein, g/dL 71.4 ± 7.9

Albumin, g/dL 4.5 ± 0.2

Folate (ng/mL) 8 (4.1)

Vitamin B12 (pg/mL) 322 (246)

25(OH) Vitamin D (ng/mL) 27.04 ± 14.69

PASE score 116 ± 58.96

Data are presented as mean (± SD) or median (IQR). Glucose, total cholesterol, LDL, HDL, 
triglycerides, folate, vitamin B12, and Physical Activity Scale for the Elderly (PASE) were 
available for 88 patients; insulin for 82 patients, AST and ALT were available for 81 patients, 
C-reactive protein (CRP), 78 patients.
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IGF-I levels were significantly higher in males compared to females 
(p = 0.0096), whereas no significant sex differences were observed 
for the 25(OH) Vitamin D (Figures  1A,B). Levels of 25(OH) 
Vitamin D positively correlated with IGF-I (ρ = 0.317, p = 0.003) 
(Figure 1C), while no significant correlations were found between 
25(OH) Vitamin D and body composition parameters. As 
expected, parameters of muscularity were higher in males 
compared to females (ICW: p  < 0.001; FFM: p  < 0.001; MM: 
p < 0.001; BCM: p < 0.001), while no significant sex differences 
were observed for FM (p = 0.272). In an exploratory sex-stratified 
analysis, a positive trend was observed between IGF-I and BCM in 
females only (ρ  = 0.256, p  = 0.086). Additionally, a direct 
correlation between FM and CRP was found in the overall cohort 
(ρ = 0.387, p < 0.001).

Given the lack of consistent sex-specific associations between 
IGF-I and parameters of muscularity, the cohort was subsequently 
dichotomized based on the median IGF-I level, resulting in two 
subgroups: low (IGF-I ≤ 122.0 ng/mL) and high (IGF-I > 122.0 ng/
mL). As summarized in Table 3, significant clinical differences between 
the two groups were observed for number of males (high IGF-I vs. low 
IGF-I, 29 vs. 18; p = 0.017) and 25(OH) Vitamin D levels (high IGF-I 
vs. low IGF-I, 30.37 ± 15.04 vs. 23.45 ± 2.14 ng/mL; p = 0.031).

In terms of body composition, patients with higher IGF-I 
exhibited significantly greater values, compared to low IGF-I, for the 
following parameters: TBW (41.69 ± 8.7 Lt vs. 37.70 ± 7.92 Lt; 
p = 0.024), ICW (21.50 [IQR, 8.6] Lt vs. 17.55 [IQR, 9.3] Lt; p = 0.018), 
FFM (52.23 ± 11.06 kg vs. 47.11 ± 9.90 kg; p = 0.022), MM 
(33.26 ± 7.45 kg vs. 29.45 ± 7.52 kg, p = 0.017) and BCM (26.66 ± 
9.46 kg vs. 24.77 ± 8.90 kg; p = 0.046). No significant difference in FM 
was observed between the two groups (Table 4).

Linear regression analysis was performed to identify factors 
independently associated with FFM. The analysis revealed that 
IGF-I levels (B = 0.40, p = 0.034) and male sex (B = 13.933, 

p < 0.001) were independently and significantly associated with 
FFM. No significant associations were found for age (p = 0.154), 
25(OH) Vitamin D (p = 0.398), levels of physical activity (PASE 
score) (p = 0.425), and level of multimorbidity (CIRS-G score) 
(p = 0.645) (Table 5).

3.3 Mediation analysis

Although our analysis found no significant associations 
between Vitamin D and FFM, we hypothesized that the effect of 
Vitamin D on FFM could be  mediated by IGF-I. To test this 
hypothesis, we  conducted a mediation analysis, using 25(OH) 
Vitamin D as the independent variable, FFM as the dependent 
variable, and IGF-I as the mediator, adjusting for age and sex. The 
results of the mediation analysis showed a significant positive effect 
of Vitamin D on IGF-I (B = 0.951; SE = 0.374, p = 0.013). In turn, 
IGF-I was positively associated with FFM (B = 0.041; SE = 0.017, 
p = 0.017). As expected, the direct effect of Vitamin D on FFM was 
not significant (B = −0.058; SE = 0.058, p = 0.319), nor was the 
total effect of Vitamin D on FFM (B = −0.019; SE = 0.058, 95% CI: 
−0.134, 0.096, p = 0.738). However, the indirect effect of Vitamin 
D on FFM through IGF-I was significant (B = 0.039; SE = 0.022, 
95% CI: 0.005, 0.091) with male sex being a significant covariate in 
the model (B = 12.555, p < 0.001). Results of the mediation analysis 
are reported in Figure 2, integrated with the associated graphical 
representation of the theoretical framework.

TABLE 2 Prevalence of cardiometabolic disorders and level of 
multimorbidity.

Clinical characteristics Participants (N = 91)

Hypertension, n (%) 70 (76.9)

Dyslipidemia, n (%) 54 (59.3)

IFG/T2DM, n (%) 26 (28)

TIA, n (%) 6 (6.5)

CHD, n (%) 6 (6.5)

Atrial Fibrillation, n (%) 6 (6.6)

CIRS-G (TS) 14.4 ± 4.1

CIRS-G (SI) 1.16 ± 0.32

Medications*

Antihypertensives (%) 80

Antiplatelet (%) 62

Oral hypoglycemics (%) 16

Lipid lowering (%) 43

Data are presented as percentages or mean (± SD). CIRS-G (TS): Cumulative Illness Rating 
scale for geriatrics (Total Score); CIRS-G (SI): Cumulative Illness Rating scale for Geriatrics 
(Severity Index). IFG, impaired fasting glucose; T2DM, type 2 diabetes mellitus. TIA, 
transient ischemic attack; CHD, coronary heart disease. *Most prevalent medications 
prescribed for cardiometabolic disorders were available for 68 patients.

FIGURE 1

Sex differences in circulating levels of IGF-I (A) and 25(OH) Vitamin D 
(B). Bars represent mean ± SD. Scatter plot showing the Spearman 
correlation between 25(OH) Vitamin D and IGF-I levels, with a fitted 
regression line (C); p-values < 0.05 were considered statistically 
significant. Created with BioRender.com. Vicinanza, R. (2025) https://
BioRender.com/l25t663.
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TABLE 3 Clinical variables according to high (≥122.0 ng/mL) and low (<122.0 ng/mL) levels of IGF-I.

Parameter High IGF-I
≥122.0 ng/mL

Low IGF-I levels
<122.0 ng/mL

p-value

(N = 46) (N = 47)

Age, years 74.0 ± 7.5 74.7 ± 6.9 0.588

Males, n (%) 29 (63) 18 (38) 0.017

Anthropometrics

Body mass index, kg/m2 27.9 ± 4.1 28.3 ± 4.2 0.669

Body weight, kg 75.2 ± 13.9 72.1 ± 12.3 0.266

Waist circumference, cm 101.3 ± 10.5 98.1 ± 10.6 0.154

Nutrition and hormones

Folate (ng/mL) 7.70 (4) 7.95 (4.3) 0.941

Vitamin B12 (pg/mL) 361 (277) 337 (249) 0.366

25 OH Vitamin D (ng/mL) 30.37 ± 15.04 23.45 ± 2.14 0.031

Albumin, g/dL 45.15 ± 2.34 44.91 ± 2.58 0.658

Fasting plasma glucose, mg/dL 88 (24) 95 (19) 0.382

Fasting Insulin, μUI/mL 9.3 (7.1) 9 (9.53) 0.579

Hemoglobin A1c, % 5.6 (0.70) 5.5 (0.5) 0.342

Physical activity

PASE score 116.5 ± 63.76 118.6 ± 54.94 0.867

Inflammation and comorbidity

C-reactive protein, μg/mL 2000 (2700) 2200 (2550) 0.889

CIRS-G (TS) 12.47 ± 0.67 12.37 ± 0.54 0.455

CIRS-G (SI) 1.1 ± 0.3 1.1 ± 0.3 0.956

Data are presented as mean (± SD) or median (IQR). Student’s t-test or the Mann–Whitney U test was used based on the normality of the data distribution; p-values < 0.05 were considered 
statistically significant and indicated in bold. CIRS-G (TS): Cumulative Illness Rating Scale for Geriatrics (Total Score); CIRS-G (SI): Cumulative Illness Rating Scale for Geriatrics (Severity 
Index); PASE: Physical Activity Scale for the Elderly.

TABLE 4 Body composition parameters according to high and low levels of IGF-I.

Body composition measures High IGF-I
≥122.0 ng/mL

Low IGF-I levels
<122.0 ng/mL

p-value

TBW, Lt 41.69 ± 8.7 37.70 ± 7.92 0.024

ICW, Lt 21.50 (8.6) 17.55 (9.3) 0.018

ECW, Lt 20.06 (7.2) 18.25 (4.28) 0.116

FFM, kg 52.23 ± 11.06 47.11 ± 9.90 0.022

MM, kg 33.26 ± 7.45 29.45 ± 7.52 0.017

BCM, kg 26.66 ± 9.46 24.77 ± 8.90 0.046

FM, kg 25.59 ± 6.83 26.62 ± 7.42 0.491

Data is presented as mean (± SD) or median (IQR). Student’s t-test or the Mann–Whitney U test was used based on the normality of the data distribution; p-values < 0.05 were considered statistically 
significant and indicated in bold. TBW, total body water; ICW, intracellular water; ECW, extracellular water; FFM, fat-free mass; MM, muscle mass; BCM, body cell mass; FM, fat mass.

TABLE 5 Linear regression analysis with FFM (Fat-Free Mass) as a dependent variable.

Variable B S. E. t 95% CI p-value

Age, years −0.193 0.143 −1.441 −0.461 0.074 0.154

Male 13.933 1.872 7.443 10.198 17.667 <0.001

IGF-I (ng/mL) 0.40 0.019 2.159 0.003 0.077 0.034

25(OH) Vitamin D (ng/mL) −0.53 0.062 −0.850 −0.177 0.071 0.398

PASE score −0.13 0.016 −0.802 −0.045 0.019 0.425

CIRS-G (TS) 0.691 1.494 0.463 −2.289 3.671 0.645

CIRS-G (TS), Cumulative Illness Rating Scale for Geriatrics (Total Score); PASE, Physical Activity Scale for the Elderly; p-values < 0.05 were considered statistically significant and indicated in bold.
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4 Discussion

The present study investigated the relationships between IGF-I, 
Vitamin D, and body composition parameters in geriatric outpatients 
with moderate multimorbidity. Our findings showed that (i) IGF-I 
positively and significantly correlated with Vitamin D, (ii) higher 
IGF-I, but not Vitamin D, was significantly associated with parameters 
of muscularity, and along with male sex, was an independent predictor 
of FFM, (iii) IGF-I was an indirect mediator of the effect of Vitamin 
D on FFM, although no significant direct or total effects were found.

The observed relationship between Vitamin D and IGF-I was 
consistent with previous findings (46, 64–66), including a Mendelian 
randomization study demonstrating a positive association between 
IGF-I and 25(OH) Vitamin D levels (45). Additionally, a 12-week 
intervention study with oral Vitamin D3 supplementation resulted in 
a dose-dependent increase of IGF-I in adults (67), and similar results 
were found with 6-month supplementation in overweight patients (68). 
However, a systematic review and meta-analysis of clinical trials 
yielded mixed results (49). In animal models, VDR knockout mice 
exhibited reduced IGF-I levels (69), although the precise mechanisms 
through which Vitamin D may modulate IGF-I production and 
bioavailability remain unclear (70). In vitro studies suggested that 
non-parenchymal liver cells (e.g., stellate cells, sinusoidal endothelial 
cells), rather than hepatocytes, express the VDR (52). In turn, the 
binding of the VDR to the Vitamin D Responsive Element (VDRE) has 
been shown to activate the promoter regions of the Insulin-like Growth 
Factor Binding Protein 3 (IGFBP-3) gene, the primary binding protein 
for IGF-I, in several cell types (71, 72). On the other hand, IGF-I has 
been shown to stimulate 1α-hydroxylase enzyme in renal cells, while 
treatment with IGF-I has been reported to significantly increase 
Vitamin D levels in healthy individuals (55). Taken together, these 
studies support the existence of a mutual nutrient-hormone interaction 
that should be  considered in clinical practice, particularly in the 
assessment of Vitamin D deficiency, opening new windows of 
opportunity to explore treatment strategies.

Regarding the second aim of the study, consistent with previous 
observations (10, 37), we  found that higher IGF-I levels were 
associated with TBW, ICW, MM, BCM and FFM. Supporting the role 
of IGF-I in maintaining healthy body composition, particularly in 
older adults, the InChianti study demonstrated that lower IGF-I 
concentrations were associated with an increased risk of sarcopenia 
(73). Other studies have shown that reduced serum concentrations of 
IGF-I correlated with increased frailty measures (74), decreased 
functional outcomes (75–78), and a reduced number of motor units 
(79). However, the exploratory analysis of variables found no 
significant association between IGF-I and the PASE scores, likely due 
to the low levels of physical activity within the cohort (80, 81). As 
expected, CRP was associated with FM (82, 83).

The relationship between IGF-I and clinical outcomes is 
complex, as both low and high IGF-I concentrations have been 
associated with increased risk of cancer, CVD, and all-cause 
mortality (39, 84). Rahmani et  al. suggested that IGF-I levels 
between 120 and 160 ng/mL were associated with positive clinical 
outcomes and reduced mortality risk (85). Notably, consistent 
with this observation, in our cohort the median IGF-I value was 
122 ng/mL, and no significant associations were found between 
IGF-I and levels of multimorbidity evaluated with the 
CIRS-G. Moreover, only participants with no history of cancer in 
the past 5 years were included, allowing this research to focus 
primarily on the role of IGF-I on body composition.

Although no associations were found between Vitamin D and 
parameters of muscularity in our cohort, such evidence has been 
observed in both human studies and animal models (24, 58, 86, 
87). Therefore, we hypothesized a nutrient-hormone interaction 
where Vitamin D stimulates IGF-I in the liver, which in turn could 
mediate the effect of Vitamin D on FFM. Using a mediation 
analysis, previously implemented in the context of multimorbidity 
(88), we found that IGF-I was an indirect-only mediator for the 
effect of Vitamin D on FFM, while no significant direct or total 
effects were observed. Although speculative, these findings 

FIGURE 2

Integrated graphical representation of the mediation model and conceptual framework. Results of the mediation analysis were obtained after 
controlling for age and sex. The analysis revealed a significant indirect effect of 25(OH) Vitamin D on fat-free mass (FFM) through IGF-I as a mediator, 
suggesting a physiological regulatory pathway in which Vitamin D influences FFM by modulating IGF-I in the liver. Male sex was a significant covariate 
in the model (B = 12.555, p < 0.001). BCCI: Bias-corrected confidence intervals; SE = Standard Error. Created with BioRender.com. Vicinanza, R. (2025) 
https://BioRender.com/c27j696.
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suggest a potential regulatory pathway through which Vitamin D 
may influence lean body mass via IGF-I. Thus, considering this 
pathway in the clinical setting could further support the evaluation 
of nutritional status and the assessment of pre-frailty.

Regarding the methods used for this statistical model, 
we acknowledge that in a typical mediation analysis, a significant 
relationship between the independent and dependent variable is 
generally considered a prerequisite for examining the indirect 
effect (89). Nevertheless, according to Rucker et al. and Preacher 
and Hayes, the absence of a significant direct or total effect does 
not preclude the investigation into the indirect effect if the 
theoretical framework or the rationale behind the analysis 
supports its plausibility (90, 91). Therefore, considering the 
described roles of both IGF-I and Vitamin D on lean body mass, 
we  developed an integrated model to illustrate the mediation 
analysis results alongside the proposed physiological regulatory 
pathway that may underlie the observed associations (Figure 2).

However, this study has several limitations. First, the cross-
sectional design did not allow for the determination of causality 
or the directionality of the observed associations. Second, the 
relatively small sample size constrained our ability to perform 
statistically robust stratifications by age and sex, limiting further 
investigation of subgroup differences without the loss of 
statistical power. Consequently, we  conducted exploratory 
sex-stratified analyses with a limited number of participants and 
low intra-group variance, which may reduce the generalizability 
and reproducibility of our findings compared to larger studies. 
Furthermore, although free IGF-I is widely used to measure its 
serum levels (92), a more comprehensive evaluation of IGF-I 
bioavailability should also include IGFBP-3. Another limitation 
is the reliance on a self-administered questionnaire to evaluate 
physical activity levels, although we inferred the physical function 
of participants from indices of muscularity, measured with the 
BIA, and combined with assessment of ADLs and IADLs. 
Additionally, dietary intake was only partially collected with 
medical history, and more detailed information about the intake 
of macronutrients should be addressed. On the other hand, when 
the participants were divided by IGF-I levels, no significant 
clinical differences were found between the two groups aside 
from the variables of interest, indicating a relatively homogeneous 
sample. Moreover, examining the role of IGF-I in patients with 
multimorbidity offered a more real-life approach, particularly in 
geriatric medicine, since research in this population is 
often underrepresented.

In conclusion, these findings provide additional evidence of (i) a 
positive correlation between IGF-I and Vitamin D and (ii) the positive 
effect of IGF-I on parameters of muscularity. Finally, the mediation 
model suggests that IGF-I may contribute to the physiological effect 
of Vitamin D on FFM, with possible implications for assessing 
pre-frailty and personalizing nutrition interventions in 
this demographic.

Further research is needed to explore the underlying mechanisms 
and establish causality of these relationships.
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