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Objective: In this study, a highly selective and sensitive LC-MS/MS method 
was developed to comprehensively analyze the distribution of astaxanthin 
across various tissues of Litopenaeus vannamei, as well as its variations in the 
hepatopancreas and ovary throughout ovarian development.

Methods: The separation was performed on a BEH C8 column (1.7 μm, 
2.1 × 50 mm) using a a gradient elution. The initial mobile phase composition 
was 0.1% formic acid in 3 mM ammonium acetate in water (solvent A) and 
methanol (solvent B) at a ratio of 15:85 (v/v), with a flow rate of 0.20 mL/min.

Results: The assay demonstrated linearity over a concentration range of 20 to 
10,000  ng/mL, with accuracy varying from −0.1 to 1.7% and precision within 
2.1%. Using the established methodology, astaxanthin concentrations were 
quantitatively analyzed and comparatively assessed across various tissues of 
L. vannamei. Analytical results demonstrated that the ventral nerve cord and 
hepatopancreas exhibited the highest astaxanthin concentrations among all 
examined tissues, with values of 351 μg/g and 116 μg/g, respectively. During 
the ovarian developmental stages, astaxanthin was predominantly sequestered 
in the hepatopancreas during early phases, with concentrations ranging from 
21.3 μg/g to 29.1 μg/g, representing a 43- to 59-fold increase compared to 
ovarian concentrations. However, a significant redistribution of astaxanthin was 
observed during the post-developmental stage, characterized by a substantial 
decrease to 5.74 μg/g in the hepatopancreas, concomitant with an increase to 
7.47 μg/g in ovarian tissue.

Conclusion: This validated LC-MS/MS method effectively quantified astaxanthin 
in various tissues of Litopenaeus vannamei, providing new insights into its tissue-
specific distribution and potential role during ovarian development.
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1 Introduction

Astaxanthin (3,3′-dihydroxy-β,β’-carotene-4,4′-dione) is a 
naturally occurring pigment found extensively in various aquatic 
species, including salmon, shrimp, and crab (1, 2). Astaxanthin is also 
a natural antioxidant with multiple pharmacological activities (3). Due 
to its high antioxidant capacity, astaxanthin can effectively eliminate 
free radicals that cause disability, disease, and death in the body. It 
promotes skin and brain health, helps prevent cancer, and inhibits the 
development of complications from diabetes (4–6). In addition, 
astaxanthin also possesses anti-lipid peroxidation activity (7, 8) anti-
inflammatory (9, 10), anti-diabetic (11, 12) and anticancer activity 
(13). Related reports and studies indicate that astaxanthin can protect 
living organisms from diseases and plays a role in the treatment and 
prevention of peripheral and central nervous system diseases (14, 15).

The benefits of astaxanthin for crustaceans include greater 
pigmentation, enhanced growth, higher survival rates, stronger stress 
resistance, and improved reproductive potential (16–19). The Pacific 
white shrimp (Litopenaeus vannamei) is an economically important 
aquaculture animal, accounting for more than 50% of the crustacean 
production globally. In the shrimp farming industry, astaxanthin has 
been used as a feed supplement to enhance the overall coloring (20). 
Astaxanthin supplementation during broodstock rearing can 
effectively improve the quality of mature ovary in female broodstock. 
As mentioned earlier, astaxanthin has antioxidant properties, which 
may affect ovarian development (21). Li et al. (22) suggested that 
astaxanthin improves the development of follicles and oocytes by 
enhancing their antioxidant capacity. Jia et  al. (23) reported that 
astaxanthin significantly reduced the production of reactive species in 
oocytes and improved the quality of the oocyte nucleus. Qiang et al. 
(24) showed that female Nile tilapia fed with astaxanthin exhibited 
reduced oxidative stress in ovarian tissue and improved 
oocyte development.

A sensitive and simple bioanalytical method is crucial for 
understanding the distribution of astaxanthin during the ovarian 
development process. Multiple analytical methods have been 
developed to quantify the astaxanthin concentrations in previous 
studies. An HPLC method was established for quantifying astaxanthin 
in Haematococcus pluvialis (25). Raman spectroscopy was used to 
detect astaxanthin in salmon fillets (26). Holtin et al. (27) employed 
NMR spectroscopy and LC-(APCI)MS methods to detect astaxanthin 
and astaxanthin esters in the microalga Haematococcus. Todorović 
et  al. (28) used HPLC-DAD and LC-QTOF-MS to determine the 
content of astaxanthin and its esters in H. pluvialis. However, the 
detection of astaxanthin in biological samples, such as shrimp tissues, 
is challenging due to the complexity of the matrix. An improved 
method is needed to meet the requirements for highly sensitive and 
specific quantitative detection of astaxanthin in shrimp tissues. 
LC-MS/MS was employed in this study, as it allows for rapid, high-
throughput analysis, particularly in multiple reaction monitoring 
(MRM) mode, where it can achieve highly selective and sensitive 
quantitative analysis (29). Through MS/MS, it can analyze product 
ions derived from specific precursors, thereby enhancing the 
specificity of compound identification with high quantitative 
precision (30).

This study developed a simple, rapid, and accurate protein 
precipitation method for astaxanthin extraction, and coupled it 
with an LC-MS/MS method for quantification. Astaxanthin 

concentrations in various shrimp tissues were determined. 
Changes in its levels in the hepatopancreas and ovaries were 
analyzed across the early, middle, and late stages of ovarian 
development to investigate the potential role of astaxanthin in 
this process.

2 Experiment

2.1 Materials and reagents

Astaxanthin (≥98%) and β-carotene (internal standard, ≥98%) 
were purchased from Shanghai Aladdin Biochemical Technology 
Co., Ltd. (Shanghai, China) and Shanghai Yuanye Biotechnology 
Co., Ltd. (Shanghai, China), respectively. Methanol (LC-MS grade) 
was obtained from Thermo Fisher Scientific (Waltham, MA, 
United  States). Formic acid was purchased from Dikma 
Technologies (Beijing, China), and ammonium acetate was supplied 
by Shanghai Aladdin Biochemical Technology Co., Ltd. 
(Shanghai, China).

2.2 Sample collection

The experimental animals were L. vannamei. Tissue samples 
collected included the eyestalk, stomach, ventral nerve cord, intestine, 
epidermis, hepatopancreas, muscle, ovary, and heart. The head, shell, 
and epidermis were removed, and the remaining parts were collected 
as the blank matrix. Ovarian and hepatopancreatic tissues were 
classified into pre-development, mid-development, and post-
development stages based on the gonadosomatic index (GSI), defined 
as follows: GSI < 0.9% (pre-development), GSI = 2.7–4.0% 
(mid-development), and GSI > 6.0% (post-development). The 
gonadosomatic index was calculated as follows:

  GSI = (gonad mass (g) / FBW (g)) x 100%

2.3 Instruments and experiment conditions

Chromatographic analysis was performed on an UltiMate 3,000 
UPLC system, and mass spectrometric detection was carried out using a 
TSQ Quantiva™ triple quadrupole mass spectrometer (Thermo Fisher 
Scientific, MA, United States) operated in electrospray ionization (ESI) 
mode with MRM. Separation was achieved on an ACQUITY UPLC® 
BEH C8 column (1.7 μm, 2.1 × 50 mm; Waters, Ireland).

The mobile phase consisted of 0.1% formic acid and 3 mM 
ammonium acetate in water (phase A) and methanol (phase B). The 
initial composition was 15:85 (v/v) of phases A: B with a flow rate of 
0.20 mL/min. At 1.0 min, phase B was increased to 100% and the flow 
rate was raised to 0.40 mL/min. The system was re-equilibrated to the 
initial conditions at 3.0 min.

The MRM transitions and parameters for astaxanthin and 
β-carotene were as follows: m/z 597.385 → 147.117 [M + H]+ for 
astaxanthin and m/z 536.557 → 444.508 [M + H]+ for β-carotene. The 
collision energies (CE) were set at 34 eV and 13 eV, respectively. The 
ion source temperature was maintained at 450°C.

https://doi.org/10.3389/fnut.2025.1586625
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Diao et al. 10.3389/fnut.2025.1586625

Frontiers in Nutrition 03 frontiersin.org

2.4 Sample preparation

Stock solutions of astaxanthin and the internal standard (IS, 
β-carotene) were prepared at a concentration of 1 mg/mL in DMSO 
and dichloromethane, respectively. These stock solutions were diluted 
with methanol to obtain working solutions at concentrations of 
0.400, 1.00, 2.00, 10.0, 20.0, 100, 160, and 200 μg/mL. Working 
solutions were further diluted with the blank biological matrix to 
prepare calibration standards. Calibration curves for astaxanthin 
were constructed using eight concentrations ranging from 20 to 
10,000  ng/mL (20, 50, 100, 500, 1,000, 5,000, 8,000, and 
10,000 ng/mL).

Quality control (QC) samples were prepared at three 
concentration levels: 60, 500, and 7,500 ng/mL. All calibration 
standards and QC samples were freshly prepared before analysis.

In the present study, astaxanthin and the IS were extracted from 
shrimp tissue using a protein precipitation method with acetonitrile. 
Precisely weighed shrimp tissue (221 ± 35.1 mg) was homogenized in 
a 1:5 (w/v) ratio with 50% methanol in water. A 50 μL aliquot of the 
tissue homogenate was mixed with 50 μL of IS working solution (2 μg/
mL), followed by the addition of 200 μL of acetonitrile. The mixture 
was vortexed for 1 min, then centrifuged at 14,000 rpm and 4°C for 
5 min. The resulting supernatant was carefully transferred, and a 5 μL 
aliquot was injected for LC-MS/MS analysis.

2.5 Assay validation

The developed method was validated in accordance with the 
U. S. Food and Drug Administration (FDA) guidelines for 
bioanalytical method validation (31).

2.5.1 Selectivity
The selectivity of the method was evaluated by spiking astaxanthin 

and the IS into blank biological samples obtained from six 
different sources.

2.5.2 Linearity and LLOQ
The calibration curve was constructed by plotting the peak area 

ratio of astaxanthin to the IS on the y-axis against the nominal 
concentrations of astaxanthin on the x-axis using weighted (1/x2) 
linear regression. The curve included eight concentration levels 
ranging from 20 to 10,000 ng/mL. The lower limit of quantification 
(LLOQ) was established based on a signal-to-noise ratio (S/N) of 10:1 
relative to the baseline noise.

2.5.3 Accuracy and precision
The precision and accuracy of the method were evaluated at four 

concentration levels: the LLOQ and three QC levels (low, medium, 
and high). Intra-day (within-run) precision and accuracy were 
assessed by analyzing six replicates (n = 6) of each concentration on 
the same day, while inter-day (between-run) precision and accuracy 
were evaluated over three consecutive days.

2.5.4 Recovery and matrix effect
The extraction recovery of astaxanthin from tissues was evaluated 

by comparing the areas of spiked tissue samples at three concentration 
levels (n = 6) to those of unextracted standard samples (100%). The 

matrix effect of astaxanthin was assessed by analyzing QC samples at 
two different concentrations in post-extraction blank biological matrix.

2.5.5 Stability
The stability of astaxanthin in shrimp tissue was evaluated at two 

concentration levels under various storage conditions. Freeze–thaw 
stability was assessed by subjecting six replicates of QC samples to 
three freeze–thaw cycles, alternating between −80°C and room 
temperature. Benchtop stability was determined by leaving QC 
samples at room temperature for over 4 h. Post-preparative stability 
was evaluated by storing extracted QC samples in the autosampler at 
4°C for more than 15 h. Long-term stability was assessed by storing 
QC samples at −80°C for 1 month.

2.6 Statistical analysis

In this experiment, three biological replicates with three 
technical replicates were performed (n = 3 for each group). One-way 
analysis of variance (ANOVA) with Tukey’s post hoc test was used to 
evaluate the differences in astaxanthin concentrations among 
different organs.

3 Results

3.1 Method development and optimization

In this experiment, both positive and negative ion modes were 
evaluated for the detection of astaxanthin and the IS. The ion 
abundances of both compounds were significantly higher in the 
positive ion mode compared to the negative mode. Therefore, the 
positive ion mode was selected for subsequent analyses. The 
optimal MRM transitions for astaxanthin and the IS were 
determined using a full scan approach. The selected transitions 
were m/z 597.385 → 147.117 [M + H]+ for astaxanthin and m/z 
536.557 → 444.508 [M + H]+ for the IS. The full-scan mass spectra 
of astaxanthin and the IS are presented in Supplementary Figure S1. 
Chromatographic separation was achieved using methanol as the 
organic phase and an aqueous solution containing 0.1% formic acid 
and 3 mM ammonium acetate as the aqueous phase. Satisfactory 
peak shapes and high sensitivity (LLOQ = 20 ng/mL) were 
obtained at a flow rate ranging from 0.20 to 0.40 mL/min 
(Figures 1A–C).

3.2 Method validation

3.2.1 Selectivity
The results from six different sources of blank biological samples 

indicated that no endogenous interference was observed at the 
retention times of astaxanthin and the IS, demonstrating the high 
selectivity of the method. Representative chromatograms are shown 
in Figure 1A.

3.2.2 Linearity and LLOQ
The standard calibration curve for astaxanthin ranged from 20 to 

10,000 ng/mL, exhibiting excellent linearity in the biological matrix 
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with a correlation coefficient (R2 ≥ 0.999). The LLOQ was established 
at 20 ng/mL, as shown in Table 1. At the LLOQ level, the measured 
concentration of astaxanthin in biological samples was 20.1 ± 0.4 ng/
mL (Supplementary Table S1).

3.2.3 Accuracy and precision
The intra-day and inter-day accuracy and precision of the method 

were evaluated at four concentration levels of astaxanthin (20, 60, 500, 
and 7,500 ng/mL) in biological samples (Table  1). The method 

FIGURE 1

Representative MRM chromatograms (A) blank tissue sample. (B) Blank tissue spiked with LLOQ of astaxanthin (20 ng/mL) and IS (2000 ng/mL). (C) The 
epidermis tissue sample of L. vannamei.

TABLE 1 The intra-day and inter-day precision and accuracy data for the quantification of astaxanthin.

Nominal concentration 
(ng/mL)

Intra-Day (n = 6) Inter-Day (n = 18)

Mean ± SD 
(ng/mL)

Accuracy
(RE %)

Precision 
(RSD %)

Mean ± SD 
(ng/mL)

Accuracy
(RE %)

Precision 
(RSD %)

20 20.1 ± 0.4 0.6 2.1 20.2 ± 0.1 1.1 0.5

60 60.3 ± 0.2 0.6 0.4 61.0 ± 0.9 1.7 1.5

500 504 ± 2 0.9 0.3 507 ± 5 1.3 0.9

7,500 7,493 ± 31 −0.1 0.4 7,511 ± 16 0.2 0.2

RE, relative error. RSD, relative standard deviation. SD, standard deviation.
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demonstrated excellent performance, with relative errors (RE) ranging 
from −0.1 to 1.7% and relative standard deviations (RSD) below 2.1%. 
All results were within the ±15% acceptance criteria specified by the 
FDA guidelines, confirming the method’s accuracy, precision, 
and reproducibility.

3.2.4 Recovery and matrix effect
The extraction recovery of astaxanthin was evaluated at three 

concentration levels (60, 500, and 7,500 ng/mL). The recovery ranged 
from 100.3 to 100.8%, with RSD between 0.5 and 0.9% 
(Supplementary Table S2). The matrix effect was assessed at two 
concentrations using the blank biological matrix. At the low 
concentration level (60 ng/mL), the matrix effect was 13.8%, which 
was higher than that at the high concentration level (7,500 ng/mL, 
1.4%), but both values remained within the acceptable limits defined 
by the FDA guidelines. These results indicate that the extraction 
process effectively minimized matrix interference. To evaluate 
carryover, HQC (high-quality control) samples were injected, followed 
by blank tissue extracts. This procedure was repeated three times, and 
neither astaxanthin nor the IS was detected in the blank 
chromatograms, confirming the absence of carryover.

3.2.5 Stability
The stability of astaxanthin was evaluated under four different 

storage conditions: short-term storage, long-term storage, freeze–thaw 
cycles, and post-preparative stability (Table 2). Astaxanthin samples 
at low (60 ng/mL) and high (7,500 ng/mL) concentrations were 
analyzed to assess the impact of storage conditions. Under all tested 
conditions, the measured concentrations ranged from 60.6 to 62.1 ng/
mL and from 7,507 to 7,526 ng/mL, respectively, with RSD below 
3.4%. These results indicate that astaxanthin is stable in shrimp tissues 
under standard laboratory handling and storage conditions.

3.3 Tissue distribution of astaxanthin

The LC-MS/MS method established in this experiment was 
successfully applied to detect astaxanthin concentrations in different 
shrimp tissues. The concentrations of astaxanthin in the eyestalk, 
stomach, ventral nerve cord, intestine, epidermis, hepatopancreas, 
muscle, and heart of L. vannamei are presented in Figure 2. The results 

demonstrated that astaxanthin was widely distributed in the nervous 
and digestive systems of shrimp. Among all the tissues tested, the 
ventral nerve cord and hepatopancreas showed the highest 
concentrations at 351 μg/g and 116 μg/g, respectively (Figure 2A), 
suggesting their critical roles for astaxanthin storage and function. 
The heart and muscle contained the lowest levels of astaxanthin 
between 1.61 and 1.76 μg/g, which was about 200-fold lower than that 
in the ventral nerve cord. The astaxanthin concentrations in the other 
organs ranged from 20.2 to 57.8 μg/g, with statistically significant 
differences among them based on one-way ANOVA analysis 
(Figure  2B). The uneven distribution of astaxanthin in different 
organs may be related to the physiological functions of astaxanthin 
in shrimp.

3.4 Astaxanthin dynamics during the 
ovarian development process

To explore the role of astaxanthin in ovarian development, 
we  examined its concentration in the hepatopancreas and ovary, 
which were expected to be the major organs related to gonadal 
maturation in L. vannamei. The astaxanthin concentrations of both 
organs at three stages are shown in Figure 2C. The results showed that 
the hepatopancreas was the primary site for astaxanthin storage 
during early ovarian development stages with concentrations of 21.3 
μg/g and 29.1 μg/g, which were 59-fold and 43-fold higher than those 
in the ovary, respectively. Both organs showed continuous 
accumulation of astaxanthin during this period. However, at the post-
development stage, astaxanthin levels dropped significantly in the 
hepatopancreas and increased in the ovary compared with the pre- 
and mid-development stages. The astaxanthin concentrations 
eventually reached a similar level in both organs (5.74 μg/g in the 
hepatopancreas and 7.47 μg/g in the ovary). This suggests that the 
hepatopancreas may serve as an astaxanthin reservoir, storing it at 
early stages and transporting it to the ovary at late stage to 
support oogenesis.

4 Discussion

In this study, we  developed an LC-MS/MS method to 
systematically analyze the distribution of astaxanthin in different 
tissues of L. vannamei and its changes in the hepatopancreas and 
ovary during ovarian development. Astaxanthin exists in crustaceans 
in both free and esterified forms (2) and is transported to various 
organs mainly through passive diffusion or binding to transport 
proteins (32). Our research showed that astaxanthin is mainly found 
in the nervous system, digestive system, and outer body. Many 
physiological processes, such as metabolism, growth, and 
reproduction, are regulated by the nervous system (33), which may 
influence the distribution and accumulation of astaxanthin by 
controlling the release of hormones or neurotransmitters related to its 
metabolism. Natural astaxanthin, produced by microalgae and 
phytoplankton, accumulates in zooplankton and crustaceans through 
the food chain (34). Since shrimp cannot synthesize astaxanthin, it 
must obtain it from external sources. The digestive system efficiently 
absorbs astaxanthin, which may bind to proteins like crustacyanin and 
lipoproteins (35), then transport it to various digestive organs. 

TABLE 2 Stability of astaxanthin in blank biological matrix (n = 6).

Sample 
condition

Nominal 
concentration 

(ng/mL)

Measured
(Mean ± SD)

RSD (%)

Short-term
60 61.5 ± 1.0 1.7

7,500 7,507 ± 12 0.2

Freeze–thaw
60 60.9 ± 1.2 1.9

7,500 7,516 ± 34 0.4

Post-preparative 

stability

60 60.6 ± 0.6 1.1

7,500 7,526 ± 387 0.5

Long-term
60 62.1 ± 2.0 3.4

7,500 7,520 ± 55 0.7

RSD, relative standard deviation. SD, standard deviation.
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Additionally, the distribution of astaxanthin in the outer body may 
enhance stress resistance and immune function (36, 37), acting as a 
cellular protector and playing a key role in shrimp growth and survival.

This study also revealed dynamic changes in astaxanthin during 
ovarian development. As a natural antioxidant, astaxanthin protects 
cells from oxidative damage by scavenging free radicals (32). 
Combined with the hepatopancreas’s crucial role in energy metabolism 
and substance transport (38), these findings suggest that astaxanthin 
supports reproductive development by providing energy and 
antioxidants. As ovarian development reaches the post-development 
stage, astaxanthin levels in the hepatopancreas decrease, while levels 
in the ovary rise, supporting the hypothesis of astaxanthin transport 
to the ovary. This redistribution likely reflects the increased 
requirement for antioxidants and nutrients during late-stage 
oogenesis. Li et al. (22) also demonstrated that astaxanthin reduces 
bisphenol A-induced oxidative stress in follicles, highlighting its key 
role in maintaining oocyte function and ensuring ovarian 
development. In our research, the significant increase in ovarian 
astaxanthin during late-stage development suggests that oocyte 
growth increases the need for antioxidants. Astaxanthin supports 
oocyte maturation by providing antioxidant protection and 
maintaining organelle function, ensuring healthy ovarian 
development. Overall, this study contributes to a better understanding 

of astaxanthin’s physiological role and suggests its potential relevance 
in aquaculture applications, particularly in relation to reproductive 
performance and oocyte viability.
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