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Şenay Burçin Alkan,

Necmettin Erbakan University, Türkiye

*CORRESPONDENCE

Yanjun Zhou

zyjmed@yeah.net

†These authors have contributed equally to

this work

RECEIVED 03 March 2025

ACCEPTED 21 April 2025

PUBLISHED 20 May 2025

CITATION

Dong C, Ma D, Yu J, Gu K, Lin Y, Song J,

Wang Y and Zhou Y (2025) Oxidative balance

score and menopausal status: insights from

epidemiological analysis and machine

learning models. Front. Nutr. 12:1586606.

doi: 10.3389/fnut.2025.1586606

COPYRIGHT

© 2025 Dong, Ma, Yu, Gu, Lin, Song, Wang

and Zhou. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Oxidative balance score and
menopausal status: insights from
epidemiological analysis and
machine learning models

Chunlin Dong1,2†, Ding Ma1,2,3†, Jinjin Yu1†, Ke Gu4†, Yaying Lin1,

Jing Song1, Yuan Wang1 and Yanjun Zhou4*

1Department of Obstetrics and Gynecology, A�liated Hospital of Jiangnan University, Wuxi, China,
2Wuxi Medical College, Jiangnan University, Wuxi, China, 3Key Laboratory of the Ministry of Education,

Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of

Science and Technology, Wuhan, China, 4Department of Radiation Oncology, A�liated Hospital of

Jiangnan University, Wuxi, China

Background: Unhealthy lifestyle habits, such as smoking, can impact oxidative

stress. During oxidative stress, unnaturalized free radicals can damage DNA,

proteins, and lipids, leading to cellular damage and death. A comprehensive

measurement of various pro-oxidative and antioxidative exposures can reflect

an individual’s oxidative stress burden. However, studies on assessing the

association between dietary and lifestyle factors related to oxidative stress and

menopause were previously lacking.

Materials and methods: A cohort of 2,813 women aged 40–60 years from

the National Health and Nutrition Examination Survey conducted between 2003

and 2020 was identified as meeting the eligibility criteria. The associations of

oxidative balance score (OBS) with the menopausal status were examined via

weighted logistic regression models, and the odds ratios (ORs) of menopause

onset were calculated with 95% confidence intervals (CIs). Machine learning

models were developed and compared to classify the menopausal status based

on the OBS and other epidemiological factors, with the interpretability of the

models explored using the Shapley Additive Explanations method.

Results: Following adjustment for various confounding factors, OBS was

reversely associated with menopause (OR: 0.97, 95% CI: 0.94–0.99, p = 0.010).

When the OBS was categorized into quartiles, the association with menopause

was still significant (p for trend = 0.009). The association of the OBS with

menopause remained significant after excluding any each survey year cycles

(p for trend <0.050). The menopause classification models developed using

TabFPN, Random Forest, CatBoost, and XGBoost achieved an area under the

curve of 0.880, 0.884, 0.886, and 0.878, respectively. Based on the results from

epidemiological analysis andmachine learningmodels, the intake ofmagnesium,

zinc, niacin, and vitamin B6 showed a decline in the early postmenopausal period

and contributed in the model performance.

Conclusions: OBS were reversely associated with the menopausal status, and

the OBS might serve as an indicator of an individual’s oxidative stress status for

lifestyle interventions during the menopausal transition.

KEYWORDS

menopause, oxidative stress, oxidative balance score, niacin, magnesium

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1586606
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1586606&domain=pdf&date_stamp=2025-05-20
mailto:zyjmed@yeah.net
https://doi.org/10.3389/fnut.2025.1586606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2025.1586606/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Dong et al. 10.3389/fnut.2025.1586606

1 Introduction

Menopause refers to the permanent cessation of menstruation,
which signifies the depletion of oocytes in ovarian follicles.
Menopause is directly associated with ovarian aging (1). Females
are born with a predetermined number of ovarian follicles.
The impact of detrimental dietary and lifestyle behaviors on
oocyte aging and death, potentially influencing the likelihood of
menopause, lacks consensus among researchers.

Oxidative stress (OS) is defined as a state of dysregulation
between free radicals and the antioxidant systems of the cells (2).
Free radicals encompass reactive oxygen species (ROS), reactive
nitrogen species (RNS), and other reactive species with unpaired
electrons (3). ROS refer to the products obtained from the
two-electron reduction of oxygen, including superoxide anions,
hydrogen peroxide, hydroxyl radicals, lipid peroxides, protein
peroxides, and peroxides derived from nucleic acids. They play a
crucial role in maintaining a dynamic balance in biological systems
through a series of redox reactions and act as signaling molecules
that regulate cellular pathways. In a state of normal physiological
functioning, cells employ antioxidant defense mechanisms to
counterbalance oxidative stress and uphold redox equilibrium.
Nevertheless, if the generation of oxidants surpasses the organism’s
antioxidant capacity, oxidative stress arises. The accumulation of
oxidants within cells instigates a series of harmful reactions that
compromise the integrity of proteins, lipids, and DNA, ultimately
leading to cellular dysfunction and potential cell death (4, 5).
Therefore, the excessive accumulation of ROS ultimately leads to
cellular dysfunction and apoptosis (5). Unhealthy lifestyle habits,
such as smoking, contribute to an increased generation of ROS and
are associated with early natural menopause (6, 7). The existing
literature is insufficient in exploring the association of menopause
with the intake of antioxidants and unhealthy lifestyle habits.

In order to assess the OS caused by lifestyle and dietary
patterns, various algorithms for oxidative balance score (OBS)
have been developed (8). The OBS utilized in this study consists
of two components: dietary OBS and lifestyle OBS, which is
significantly associated with the telomere length, a biomarker of
cellular aging (9). The dietary OBS encompasses the intake of
dietary fiber, carotene, riboflavin, niacin, vitamin B6, total folate,
vitamin B12, vitamin C, vitamin E, calcium, magnesium, zinc,
copper, selenium, total fat, and iron. Lifestyle OBS components
include physical activity, alcohol consumption, body mass index
(BMI), and serum cotinine levels. OBS has been reported to be
associated with phenotypic age acceleration and osteoporosis (10).
Currently, there is no existing research on the association between
OBS and menopause. Therefore, this study utilized the NHANES
database from 2003 to 2020 to investigate the association between
OBS and the odds of menopause in women aged 40–60 years.

A variety of machine learning models are employed in
classification tasks, with each algorithm presenting distinct
strengths and capabilities. The tabular prior-data fitted network
(TabPFN), which is a tabular foundation model, demonstrates
a marked superiority over all prior methods across various
datasets containing up to 10,000 samples, accompanied by a
significant reduction in training time (11). Categorical boosting
(CatBoost), extreme gradient boosting (XGBoost) and light

gradient boosting machine, are three algorithms referred to as
gradient boosting decision tree (GBDT), all of which represent
improved implementations within the GBDT framework. CatBoost
is a GBDT framework that utilizes symmetric decision trees
(oblivious trees) as base learners, characterized by a lower number
of parameters, support for categorical variables, and high accuracy.
To identify high-odds menopausal women, four machine learning
algorithms were employed to establish menopause classification
models for women aged 40 to 60, based on epidemiological
information and various components of the OBS. The models
were then compared on a testing set. Additionally, SHapley
Additive exPlanations (SHAP) were integrated to elucidate the
interpretability of the menopause classification models. This
interpretability is expected to facilitate broader acceptance of these
established models in real-world clinical settings.

Menopause has significant implications for clinical practice and
public health. Women who experience menopause at a later age are
likely to have higher levels of hormones and longer durations of
estrogen exposure, which may be associated with an elevated risk of
endometrial and breast carcinoma (12). However, early menopause
is associated with an increased risk of cardiovascular disease
due to the premature loss of estrogen’s protective effects on the
cardiovascular system (13). Therefore, the primary objective of this
study was to provide exploratory lifestyle and dietary intervention
strategies for premenopausal women through epidemiological
analysis and machine learning models, and to conduct a
preliminary exploration of the association between dietary and
lifestyle-induced OS and menopause. Identifying intervention-
sensitive periods and implementing early intervention strategies,
such as adopting a low OS lifestyle and dietary habits, represent
crucial opportunities to mitigate the odds of cardiovascular disease
and cancer development.

2 Methods

2.1 Study design

The NHANES is a cross-sectional survey in the United States
that gathers health and nutritional information representative of
the entire population. The National Center for Health Statistics
Ethics Review Board provided ethical approval for the protocols
of the NHANES surveys. The details of the approved protocols
for each survey cycle can be found in Supplementary Table 1.
All participants provided written consent after being informed
about the details of the study. The data used in this analysis
are publicly accessible and do not include any personally
identifiable information. The analytical procedure was performed
in accordance with the applicable guidelines and regulations.

Information on participants’ age, race, educational attainment,
partnership, family income, tobacco usage behavior, alcohol
consumption, and metabolic equivalent (MET) of physical activity
(PA) was collected at participants’ homes. Subsequently, a
standardized physical examination, anthropometric assessments,
blood sample collection, a 24-h dietary recall interview, and
additional inquiries were conducted at a mobile examination
center. The 24-h dietary recall interviews involved participants
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detailing the types and amounts of foods and beverages they
consumed in the preceding 24 hours. This information was
subsequently captured in NHANES’s computer-assisted dietary
interview system. The evaluation of dietary nutrient intake relied
on the Food Intake Analysis System from the University of Texas
and the Nutrient Database provided by the U.S. Department of
Agriculture. It is important to note that these nutrient estimates
did not include any contributions from dietary supplements or
medications. The weekly MET values were computed based on
individual-specific leisure activity data from the past 30 days,
gathered through household interviews.

2.2 Menopause assessment

Participants answered the question: “Have you had at least
one menstrual period in the past 12 months? (This excludes
any vaginal bleeding resulting from medical conditions, hormone
therapy, or surgical interventions).” If the answer was NO, the
participants need to respond to the next question, “What is the
reason that you have not had a period in the past 12 months?” After
excluding those who were pregnant or breastfeeding, individuals
who have not menstruated for 12 months were considered to
be menopausal. A total of 2,813 female participants aged 40–60
years with documented menstrual statuses from 2003 to 2020 were
included in this study. Postmenopausal years were calculated by
subtracting the self-reported age at menopause from the age at the
time of the survey.

2.3 OBS

The calculation formula for the OBS was described in Zhang
et al. (9). The OBS for female participants was calculated by
assigning scores (0, 1, or 2) to 20 components. Dietary OBS
components include: dietary fiber: 0 (<10.10 g/d), 1 (10.10–16.31
g/d), 2 (≥16.31 g/d); carotene (retinol equivalents): 0 (<98.08
RE/d), 1 (98.08–383.50 RE/d), 2 (≥383.50 RE/d); riboflavin: 0
(<1.34 mg/d), 1 (1.34–2.02 mg/d), 2 (≥2.02 mg/d); niacin: 0
(<14.52 mg/d), 1 (14.52–21.86 mg/d), 2 (≥21.86 mg/d); vitamin
B6: 0 (<1.13 mg/d), 1 (1.13–1.77 mg/d), 2 (≥1.77 mg/d); total
folate: 0 (<251.00 µg/d), 1 (251.00–388.96 µg/d), 2 (≥388.96
µg/d); vitamin B12: 0 (<2.22 µg/d), 1 (2.22–4.22 µg/d), 2
(≥4.22 µg/d); vitamin C: 0 (<38.01 mg/d), 1 (38.01–98.49
mg/d), 2 (≥98.49 mg/d); vitamin E (α-tocopherol equivalents):
0 (<4.53 mg/d), 1 (4.53–7.52 mg/d), 2 (≥7.52 mg/d); calcium:
0 (<499.24 mg/d), 1 (499.24–849.00 mg/d), 2 (≥849.00 mg/d);
magnesium: 0 (<187.00 mg/d), 1 (187.00–283.43 mg/d), 2
(≥283.43 mg/d); zinc: 0 (<6.73 mg/d), 1 (6.73–10.75 mg/d), 2
(≥10.75 mg/d); copper: 0 (<0.85 mg/d), 1 (0.85–1.28 mg/d), 2
(≥1.28 mg/d); selenium: 0 (<67.79 µg/d), 1 (67.79–99.50 µg/d),
2 (≥99.50 µg/d); total fat: 0 (≥75.79 g/d), 1 (50.98–75.79 g/d),
2 (<50.98 g/d); iron: 0 (≥14.32 mg/d), 1 (9.65–14.32 mg/d),
2 (<9.65 mg/d). Lifestyle OBS components include: physical
activity: 0 (<270.00 MET-min/week), 1 (270.00–845.71 MET-
min/week), 2 (≥845.71 MET-min/week); alcohol consumption: 0
(≥15 g/d), 1 (0–15 g/d), 2 (none); BMI: 0 (≥28.64 kg/m²), 1

(23.74–28.64 kg/m²), 2 (<23.74 kg/m²); serum cotinine levels:
0 (≥0.172 ng/mL), 1 (0.035–0.172 ng/mL), 2 (<0.035 ng/mL);
physical activity: 0 < 270, 1 = 270–845.71, 2 ≥ 845.71 MET-
min/week. In the calculation of OBS, serum cotinine levels were
employed as a biomarker for tobacco use. Cotinine, which is
the principal metabolite of nicotine and has a longer half-life, is
used to quantify tobacco consumption and evaluate exposure to
environmental tobacco smoke. The measurements were conducted
using isotope dilution high-performance liquid chromatography
(HPLC) combined with atmospheric pressure chemical ionization
tandem mass spectrometry (APCI-MS/MS), specifically employing
a Hewlett-Packard model 1090L for HPLC and a PE-Sciex API III
triple quadrupole mass spectrometer for APCI-MS/MS analysis.
Among the components, pro-oxidant factors were reverse scored,
including total fat intake, iron intake, alcohol consumption, serum
cotinine levels (smoking exposure biomarker), and BMI, while
the remaining components were considered antioxidants and
positively scored. The total OBS (range 0–34) was derived by
summing all component scores, with higher values indicating
stronger antioxidant/weaker pro-oxidant profiles.

2.4 Covariates

Regarding the selection of covariates, in the original text
proposing the OBS calculation method, the following variables
were adjusted: age, race, education, and Poverty Income Ratio
(PIR) (9). These indicators are known to influence individuals’
lifestyles and dietary habits; consequently, they were incorporated
as covariates in this study. Additionally, daily energy intake
was identified as a direct determinant of the intake levels of
OBS components. Participants with hypertension, CVD, DM,
or hyperlipidemia may have lower intakes of vegetables, fruits,
whole grains, low-fat dairy products, and seafood, alongside higher
consumptions of red and processed meats, refined grains, and
sugar-sweetened foods and beverages (14). However, participants
with hypertension, CVD, DM, or hyperlipidemia often adhere to
specific dietary regimens, such as low-sodium and low-fat diets,
low glycemic index foods, and controlled carbohydrate intake,
which can influence the OBS calculation. Therefore, hypertension,
CVD, DM, and hyperlipidemia were included as covariates in the
model. Lifestyle factors such as smoking and alcohol consumption
directly affect the body’s redox system, with smoking leading to
an increase in ROS (6, 7). Smoking and alcohol consumption
can influence the functional pathways of vitamin B6 in the body
(15). The menopausal transition, a decline in estrogen levels
frequently results in weight gain and metabolic disturbances in
women, thereby influencing the body’s oxidative balance (16, 17).
Thus, BMI and fasting blood glucose were included as covariates.
Furthermore, individuals with partners tend to adhere more closely
to a healthy lifestyle, characterized by regular dietary and exercise
habits, which contribute to the maintenance of oxidative balance.

The diagnostic criteria for hypertension, hyperlipidemia,
cardiovascular disease (CVD), and diabetes mellitus were
previously described (18). Briefly, hyperlipidemia was diagnosed
with triglycerides ≥150 mg/dL, total cholesterol ≥200 mg/dL, LDL
≥130 mg/dL, HDL <40 mg/dL, or the use of antihyperlipidemic
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therapy. Cardiovascular disease (CVD) was recognized through
previous myocardial infarction or cerebrovascular events.
Type 2 diabetes mellitus (DM) was diagnosed according
to any of the following criteria: prior diabetes diagnosis,
HbA1c ≥ 6.5%, fasting blood glucose ≥7.0 mmol/L, random
blood glucose ≥11.1 mmol/L, oral glucose tolerance test
≥11.1 mmol/L, or the use of antihyperglycemic medications.
Hypertension was identified if participants had a history of
hypertension, were prescribed antihypertensive drugs, or
had systolic blood pressure ≥140 mmHg or diastolic blood
pressure ≥90 mmHg.

The procedures for blood testing are comprehensively outlined
and readily available (19). Briefly, fasting serum biochemistry
profiles, including aspartate aminotransferase (AST), alanine
aminotransferase (ALT), gamma-glutamyl transferase (GGT),
uric acid, low-density lipoprotein (LDL), glucose, glycated
hemoglobin (HbA1c), blood urea nitrogen, albumin, and
total bilirubin, were measured using a Hitachi 704 Analyzer
(Roche/Boehringer Mannheim Corporation, Indianapolis, USA).
The weight “wtasf2yr” was employed as a weighting factor in the
weighted analysis.

2.5 Statistical analyses

All statistical analyses were implemented using R programming
language. Continuous variables related to the characteristics of
the females were documented in the form of means (standard
errors) or means (95% CIs), and comparisons were performed via
one-way ANOVA. Categorical factors were recorded as frequency
(percentage) and assessed via the chi-square test. Weighted
restricted cubic splines (RCSs) from the “rms” package were utilized
to examine non-linear relationships. The associations between
menopause odds and the OBS were analyzed using weighted
logistic regression models to calculate odds ratios (ORs) along
with their associated 95% confidence intervals (CIs) utilizing the
R package “survey”. The crude model did not incorporate any
adjustments. Model 1 based on the crude model was built with
the adjustment for age, race, PIR, education, single status, BMI,
cigarette consumption, alcohol intake. Model 2 was built upon
Model 1 by further incorporating adjustments for medical history
variables, including hypertension, CVD, DM, and hyperlipidemia,
along with fasting glucose, and daily energy intake. To ensure
the robustness of the model results and to avoid overfitting due
to limited sample sizes, the sensitivity analyses were conducted.
The weighted multivariable logistic regression was conducted
with the survey years sequentially excluded in the Model 2. The
Weighted ROC package was used to calculate the AUC under the
condition of sequentially excluding survey year cycles. A difference
in AUC (1AUC) >0.15 indicates a risk of overfitting across
different datasets. Weighted stratified analysis was conducted
based on Model 2, excluding the stratification factors from the
covariates. Additionally, the p for interaction was adjusted using
the Benjamini-Hochberg (BH)method to account for false positives
due to multiple testing. Linear regression analyses were conducted
to examine the associations between the duration of time since
menopause and OBS, as well as between age and OBS, with

the covariates in the Model 2. Significance level was set at p

< 0.05.

2.6 Establishment of classification models

The models were developed using the sklearn library and
the tabpfn library in Python 3.8. The cohort was randomly
divided into 50% for the training set, while the remaining 50%
was reserved for the validation set. Within the training set,
the five-fold cross-validation was employed to guarantee the
model’s generalizability and assessed the AUC values of four
machine learning models. For assessing model discrimination
ability, the area under the receiver operating characteristic curve
(AUROC), the area under the precision-recall curve (AUPRC),
sensitivity, specificity, and accuracy were computed in the
testing set. In elucidating the contribution of each feature
to the “black-box” classifications, SHAP is utilized to analyze
the classfications made by the classifier. The Shapley values
quantify the marginal impact of each feature on the model’s
final prediction.

3 Results

3.1 Characteristics of female participants

The participants were divided into premenopausal group and
postmenopausal group. The indicators, including age (in years),
alkaline phosphatase, albumin, gamma-glutamyl transferase, uric
acid, blood urea nitrogen, iron, fasting triglycerides, fasting
total cholesterol, LDL cholesterol, fasting glucose, MET of total
physical activity, HbA1c, ALT, AST, the percentage of singles, as
well as the incidence rates of hyperlipidemia, CVD, DM, and
hypertension, were observed to be elevated in postmenopausal
women compared to premenopausal women (Table 1, p <

0.050). The composition of race, years of education, and
smoking status differed significantly between the two groups
(Table 1, p < 0.050).

Then, dietary intake and lifestyle patterns were compared
between premenopausal and postmenopausal women based
on 24-h dietary recalls, comprehensive questionnaires, and
anthropometric measurements (Table 2). Postmenopausal women
revealed distinct dietary and lifestyle patterns. Postmenopausal
women exhibited significantly lower intake of dietary fiber (14.83
± 0.26 vs. 15.78 ± 0.30 g/day, p = 0.01), total fat (68.27 ± 0.93
vs. 73.70 ± 1.27 g/day, p < 0.001), and several micronutrients,
including niacin (20.44 ± 0.26 vs. 22.22 ± 0.32 mg/day, p <

0.001), vitamin B6 (1.65 ± 0.02 vs. 1.78 ± 0.03 mg/day, p <

0.001), total folate (338.70 ± 5.07 vs. 373.24 ± 7.06 mcg/day, p <

0.0001), riboflavin (1.88± 0.02 vs. 2.00± 0.03 mg/day, p < 0.001),
and minerals such as magnesium (262.57 ± 3.42mg vs. 282.12 ±

4.73mg, p < 0.001), calcium, iron, zinc, copper, and selenium (p
< 0.01). Conversely, no significant differences were observed in
alpha-carotene, beta-carotene, vitamin B12, vitamin C, vitamin E,
or BMI (p > 0.050). PA was higher in postmenopausal women
(2819.10 ± 180.48 vs. 2397.36 ± 122.79 MET, p = 0.040), while
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TABLE 1 Baseline characteristics of premenopausal and postmenopausal

women.

Variables Pre-
menopause

Post-
menopause

p-value

Age 45.81(0.15) 53.16(0.17) <0.001

PIR 3.30(0.07) 3.25(0.06) 0.610

Energy intake (kcal/day) 1,890.22(25.71) 1,735.38(18.38) <0.001

Fast glucose (mg/dl) 100.51(0.70) 107.14(1.03) <0.001

HbA1c (%) 5.51(0.02) 5.74(0.03) <0.001

ALT (U/L) 20.17(0.45) 23.33(0.42) <0.001

AST (U/L) 22.17(0.48) 24.37(0.53) 0.002

Bilirubin total (umol/L) 10.58(0.16) 10.32(0.15) 0.248

Alkaline phosphatase
(u/L)

63.06(0.67) 75.53(0.82) <0.001

Albumin (g/L) 40.75(0.12) 41.60(0.11) <0.001

Gamma glutamyl
transferase (U/L)

21.33(0.57) 29.34(1.13) <0.001

Creatinine (mg/dl) 0.75(0.01) 0.77(0.01) 0.049

Uric acid (umol/L) 274.34(2.36) 295.71(2.24) <0.001

Blood urea nitrogen
(mmol/L)

4.00(0.05) 4.71(0.05) <0.001

Iron (umol/L) 14.11(0.23) 15.61(0.21) <0.001

Fast triglyceride
(mmol/L)

1.27(0.04) 1.48(0.04) <0.001

Fast total cholesterol
(mmol/L)

5.09(0.04) 5.48(0.04) <0.001

HDL cholesterol
(mmol/L)

1.56(0.02) 1.55(0.02) 0.786

LDL cholesterol
(mmol/L)

2.97(0.03) 3.26(0.03) <0.001

Race 0.022

Non-Hispanic white 507(68.85) 673(71.61)

Non-Hispanic black 271(11.59) 393(12.20)

Mexican American 206(7.78) 217(5.12)

Other 247(11.78) 299(11.08)

Education 0.004

<9 years 72(3.34) 108(3.27)

9–12 years 385(26.89) 557(33.89)

>12 years 774(69.77) 917(62.84)

Single status 0.041

Single 421(29.71) 664(34.43)

Not single 810(70.29) 918(65.57)

Smoking 0.001

Never 803(63.17) 870(53.32)

Former 207(19.18) 358(24.34)

Now 221(17.65) 354(22.34)

Alcohol uptake 0.192

Never 180(10.73) 263(12.80)

(Continued)

TABLE 1 (Continued)

Variables Pre-
menopause

Post-
menopause

p-value

Former 147(11.73) 245(13.28)

Now 904(77.53) 1,074(73.92)

Hyperlipidemia <0.001

No 416(33.12) 266(16.17)

Yes 815(66.88) 1,316(83.83)

CVD <0.001

No 1,179(96.74) 1,423(91.85)

Yes 52(3.26) 159(8.15)

DM <0.001

No 1,059(89.49) 1,215(81.75)

Yes 172(10.51) 367(18.25)

Hypertension <0.001

No 852(71.08) 757(53.57)

Yes 379(28.92) 825(46.43)

Continuous variables are presented as mean (standard error) and categorical variables

are presented frequency (percentage). OBS, Oxidative Balance Score; PIR, poverty

income ratio; BMI, body mass index; HbA1c, glycated hemoglobin A1c; ALT, Alanine

Aminotransferase; AST, Aspartate Aminotransferase; HDL, high-density lipoprotein; LDL,

low-density lipoprotein; CVD, cardiovascular disease; DM, diabetes mellitus.

alcohol consumption was lower (5.47 ± 0.44 vs. 7.38 ± 0.72 g/day,
p= 0.020).

Based on the calculation methodology of OBS, dietary
and lifestyle scores were calculated and compared between
premenopausal and postmenopausal women (Table 2).
Postmenopausal women scoring lower in nutrient adequacy
(e.g., dietary fiber, B vitamins, minerals) but higher in fat intake
score (p = 0.02) and iron score (p < 0.001). The OBS was
significantly lower in postmenopausal women (20.48 ± 0.26 vs.
21.95 ± 0.29, p < 0.001), driven by both dietary (16.74 ± 0.23 vs.
17.93 ± 0.27, p < 0.001) and lifestyle components (3.74 ± 0.06 vs.
4.01± 0.07, p= 0.002).

3.2 Association between OBS and the
menopause

First, RCS analysis was employed to investigate whether there
was a non-linear relationship between OBS and menopause.
OBS knots were selected ranging from 3 to 8, and the non-
linear p-values showed no statistical significance, indicating
that there was no non-linear relationship between OBS and
menopause (Supplementary Table 2). When utilizing three knots
for OBS, which corresponds to the minimum AIC value, an
overall p-value of 0.005 was obtained (Supplementary Figure 1).
These results suggest that there was a correlation between
OBS and the odds of menopause, but no non-linear
relationship existed.

After multiple adjustments, OBS, dietary OBS, and lifestyle
OBS (as continuous variables) demonstrated a negative association
with the odds of menopause (p < 0.050, Table 3). When OBS,
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TABLE 2 Comparative analysis of OBS and the components between

premenopausal and postmenopausal women.

Variable Pre-
menopause

Post-
menopause

p-value

Dietary fiber (g) 15.78(0.30) 14.83(0.26) 0.012

Total fat (g) 73.70(1.27) 68.27(0.93) <0.001

Alpha carotene (mcg) 411.15(24.17) 384.73(21.00) 0.388

Beta carotene (mcg) 2,284.86(95.68) 2,371.48(91.25) 0.499

Riboflavin (mg) 2.00(0.03) 1.88(0.02) <0.001

Niacin (mg) 22.22(0.32) 20.44(0.26) <0.001

Vitamin B6 (mg) 1.78(0.03) 1.65(0.02) <0.001

Total folate (mcg) 373.24(7.06) 338.70(5.07) <0.001

Vitamin B12 (mcg) 4.27(0.10) 4.03(0.11) 0.098

Vitamin C (mg) 76.03(2.41) 71.72(1.98) 0.129

Vitamin E ATE (mg) 7.95(0.19) 7.50(0.16) 0.069

Calcium (mg) 880.56(16.70) 817.45(13.16) 0.002

Magnesium (mg) 282.12(4.73) 262.57(3.42) <0.001

Iron (mg) 13.64(0.26) 12.38(0.16) <0.001

Zinc (mg) 10.27(0.17) 9.32(0.13) <0.001

Copper (mg) 1.19(0.02) 1.12(0.02) 0.004

Selenium (mcg) 101.06(1.54) 93.14(1.35) <0.001

Alcohol (g) 7.38(0.72) 5.47(0.44) 0.020

BMI (kg/m²) 29.75(0.30) 29.98(0.28) 0.545

Total PA (MET) 2,397.36(122.79) 2,819.10(180.48) 0.040

Cotinine (ng/ml) 48.74(4.96) 58.11(4.69) 0.088

Carotene (RE) 207.54(8.74) 213.65(8.18) 0.598

Score dietary fiber (g) 1.16(0.03) 1.06(0.03) 0.010

Score carotene (RE) 0.70(0.02) 0.72(0.02) 0.532

Score riboflavin (mg) 1.23(0.03) 1.13(0.03) 0.015

Score niacin (mg) 1.29(0.03) 1.15(0.03) <0.001

Score vitamin B6 (mg) 1.25(0.03) 1.11(0.03) <0.001

Score total folate (mcg) 1.11(0.03) 0.97(0.03) <0.001

Score vitamin B12 (mcg) 1.23(0.03) 1.12(0.03) 0.007

Score vitamin C (mg) 0.94(0.03) 0.90(0.03) 0.174

Score vitamin E ATE
(mg)

1.19(0.03) 1.13(0.03) 0.116

Score calcium (mg) 1.33(0.03) 1.19(0.03) <0.001

Score magnesium (mg) 1.26(0.03) 1.12(0.03) <0.001

Score zinc (mg) 1.19(0.03) 1.02(0.03) <0.001

Score copper (mg) 1.08(0.03) 0.99(0.03) 0.017

Score selenium (mcg) 1.26(0.03) 1.15(0.03) 0.005

Score total fat (g) 0.85(0.03) 0.94(0.03) 0.018

Score iron (mg) 0.87(0.03) 1.05(0.03) <0.001

Score total PA (MET) 1.39(0.03) 1.38(0.03) 0.804

Score alcohol (g) 0.82(0.02) 0.88(0.01) 0.003

(Continued)

TABLE 2 (Continued)

Variable Pre-
menopause

Post-
menopause

p-value

Score BMI (kg/m²) 0.80(0.03) 0.71(0.03) 0.025

Score cotinine (ng/ml) 1.29(0.04) 1.15(0.04) 0.004

Dietary OBS 17.93(0.27) 16.74(0.23) <0.001

Lifestyle OBS 4.01(0.07) 3.74(0.06) 0.002

OBS 21.95(0.29) 20.48(0.26) <0.001

ATE, alpha-tocopherol equivalents; BMI, bodymass index;MET,metabolic equivalent of task;

PA, physical activity; OBS, oxidative balance score; RE, retinol equivalents.

dietary OBS, and lifestyle OBS were grouped by quartiles, OBS,
dietary OBS, and lifestyle OBS still demonstrated a negative
association with the odds of menopause (p for trend < 0.050,
Table 3).

In addition, multicollinearity of the covariates in Model 2 was
also assessed (Supplementary Table 3). The adjusted VIF values
for all covariates were <2, significantly below the threshold
of 5, indicating the absence of substantial multicollinearity
(Supplementary Table 3).

3.3 Sensitivity analysis

To evaluate the reliability and robustness of the association
between OBS and the menopause under different scenarios,
sensitivity analysis and stratified analysis were conducted further.
Lifestyle and dietary patterns may be subject to period effects,
consequently modifying the OBS over time. Additionally, the
survey years included in this study span from 2003 to 2020,
encompassing a total of nine survey year cycles over a period of 17
years. Therefore, in order to assess the robustness of the association
between OBS and menopause, different survey year cycles were
systematically excluded in the sensitivity analysis. As a result,
even after excluding any single survey year cycle, the association
between OBS and menopausal odds remained significant (p <

0.050, Table 4). To assess whether the model exhibited overfitting,
the AUCs of model 2 were calculated in the sensitivity analysis. All
the AUC values exceeded 0.860 with high stability (SD = 0.0046
and all the 1AUC values < 0.15) indicated that the model had a
good generalization ability. Moreover, the residual plots of model
2, applied in sensitivity analysis across different datasets, showed
that the residuals were randomly distributed above and below zero,
indicating a good model fit (Supplementary Figure 2).

Moreover, the stratified analysis was further conducted to
identify effect differences across various populations or subgroups.
However, the significant association between OBS and menopause
status was only observed in the 40–44 year cohort (Q3: OR
= 0.351, 95% CI 0.149–0.825; p for trend = 0.02), while
other stratified analyses did not yield significant results for any
of the other subgroups (Supplementary Table 4). This suggests
that the age range of 40–44 years may represent a critical
time window for the association between OBS and menopause.
Preliminary analyses suggest that the association between OBS
and the odds of menopause was influenced by both obesity (p
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TABLE 3 Associations between OBS and its components and menopausal status.

Variable Model Continuous OR (95% CI) p-value Quartile analysis OR (95% CI) by quartile p-trend

OBS Crude 0.97 (0.96, 0.98) <0.001 Q1: Ref <0.001

Q2: 0.73 (0.55, 0.97)

Q3: 0.71 (0.53, 0.95)

Q4: 0.54 (0.41, 0.71)

Model 1∗ 0.95 (0.93, 0.97) <0.001 Q1: Ref <0.001

Q2: 0.68 (0.46, 1.01)

Q3: 0.61 (0.41, 0.89)

Q4: 0.39 (0.25, 0.60)

Model 2y 0.97 (0.94, 0.99) 0.010 Q1: Ref 0.009

Q2: 0.76 (0.51, 1.14)

Q3: 0.73 (0.47, 1.12)

Q4: 0.51 (0.31, 0.83)

Dietary OBS Crude 0.97 (0.96, 0.99) <0.001 Q1: Ref <0.001

Q2: 0.73 (0.55, 0.97)

Q3: 0.71 (0.53, 0.95)

Q4: 0.54 (0.41, 0.71)

Model 1∗ 0.96 (0.93, 0.98) <0.001 Q1: Ref <0.001

Q2: 0.68 (0.46, 1.01)

Q3: 0.61 (0.41, 0.89)

Q4: 0.39 (0.25, 0.60)

Model 2† 0.97 (0.95, 1.00) 0.040 Q1: Ref 0.009

Q2: 0.76 (0.51, 1.14)

Q3: 0.73 (0.47, 1.12)

Q4: 0.51 (0.31, 0.83)

Lifestyle OBS Crude 0.90 (0.84, 0.96) 0.002 Q1: Ref 0.004

Q2: 0.79 (0.61, 1.03)

Q3: 0.80 (0.60, 1.05)

Q4: 0.64 (0.47, 0.86)

Model 1∗ 0.88 (0.78, 0.98) 0.020 Q1: Ref 0.011

Q2: 0.77 (0.53, 1.13)

Q3: 0.74 (0.51, 1.08)

Q4: 0.50 (0.31, 0.83)

Model 2† 0.88 (0.79, 0.99) 0.040 Q1: Ref 0.027

Q2: 0.78 (0.54, 1.14)

Q3: 0.76 (0.51, 1.12)

Q4: 0.53 (0.32, 0.89)

∗Model 1: Adjusted for age, race, poverty-income ratio (PIR), education level, marital status, body mass index, smoking status, and alcohol consumption. †Model 2: Model 1 + additional

adjustment for hypertension, cardiovascular disease, diabetesmellitus, hyperlipidemia, fasting blood glucose, and daily energy intake. OR, odds ratio; 95%CI, confidence interval; OBS, Oxidative

Balance Score.

for interaction = 0.029) and hypertension (p for interaction
= 0.032, Supplementary Table 4). To control the false discovery
rate (FDR) when conducting multiple hypothesis tests, the
Benjamini-Hochberg adjustment was applied to the p-values
for interaction. After FDR correction, all interaction p-values

exceeded the significance threshold (FDR-adjusted p > 0.10), with
the adjusted p-values for obesity (adjusted p for interaction =

0.983) and hypertension (adjusted p for interaction = 0.547)
suggesting the presence of uncorrected false positive results
(Supplementary Table 4).
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TABLE 4 Association between OBS and menopause with the exclusion of each survey year cycle.

Excluded
year
cycle

Excluded
participant
number

(percentage)

Q1 Q2 Q3 Q4 p for
trend

AUC

OR (95%CI) p value OR (95%CI) p value OR (95%CI) p value

2003–2004 268 (10%) Ref. 0.67 (0.45,1.01) 0.054 0.71 (0.44,1.15) 0.166 0.44 (0.26,0.74) 0.002 0.006 0.873

2005–2006 267 (9%) Ref. 0.79 (0.50,1.23) 0.289 0.79 (0.50,1.26) 0.320 0.55 (0.32,0.94) 0.028 0.037 0.880

2007–2008 316 (11%) Ref. 0.69 (0.44,1.08) 0.102 0.59 (0.36,0.95) 0.032 0.43 (0.24,0.76) 0.004 0.006 0.875

2009–2010 358 (13%) Ref. 0.83 (0.54,1.26) 0.372 0.86 (0.55,1.35) 0.507 0.56 (0.32,0.93) 0.027 0.037 0.872

2011–2012 288 (10%) Ref. 0.80 (0.52,1.22) 0.297 0.78 (0.50,1.20) 0.256 0.51 (0.30,0.86) 0.013 0.016 0.877

2013–2014 359 (13%) Ref. 0.75 (0.49,1.16) 0.195 0.68 (0.43,1.08) 0.103 0.46 (0.28,0.77) 0.004 0.004 0.865

2015–2016 311 (11%) Ref. 0.87 (0.57,1.32) 0.502 0.71 (0.46,1.10) 0.128 0.60 (0.37,0.98) 0.043 0.032 0.869

2017–2018 237 (8%) Ref. 0.72 (0.47,1.09) 0.115 0.73 (0.47,1.14) 0.167 0.52 (0.31,0.88) 0.014 0.022 0.869

2019–2020 409 (15%) Ref. 0.76 (0.50,1.15) 0.196 0.75 (0.48,1.17) 0.200 0.51 (0.31,0.84) 0.009 0.012 0.873

The logistic regression models were adjusted by age, race, PIR, education background, single status, body mass index, smoking behavior, alcohol consumption, hypertension, cardiovascular

disease, diabetes mellitus, hyperlipidaemia, fast blood glucose, and daily energy intake. OR, odds ratio; 95% CI, confidence interval.

3.4 Comparison of OBS and its
components across premenopausal and
various postmenopausal phases

The comparison of OBS and its components was
conducted between premenopausal individuals and those in
the postmenopausal phases of <1 year (Post_0), 1–2 years
(Post_1), 2–3 years (Post_2), and 3–4 years (Post_3) (Figure 1,
Supplementary Table 5). In the population of Post_1, compared
to premenopausal individuals, there was a significant decrease
in the intake of niacin (p = 0.002, Figure 1A), magnesium (p =

0.014, Figure 1B), vitamin B6 (p = 0.003, Figure 1C), total folate
(p = 0.004, Figure 1C), calcium (p = 0.047, Figure 1E), and zinc
(p = 0.012, Figure 1F). In the Post_2 population, there were
significant decreases in the intake of niacin (p = 0.001, Figure 1A),
magnesium (p = 0.009, Figure 1B), zinc (p = 0.011, Figure 1F),
iron (p = 0.027, Supplementary Table 5), copper (p = 0.024,
Figure 1G), and selenium (p = 0.004, Figure 1H) compared to
premenopausal individuals. Compared to premenopausal levels,
the components that showed decreased intake in the Post_1 and
Post_2 populations did not exhibit significant differences in the
Post_3 population. Furthermore, compared to premenopausal
levels, serum cotinine showed a significant decline in the Post_3
phase (p = 0.011, Figure 1I), and there was a decrease in dietary
OBS during the Post_1 phase (p = 0.038, Figure 1L). Although
cross-sectional studies cannot establish causality, these findings
suggest that menopausal status may not be a significant influencing
factor for OBS, as no substantial changes in OBS were observed
over several years before and after menopause (Figures 1J, K).
Women’s lifestyle and dietary habits do not undergo significant
changes in the short term due to menopause.

Furthermore, linear regression was employed to investigate
the relationship between the duration of time since menopause
and OBS. It was found that OBS decreases with increasing years
post-menopause after adjusting for race, PIR, education, marital
status, BMI, smoking, alcohol use, hypertension, CVD, DM,
hyperlipidemia, daily energy intake, and fasting glucose levels (p <

0.001, Supplementary Figure 3A). The linear relationship between
age and OBS was also analyzed using the same methodology.
Similar to the correlation trend observed between OBS and the
years post-menopause, in women aged 40–60, OBS gradually
declines with increasing age (p < 0.001, Supplementary Figure 3B).

3.5 Establishment of classification models

The classification models for menopausal status based on
OBS and its components were established using machine learning
algorithms. First, the data were split into a training dataset and
a test dataset in a 1:1 ratio, with the random state set to 42.
Confounding factors from the multivariate logistic regression
were included, and classification models were established using
TabPFN, Random Forest, XGBoost, and CatBoost. In the training
set, the mean accuracy obtained through 5-fold cross-validation
was as follows: CatBoost 0.808, RF 0.800, TabPFN 0.788, and
XGBoost 0.782 (Figure 2A, Supplementary Table 6). In the testing
set, the menopause classification models developed using TabFPN,
Random Forest, CatBoost, and XGBoost achieved an AUC of
0.880, 0.884, 0.886, and 0.878, respectively (Figure 2B). Beside
AUC, F1 score, AUPRC, sensitivity, specificity, and accuracy of
four classification models also reached a good level (Figure 2C,
Supplementary Table 7). The accuracy of the testing set ranges
from 0.787 to 0.805, and a delta of <0.15 in accuracy during
5-fold cross-validation among the four models in the training
set suggested that there was no evidence of overfitting of the
classification models.

The SHAP values, which quantify the impact of individual
features on the model’s output, were displayed in the Figure 3.
Ranked by the importance of features, age, magnesium,
hyperlipidemia, smoking, and hypertension were the top 5
features in the TabPFN model (Figure 3A). Age, hypertension,
fasting glucose, niacin, and hperlipidemia were most influential
features in the Random Forest model (Figure 3B). Age, niacin,
vitamin C, alpha carotene, and BMI were key features in
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FIGURE 1

The comparison of OBS and its components during menopausal transition. Comparative analysis was performed between premenopausal women

and four postmenopausal subgroups stratified by years since menopause onset: <1 year (Post_0), 1–2 years (Post_1), 2–3 years (Post_2), and 3-4

years (Post_3) for (A) niacin intake, (B) magnesium intake, (C) vitamin B6 intake; (D) total folate intake; (E) calcium intake; (F) zinc intake, (G) copper

intake, (H) selenium intake, (I) serum cotinine levels, (J) OBS, (K) Lifestyle OBS, (L) Dietary OBS. OBS, Oxidative Balance Score.

the XGBoost model (Figure 3C). Age, alpha carotene, niacin,
hypertension, and BMI were important features in the CatBoost
model (Figure 3D). Age is consistently the most influential feature
across all models, followed by other health-related variables such as
hypertension, BMI, and specific nutrient intakes (e.g., magnesium,
niacin, vitamin C).

4 Discussion

After adjusting for various confounding factors, the OBS
showed an inverse relationship with menopause (OR: 0.97, 95%
CI: 0.94–0.99, P= 0.01). When the OBS was divided into quartiles,
the significant association with menopause persisted (P for trend=

Frontiers inNutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2025.1586606
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Dong et al. 10.3389/fnut.2025.1586606

FIGURE 2

Machine learning model performance in menopausal status classification based on OBS and Its Components. (A) Five-fold cross-validation accuracy

of the classification models in the training set. (B) ROC curves with AUC values for the classification models in the testing set. (C) Comprehensive

evaluation metrics, including F1 score, sensitivity, specificity, accuracy, and AUPRC for the classification models in the testing set. OBS, Oxidative

Balance Score; ROC, Receiver Operating Characteristic; AUC, Area Under the Curve; AUPRC, Area Under the Precision-Recall Curve; RF, Random

Forest; TabPFN, Tabular Prior-Data Fitted Networks; CV, Cross-Validation.

0.009). This relationship remained significant even after excluding
data from any individual survey year cycles (P for trend < 0.05).
Moreover, the intake of magnesium, zinc, niacin, and vitamin
B6 showed a decline in the early postmenopausal period. Finally,
classification models were established using four machine learning
algorithms. The performance of all models was relatively good with
an AUC of ≥ 0.878.

The stratified analyses indicated a significant association
between OBS and menopause only in the 40–44 age group, which
might preliminarily suggest a timeframe for lifestyle and dietary
adjustments in perimenopausal women. However, no robust
subgroup-specific associations were observed after multiplicity
correction. A possible reason for this is the reduced sample
size in each subgroup after stratification. Future research should
aim to expand the sample size and take measures to minimize
false positives.

Age consistently ranks as the most important feature in all four
classification models for menopausal status. The menopause is a
natural biological process associated with the depletion of ovarian
follicular function, generally occurring in women aged 45–55

years (20). Age represents the foremost intrinsic factor influencing
ovarian functionality and fertility. With advancing age, women
experience a progressive decline in the quantity of oocytes, and
these oocytes remain constantly exposed to ROS. In ovarian tissue,
normal levels of ROS play a crucial role in regulating follicular
growth, angiogenesis, and steroid hormone synthesis. OS results in
a decline in the quantity and quality of oocytes, mediating changes
in genetic material, signaling pathways, transcription factors, and
the ovarian microenvironment, which in turn leads to abnormal
apoptosis of granulosa cells, dysregulated meiosis, and a reduction
in mitochondrial DNA and other alterations, thereby accelerating
the ovarian aging process (21). DNA damage and changes in
genetic material mediated by OS include apoptosis, dysfunction
of mitochondrial DNA, abnormalities in meiosis, and telomere
shortening (22). Elevated levels of ROS are often associated
with chromosomal instability or abnormalities, spindle defects,
decreased mitochondrial function, and telomere shortening in
oocytes of advanced maternal age (over 35 years) (23). The
reduced telomerase activity and telomere dysfunction in oocytes
are associated with diminished reproductive capacity and infertility
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FIGURE 3

Comparative feature importance analysis of machine learning models for menopausal status classification. Feature importance rankings across

TabPFN model (A), Random Forest (B), XGBoost (C), and CatBoost (D) for classifying menopausal status, as quantified by SHAP values. Variables are

ordered by their mean absolute SHAP impact on model output. OBS, Oxidative Balance Score; SHAP, SHapley Additive exPlanations; CVD,

Cardiovascular Disease; BMI, Body Mass Index; ATE, Alpha-Tocopherol Equivalents (for Vitamin E measurement); MET, Metabolic Equivalent of Task;

PA, Physical Activity; TabPFN, Tabular Prior-Data Fitted Networks; XGBoost, eXtreme Gradient Boosting.
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in women of advanced maternal age. The impact of ROS on
ovarian function may represent a potential mechanism of the
association between menopause and OS. Besides, with aging,
there is an increase in the generation of ROS and a reduction
in the effectiveness of antioxidant systems, which is consistent
with the linear regression findings in this study that reveal a
negative relationship between OBS and age. The progressive ROS
accumulation of ROS with age, combined with the accelerated
production of ROS and the weakened capacity of the antioxidant
defense system in the elderly, results in enhanced OS damage at
the cellular level (24). Mitochondrial dysfunction and biomolecular
damage resulting from aging also accumulate in ovarian cells as age
increases, contributing to the decline in ovarian function (24).

Daily magnesium intake is an important feature in all four
classification models for menopausal status. Moreover, based on
this study, magnesium intake decreased in the postmenopausal 1–2
years and (250.83± 9.26mg, p= 0.014) and in the postmenopausal
2–3 years (251.78 ± 8.30mg, p = 0.009) compared to the
premenopausal level of 275.24 ± 3.13mg. Magnesium exhibits a
mild antioxidant effect in vivo (25). Aging is an additional risk
factor for inadequate magnesium intake, with a gradual decline
in magnesium consumption observed as individuals age (26). A
deficiency in magnesium is associated with a rise in the levels of
ROS, an increase in hydrogen peroxide production, and an upsurge
in the production of superoxide anions by inflammatory cells (27).
Moreover, magnesium insufficiency not only exacerbates OS but
also reduces the effectiveness of antioxidant defense systems (28).
The findings of this study on epidemiology and machine learning
suggest that attention should be paid to perimenopausal women
regarding magnesium intake.

Postmenopausal women exhibited significantly reduced zinc
intake compared to premenopausal levels (premenopausal: 9.85 ±
0.12 mg/day; postmenopausal 1–2 years: 8.83 ± 0.38 mg/day, p =

0.012; postmenopausal 2–3 years: 8.99 ± 0.31 mg/day, p = 0.011).
This decline is clinically noteworthy given zinc’s prominence as
a top-ranked feature in both TabPFN and XGBoost classification
models. The apparent adequacy of zinc intake (≥8 mg/d)
in perimenopausal populations may not translate to sufficient
systemic availability as only 10% to 12% of zinc is effectively
absorbed due to a diet with low bioavailability (29). Zinc deficiency
impairs the catalytic function of numerous antioxidant enzymes,
notably copper/zinc superoxide dismutase (SOD1), compromising
its critical role in preventing oxidative DNA damages (30).

Niacin, an antioxidant, is ranked as the second, third, and
fourth most important feature in the XGBoost, RF, and CatBoost
models, respectively. The menopausal transition was associated
with a 10–12% reduction in niacin intake, a finding reinforced
by its consistent importance as a classification variable across
machine learning methods. Niacin, commonly referred to as B3,
serves as a precursor for the synthesis of the pyridine coenzymes
nicotinamide adenine dinucleotide (NAD) and nicotinamide
adenine dinucleotide phosphate (NADP). A deficiency of niacin
may limit the NAD+/NADH pool, thereby compromising sirtuin-
mediated stress response pathways and creating a permissive
environment for the accumulation of oxidative damage (31). In
animal models of premature ovarian insufficiency, administration
of niacin was found to suppress follicular apoptosis in adverse

conditions and markedly decrease apoptosis in cumulus cells
(32). Additionally, there was an observed increase in the number
of developing follicles following niacin treatment (32). Niacin
enhances the number of healthy antral follicles and corpora lutea
in rats with polycystic ovary syndrome, while simultaneously
reducing the quantity of cystic follicles and the thickness of the
thecal layer surrounding the follicles (33).

A significant reduction in vitamin B6 levels was observed
in early postmenopausal women (p = 0.003), with consistent
identification as a high-importance feature acrossmultiple machine
learning algorithms (XGBoost, RF, and CatBoost). In addition to
its role as a cofactor for various enzyme-catalyzed biochemical
reactions, vitamin B6 also functions as a scavenger of ROS, a
metal chelator, and a chaperone in the enzyme folding process
(34). This nutritional alteration carries particular clinical relevance
given vitamin B6’s essential role in homocysteine metabolism. The
observed decline during menopausal transition may compromise
the transsulfuration pathway, potentially elevating circulating
homocysteine levels and thereby contributing to the increased
cardiovascular risk profile characteristic of the menopausal
transition (35).

The production of ROS can be induced by various factors,
including heavy metals, tobacco smoke, drugs, exogenous
substances, pollutants, and radiation. Oxidative stress resulting
from poor lifestyle habits is associated with various age-related
diseases (36). Smoking plays a significant role in the performance of
the models established using TabPFN and CatBoost. Both current
and former smokers are at an increased risk of experiencing earlier
menopause (37). The presence of stable pro-oxidants in tobacco
smoke can lead to a direct increase in ROS within the body.
Furthermore, substances like nicotine and tar found in tobacco
can exhaust protective antioxidants, thereby contributing to the
development of oxidative stress (24). Any level of smoke exposure
can induce oxidative stress damage to the ovaries (24).

Hypertension emerged as a crucial feature influencing the
menopause prediction models established using both CatBoost
and TabPFN. OS may be one of the mechanisms involved in the
development of hypertension (38). Moreover, antioxidants such as
alpha carotene and vitamin C contribute to the performance of the
model predictions. This further confirms the correlation between
OBS and the odds of menopause occurrence.

The limitations of this study highlight that our cross-sectional
data can indicate a correlation between OBS (observational
biomarker) and menopause, but it cannot infer a causal
relationship. To determine whether menopause also affects OBS,
longitudinal studies are needed to track the changes in OBS and
menopause over time, as well as their temporal relationships.
Alternatively, utilizing time series data could help validate the
causal relationships between the different variables. One notable
limitation is the inability to validate the model externally using
independent datasets from other populations, which restricts the
generalizability of our findings. The lack of comparable external
data prevents further confirmation of the model’s robustness
and reproducibility across different settings. Future studies
should prioritize multicenter collaborations to obtain diverse
validation cohorts and strengthen the clinical applicability of
the model.
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This study identified the correlation between OBS and
menopause using nationwide cross-sectional sampling data. The
robustness of this correlation was confirmed through sensitivity
analysis. Stratified analysis might indicate that the sensitive time
window for the correlation between OBS and menopausal status is
between the ages of 40 and 44. Additionally, a decrease in the intake
of magnesium, zinc, niacin, and vitamin B6 was observed during
menopausal transition. Finally, four different machine learning
algorithms were employed to establish well-performingmenopause
classification models based on epidemiological information and
OBS along with its components, confirming the roles of
magnesium, zinc, niacin, and vitamin B6 in the perimenopausal
period. However, the cross-sectional nature of the study restricts
the capacity to establish causal inferences. This study, while unable
to confirm a causal relationship between OS and menopause,
presents preliminary findings on the enhancement of ovarian
function through dietary and behavioral modifications.

5 Conclusion

The results of this study imply a reverse association between
OBS and menopause and the time window and content for dietary
and lifestyle improvements during the menopausal transition.
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