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Introduction: The role of nutrition in Attention-Deficit, Hyperactivity Disorder 

(ADHD) and other neurodivergent conditions is of growing public and research 

interest. There is little research reporting vitamin, mineral and omega-3 fatty acid 

levels in ADHD and brain health. 

Methods: This study presents nutritional and psychological data from a 

community UK sample of children (n = 47, Mean age: 10.1 years) and adults (n = 

10, Mean age: 29.8 years) with ADHD, autism, dyslexia and other neurodivergent 

conditions (total n = 57). The participants undertook a blood draw which 

measured a range of vitamins, minerals and omega-3 fatty acids as well as food 

allergies and food intolerances which were then correlated with psychological 

symptom scores measuring ADHD symptoms. 

Results: The key findings, revealed that both children and adults presented 

with a range of insufficiencies in key nutrients which facilitate neurotransmitter 

function and, which are deemed as brain-essential, namely omega-3 fatty 

acids, zinc, B-vitamins and vitamin D. Furthermore, significant relationships were 

observed between nutrient levels and ADHD symptom severity in the children’s 

group. For example, red blood cell magnesium was negatively correlated 

with the Conners CI-Parent Rating Scale (CPRS) Disruptive Behavior scores 

(rho = −0.597, p = 0.024). The omega-3 index (sum of EPA + DHA as a 

percentage of total fatty acids) was negatively correlated with their Learning 

and Language Disorder scores, (rho = −0.601, p = 0.018). Magnesium levels 

were also associated with overall ADHD symptom severity (rho = −0.612, p = 

0.02), implying that the greater the severity of ADHD symptoms, the lower the 

magnesium. This clinical cohort also presented with a range of food intolerances 

with over 80% of participants presenting with high reactivity scores to cow’s 

milk, other dairy, and casein, and just over half the sample intolerant to wheat 

and wheat gluten. 

Discussion: This is a novel study which presents preliminary data and insights in 

the role of nutrition in ADHD and neurodivergence. and relationships between 

nutritional insufficiencies and ADHD-symptoms. It specifically demonstrates a 

range of food intolerances and relationships between nutritional insufficiencies 

and ADHD-symptoms, which warrant further exploration in larger case-control 

groups. 
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1 Introduction 

The role of nutrition in brain health and in particular 
in Attention-Deficit/Hyperactivity Disorder (ADHD) and other 
neurodivergent conditions is of growing public and research 
interest. Neurodivergence is a term employed to describe a range 
of dierences in individual brain functioning, processing and 
traits that dier from what is considered typical and includes 
conditions such as ADHD and Autism Spectrum Disorders (ASD). 
Neurodiversity is a term coined by Judy Singer in the late 1990s 
and is an umbrella term which can be useful to describe people 
with a varying behaviors and characteristics of neurodevelopmental 
conditions in a non-prejudiced way and embraces the notion that 
dierent people have dierent brains and no-one brain is exactly 
the same as another (1). 

Nutritional science has traditionally focused on isolating single 
nutrients to investigate their eects producing varied and often 
inconclusive findings. However, it is increasingly recognized that 
there is no single nutrient responsible for brain health and 
nutrients interact synergistically to facilitate absorption and yield 
physiological impacts in the body and brain (2). The Dietary 
Reference Intakes (DRIs) provide guidelines for nutrient intake and 
recommendations to prevent nutrient deficiencies. DRIs include 
four categories of values including recommended dietary allowance 
(RDA) which is the amount of a nutrient which is adequate to 
meet the requirements of 97–98% of a population (3). The field of 
Nutritional Psychiatry is concerned with the relationship between 
food and the health of the human brain. Furthermore, specifically 
how “brain-selective” nutrients impact brain activity, structure and 
function and in turn help regulate mood, behavior, learning and 
cognition (4). 

ADHD is a neurobiological condition with complex etiology 
influenced by a combination of genetic and environmental 
factors (5). Symptoms of ADHD present dierently in 
childhood and adulthood and can be broadly characterized 
by impairing levels of inattentiveness, disorganization, and/or 
impulsivity/hyperactivity (6). ADHD is considered one of the 
most common neurodevelopmental conditions impacting around 
6–11% of children and 2–6% of adults worldwide (7, 8). ADHD 
often co-occurs with conditions and/or symptoms of depression, 
anxiety, dyslexia, dyspraxia, dyscalculia, generalized anxiety 
disorder (GAD), ASD, obsessive compulsive disorder (OCD), 
sensory disorders and oppositional defiant (ODD) disorders (9). 
Diagnostic criteria is outlined in the Diagnostic and Statistical 
Manual for Mental Disorders Volume 5 (DSM-5) and the 
International Classification of Diseases 11th Revision (ICD-11) 
(10). The first line of treatment recommended by National Institute 
for Health and Care Excellence (NICE) guidelines is behavioural 
therapies and pharmacological treatment1 . The number of 
adults receiving NHS prescriptions for ADHD medication such 
as methylphenidate (MPH) was reported to have increased 
seven-fold over the past decade resulting in around 232,000 
prescriptions in 2023 (11). However, the long-term eectiveness 
and safety of stimulant medications remain under investigation. 
In 2024, a study by Zhang and colleagues reported that ADHD 
medications can increase risk of cardiovascular disease (each 

1 https://www.nice.org.uk/guidance/ng87 

1-year increase of ADHD medication use was associated with 
a 4% increased risk of CVD) advising that the potential risks 
and benefits of long-term ADHD medication use should be 
carefully considered (12). Meanwhile, there is growing scientific 
and public interest in the role of nutrition in ADHD and brain 
activity (13). 

The human brain has a specific composition which requires 
a particular nutrient intake for structure, activity and function 
(14, 15). The brain is approximately 60% lipid by dry weight 
(16), and is enriched in long-chain omega-3 polyunsaturated 
fatty acids (PUFAs), where docosahexaenoic acid (DHA, 22:6n-
3) comprises 20–25% of the fatty acid content of neuronal 
membranes (17, 18), whereas microglia content is higher in 
eicosapentaenoic acid (EPA, 20:5n-3) than DHA (19). EPA and 
DHA are also critical for a range of brain functions including 
cell-signaling, gene expression, myelination, serotoninergic and 
dopaminergic functioning (20). Inadequate dietary intake of 
EPA and DHA is linked to a wide-range of psychiatric 
and neurodevelopmental outcomes including major depressive 
disorder, anxiety, schizophrenia, psychosis, ASD and ADHD (21– 
25). The brain also has a requirement for a daily intake of 
a range of nutrients including B–vitamins, vitamins C and D 
magnesium, zinc, iron, iodine, and choline, to function optimally 
(4, 26–28). 

Neumann et al. (29) recently identified that lower methylation 
status at birth was associated with later development of ADHD 
symptoms. These findings report that DNA methylation may exert 
an influence on ADHD symptoms, potentially via modification of 
neurotransmitter functioning or a process called neurite outgrowth 
which has implications for the field of Nutritional Psychiatry 
(29). Nutrition plays a critical role in DNA methylation and, 
in particular, omega-3 fatty acids have been found to decrease 
DNA methylation and restore neurite outgrowth (30–32). Omega-
3 fatty acids have anti-inflammatory and pro-resolving properties 
and are known to modify gene expression within cells (33). 
A study by Karimi et al. (34)—and there are other studies 
not reviewed here—reported that DHA–rich omega-3 fatty acid 
supplementation decreases DNA methylation (34–36). The omega-
3 index is a measure of the sum of EPA and DHA in red 
blood cells and is increasingly being applied to neuropsychological 
conditions including ADHD and autism [Neuroimaging, Omega-
3 and Reward in Adults With ADHD (NORAA) Trial, 2014; 37)]. 
The adult omega-3 index presents a range from optimal at 8– 
12%, intermediate: 4–8% and suboptimal at 0–4%, and it has 
been suggested that everyone should be in the optimal range 
for human health (38). Other nutrients which may play a role 
in lowering risk of DNA methylation include folate, flavonoids, 
choline, resveratrol, sulforaphane, curcumin and B-vitamins 
(39, 40). 

Individuals with neurodivergent conditions such as ADHD and 
ASD are known to present with problematic food relationships 
including Avoidant Restrictive Food Intake Disorder (ARFID). 
The exact reason for this remains unclear but is likely to be 
multifactorial and mediated by selective eating, sensory issues, 
and food avoidance. Emerging research has implicated the 
role of gut microbiome in ADHD and ASD and increased 
risk of gut dysbiosis which can act as a catalyst for poor 
mental health (41–43). Diet plays a key role in modulating gut 
microbiome which in turn impacts the gut-brain axis (44, 45). 
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Nutritional supplementation studies have provided insights into 
the influence of specific nutrients such as pre- and probiotics 
in modulating both stress, immune and neuronal function (46– 
48). However, food sensitivities in ASD and ADHD are arguably 
underexplored and often limited to case-control findings. For 
example, food intolerance and food allergy data are confined 
to functional medicine and nutrition clinics. There is increasing 
awareness, but often in isolated pockets of research, of the 
emerging connection between food cravings, gastrointestinal (GI) 
issues, selective eating habits, food sensitivities, and gut health. 
These complex interactions between dietary-related behaviors 
and food intake, nutritional insuÿciencies, gut health, and 
neurodevelopment are an expanding field of study warranting 
closer exploration. 

Lower levels of specific nutrients including iodine, folate, 
B-vitamins, iron, zinc and omega-3s have been observed in 
children with ADHD (49–52). Meanwhile, supplementation with 
omega-3, B-vitamins, zinc and magnesium has been independently 
found in clinical trials to improve ADHD symptoms (52–56). 
For example, it is well established that vitamin B6 (pyridoxine) 
serves as a coenzyme in numerous enzymatic processes and 
furthermore supports the synthesis of neurotransmitters— 
dopamine, serotonin, gamma-aminobutyric acid (GABA) and 
norepinephrine—helping to maintain a balance critical for 
cognitive and emotional regulation (57–59). Furthermore, 
dysregulation of these neurotransmitters is considered to be a 
hallmark feature of ADHD. 

This preliminary study aimed to establish nutrient profiles of 
children and adults in the community with ADHD, ASD and 
other neurodivergent symptoms. This study presents biochemical 
findings from nutritional data which examined key nutrients 
linked to neurotransmitter function (e.g., omega-3 fatty acids, 
zinc, magnesium, iron, iodine, Vitamin D, B–vitamins). The study 
sought to specifically examine nutritional insuÿciencies employing 
Dietary Reference Intakes (DRIs) as well as food intolerances and 
their relationships to ADHD symptoms. 

1.1 Study aims 

This study aimed to assess whether blood levels of key 
(“brain-selective”) nutrients were lower (i.e., insuÿcient) than 
recommended dietary reference intakes in individuals presenting 
with ADHD and/or similar neurodivergent conditions. Secondary 
analysis explored relationships between red blood cell (RBC) 
nutrient levels and ADHD symptom scores as measured by the 
Conners Parent ADHD Rating Scales (CPRS-RS). The CPRS 
measures scores from individual subscale scores and included 
measures of: Disruptive Behavior Disorder Indicator, Learning & 
Language Disorder Indicator, Mood Disorder Indicator, Anxiety 
Disorder Indicator, and ADHD Indicator. 

2 Materials and methods 

The data was previously collected through the private clinic of 
Dr. Rachel Gow in the context of nutritional and psychological 
assessments between 2017 and 2024. Participants were screened 

via structured clinical interviews, standardized psychological 
assessment, and laboratory analyses of nutritional profiles (see 
Tables 1, 2). 

2.1 Participant & consent 

Each family was briefed on the requirements of the project and 
invited to sign written informed consent. Ethical permission for 
the project was granted by the University of Roehampton Ethics 
Committee, reference: LSC 24-400. All data was anonymized, and 
each participant was allocated a unique (unidentifiable) ID code. 

2.2 OmegaQuant analytics 

A drop of non-fasted whole-blood was collected on filter 
paper that was pre-treated with a cocktail solution (Fatty Acid 
Preservative Solution, FAPSTM) and allowed to dry at room 
temperature for 15 min. The dried blood spots (DBS) were shipped 
to OmegaQuant for commercial fatty acid analysis. One punch 
of the DBS was transferred to a screw-cap glass vial followed by 
addition of methanol containing 14% boron trifluoride, toluene, 
methanol (35:30:35 v/v/v) (Sigma-Aldrich, St. Louis, MO). The 
vial was briefly vortexed and heated in a hot bath at 100◦C for 
45 min. After cooling, hexane (EMD Chemicals, United States) 
and HPLC grade water was added, the tubes were recapped, 
vortexed and centrifuged help to separate layers. An aliquot of 
the hexane layer was transferred to a GC vial. GC was carried 
out using a GC-2010 Gas Chromatograph (Shimadzu Corporation, 
Columbia, MD) equipped with a SP-∗2560, 100-m fused silica 
capillary column (0.25 mm internal diameter, 0.2 um film thickness; 
Supelco, Bellefonte, PA). Fatty acids were identified by comparison 
with a standard mixture of fatty acids characteristic of red blood 
cells (GLC OQ-A, NuCheck Prep, Elysian, MN) which was also 
used to construct individual fatty acid calibration curves. The 
following 24 fatty acids (by class) were identified: saturated (14:0, 
16:0, 18:0, 20:0, 22:0 24:0); cis monounsaturated (16:1, 18:1, 20:1, 
24:1); trans (16:1, 18:1∗ , 18:2); cis n-6 polyunsaturated (18:2, 18:3, 
20:2, 20:3, 20:4, 22:4, 22:5); cis n-3 polyunsaturated (18:3, 20:5, 22:5, 
22:6). Fatty acid composition was expressed as a percent of total 
identified fatty acids. The omega-3 index is defined as the sum of 
EPA and DHA as a percentage of the total measured fatty acids and 
adjusted by a regression equation (r=0.97) to predict the Omega-3 
Index in the RBC (60). 

2.3 Nutritional blood analysis 

The nutritional analysis was conducted either by Biolab 
(The Stone House, 9 Weymouth Street, London, W1W 6DB) 
or Viva Health Laboratories (VHL), New Lodge, Drift Rd, 
Windsor SL4 4RR. 

Nutritional data was available for 67% of the participants 
(n = 38). Fasted blood draws were taken by a qualified 
phlebotomist either at The Hale Clinic, 4 Harley St, London 
W1G 9PB or Biolab, The Stone House, 9 Weymouth Street, 
London, W1W 6DB or a home visit. The nutritional profiling 
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TABLE 1 Demographic data, including diagnoses and symptoms in 
children and adults with ADHD and other neurodivergent symptoms. 

Demographics: diagnoses & 
symptoms (full cohort, 
n = 57) 

Count or M Percentage 
(%) 

Gender 

Male 35 61% 

Female 22 39% 

Mean age 13.5 

ADHD subtype according to the ChIPS 

Predominantly inattentive 9 16% 

Predominantly hyperactive/impulsive 0 0% 

Combined type 11 19% 

Pre-existing ADHD diagnosis 

Predominantly inattentive 9 16% 

Predominantly hyperactive/impulsive 0 0% 

Combined 17 30% 

Type of ADHD (CAADID) 

Predominantly inattentive 0 0% 

Hyperactive/impulsive 1 2% 

Combined 1 2% 

Any ADHD 48 84% 

Other diagnosis 

Any other diagnosis 41 72% 

Autism spectrum disorder (ASD) 5 9% 

ASD traits 7 16% 

Dyspraxia 5 9% 

Dyslexia 7 12% 

Dyscalcula 1 2% 

Dysgraphia 2 4% 

Obsessive compulsive disorder (OCD) 2 4% 

Epilepsy 1 2% 

Depression 7 12% 

General anxiety disorder (GAD) 16 28% 

Eating disorders 2 4% 

Self-harm 3 5% 

Hypermobility 4 7% 

Tourette’s syndrome 5 9% 

Oppositional defiant disorder (ODD) 4 7% 

Parent-reported aggression 

Trichotillomania 1 2% 

Suicide ideation 4 7% 

School phobia 3 5% 

Speech language diÿculties 11 19% 

Sensory or auditory processing 

disorder 

8 18%% 

Global developmental delay 1 4% 

TABLE 2 Demographic data including medication, supplements, eating 
styles, food intolerances, childhood infections, antibiotic use and IQ in 
children and adults with ADHD and other neurodivergent 
conditions/symptoms. 

ADHD medication Count or M Percentage 
(%) 

Methylphenidate (Concerta, Ritalin, 
Focalin) 

14 25% 

Amphetamines (Adderall, Vyvanse, 
Dexedrine) 

2 4% 

Non stimulants (Atomoxetine, 
Strattera, Clonidine) 

1 2% 

Supplements 

Any supplement 32 56% 

Omega-3 19 33% 

Multi-vitamin 9 16% 

Vitamin D 6 11% 

Magnesium 9 16% 

Probiotics 2 4% 

Vitamin C 4 7% 

Melatonin 5 9% 

Other supplements (not listed) 8 14% 

Fussy eater, parent-report (n= 44) 

Yes 17 39% 

No 27 61% 

Food (IgG) intolerances (n = 38) 

Any intolerance 38 100% 

Cow’s milk 32 84% 

Egg yolk 18 47% 

Egg white 23 61% 

Casein 28 74% 

Other dairy 33 87% 

Wheat 20 53% 

Gluten 16 42% 

Other cereals and seeds 23 61% 

Yeast 11 29% 

Candida albicans 16 42% 

Nuts 14 37% 

Meats 8 21% 

Fish 4 11% 

Fruits 11 29% 

Vegetables 12 32% 

Complications at birth (n = 49) 

C-section 18 33% 

Premature birth 1 2% 

Umbilical cord around neck 4 8% 

(Continued) 
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TABLE 2 (Continued) 

ADHD medication Count or M Percentage 
(%) 

Childhood Infections (n = 46) 

Less than 3 26 57% 

3–5 13 28% 

5 or more 1 2% 

Antibiotics courses (n = 49) 

1 to 5 20 35% 

5 or more 11 19% 

IQ (Kaufman Brief Intelligence Test, Second Edition (KBIT-2) 

Verbal 110.8±3.3 

Nonverbal 109.1±6.0 

Composite 114.2±3.1 

Other IQ test scores 

Verbal 113.4±10.5 

Nonverbal 100.0±8.4 

Composite 101.3±8.9 

included measurements of iron, magnesium, zinc, iodine, 
vitamin E (as alpha-tocopherol), alpha-carotene, beta-carotene, 
vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B6 
(pyridoxine), Active B12, vitamin D, and food intolerancs 
(IgG) and food allergy (IgE) testing. Participants were asked to 
withdraw from omega-3 (fish and seafood) and iodine containing 
supplements for 48 h. 

2.4 Commercial laboratory analysis 

B Vitamins were analyzed via enzyme activation tests at 
Biolab and Liquid Chromatography with Mass Spectrometry (LC-
MS) for Viva Health referrals. Vitamin D was analyzed by 
either LC-MS at Biolab, or immunoassay at VHL. Iron levels 
were assessed using spectrophotometric (autoanalyzer method). 
Iodine levels were analyzed via inductively couple plasma, mass 
spectrometry (Inductively Coupled Plasma Mass Spectrometry: 
ICP-MS). Vitamin E was assessed using high performance 
liquid chromatography at Biolab, or via LC-MS for VHL 
referrals. Red Cell Magnesium was analyzed from blood samples 
using atomic absorption spectrometry (AAS) and finally, zinc 
analyzed using ICP-MS. 

2.4.1 Statistical analyses 
Statistical analysis was conducted using IBM SPSS Statistics 

Version 29.0.1.0 (171) and the data split according to laboratory 
(Viva Health or BioLab). Tests of normality as determined by 
the Kolmogorov-Smirnov test were applied to the nutritional 
and psychological data. From the nutritional indices only beta-
carotene, vitamin D, iron, zinc and RBC magnesium were 
normally distributed (p < 0.05). Each subscale of the CPRS 
questionnaire measuring ADHD symptoms, only the learning 
language disorder t-score was normally distributed. Therefore, 
Pearson coeÿcients for parametric data and Spearman rho 
coeÿcients for non-parametric data were conducted. Nutrient 

levels were assessed to determine whether or not scores met, were 
above or below the recommended reference ranges. Spearman’s 
rho was applied to explore relationships between individual 
vitamin, omega–3 PUFA and mineral values and each of the five 
CPRS DSM-IV t-scores e.g., (1) Disruptive Behavior Disorder, 
(2) Learning & Language, (3) Mood Disorder, (4) Anxiety 
Disorder and (5) ADHD Index scores. Pearson correlations 
were employed to assess the relationship between the CPRS 
Learning & Language Disorder t-score and individual nutritional 
data values (e.g., beta carotene, vitamin D, iron, zinc and RBC 
magnesium). The P-value was considered statistically significant 
if it was less than 0.05. Corrections for multiple comparisons 
were not performed on the data given that the primary 
hypothesis was directional, and data collected in the context 
of a pilot study. 

3 Results 

3.1 Psychological data collection 

Forty-six percent of participants had a pre-existing clinical 
diagnosis of ADHD. Participants either had a pre-existing clinical 
diagnosis of ADHD or were screened to establish if they met DSM-
IV research criteria for ADHD. Screening for children included the 
completion of (i) Conner Parent Rating Scales (CPRS) (61); (ii) The 
Children’s Interview for Psychiatric Syndromes (ChIPS) based on 
DSM-IV criteria (62); (iii), The Kaufman Brief Intelligence tests 
(K-BIT-2) (63). 

3.2 Psychological screening 

The adult ADHD screening criteria consisted of (i) The 
Conners’ Adult ADHD Diagnostic Interview for DSM-IV 
(CAADID) (64); (ii) Adult ADHD Self-Report Scale-V1.1 (ASRS-
V1.1) Symptoms Checklist from the World Health Organization 
(WHO) Composite International Diagnostic Interview (65) and 
(iii) Depression Anxiety and Stress scales (DASS) (66). 

A developmental and medical history was taken and included: 
(i) diagnostic history and symptoms, (ii) medication; (iii) 
supplements; (iv) sleep disturbances and average number of 
hours of sleep; (v) birth weight; (vi) any pregnancy/delivery 
complications; (vii) antibiotic use. 

3.2.1 Participant demographic summary 
A total of 35 male and 22 female participants (aged 

between 4 and 46 years, mean age M = 13.5 years, SD = 9.6) 
were recruited for the study. Of which 46% had a pre-
existing diagnosis of ADHD, and 19% met screening criteria 
for the combined subtype of ADHD as measured by The 
Children’s Interview for Psychiatric Syndromes (ChIPS/P-ChIPS). 
Sixteen percent of children met “research" criteria for the 
Predominantly Inattentive Type (ADD). Seventy-two percent of 
children with ADHD also presented with at least one other 
comorbidity (e.g., Generalized Anxiety Disorder (GAD) (28%), 
social communication diÿculties (21%), sensory issues (18%), and 
ASD-related traits/symptoms, 16%). 
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TABLE 3 Reference ranges for all nutrients according to laboratory (Viva Health and Biolab Medical Unit). 

Nutrient Sample M and SDs Reference ranges 
according to viva 

health 

Sample 
size 

M and 
SDs 

Reference ranges 
according to 

BioLab 

Vitamin A 6 1.9 ± 0.9 2.20 – 4. 00 µmol/L 25 1.6 ± 0.4 1.05 – 2.80 µmol/L 

Vitamin E alpha tocopherol 6 29.2 ± 6.0 29.5 – 87.4 µmol/L 25 25.7 ± 9.7 25 – 60 µmol/L 

Vitamin E gamma tocopherol 6 25 3.3 ± 7.0 2.0 – 8.5 µmol/L 

Alpha carotene 6 0.4 ± 0.4 0.13 – 0.86 µmol/L 24 1.3 ± 5.7 0.30 – 1.50 µmol/L 

Beta carotene 6 0.5 ± 0.4 0.60 – 2.60µmol/L 25 0.8 ± 0.3 0.40 – 3.0 µmol/L 

Vitamin B1 thiamine 6 101.8 ± 74.6 118 – 235 nmol/L 25 1.1 ± 0.2 < 1.15 = normal 

1.15 – 1.25 borderline 

> 1.30 deficient 

Vitamin B2 riboflavin 6 920.5 ± 159.7 797 - 1860 nmol/L 25 1.4 ± 0.2 < 1.20 = normal 

1.20 – 1.30 borderline 

> 1.30 deficient 

Vitamin B6 pyridoxine 6 105.67 ± 77.1 85-505 nmol/L 25 1.4 ± 0.2 < 1.75 = normal 

1.75 – 2.00 borderline 

> 2.00 deficient 

Active B12 5 102 ± 48.2 37.5-150 pmol/L 26 138.9 ± 71.9 25.1 – 165.0 pmol/L 

Folate 4 463 ± 346.7 285.4 – 1474.7 nmol/L 25 495.1 ± 265.9 285.4 – 1474.7nmol/L 

Vitamin D 6 50.6 ± 19.1 82 – 217 nmol/L 25 75.7 ± 16 75 – 200 nmol/L 

Iron 6 18.6 ± 4.8 5.83 -34.5 µmol/L 25 16.7 ± 6.4 14.3 – 38.0 µmol/L 

Copper 6 15.34 ± 2.2 11.1 – 27.4 µmol/L 25 15.6 ± 3.9 12.5 – 25.0 µmol/L 

Magnesium 4 0.9 ± 0.1 0.7 – 1.0 mmol/L 25 0.8 ± 0.2 0.70 – 1.00 mmol/L 

Zinc 6 11.7 ± 1.9 10.1 – 20.2 µmol/L 25 10.8 ± 1.4 11.5 – 20.0 µmol/L 

Red blood cell magnesium 6 2.1 ± 0.2 1.7 – 2.6 mmol/L 24 2.3 ± 0.2 2.08 – 3.00 mmol/L 

Iodine (urine) 3 0.6 ± 0.4 0.05-0.36 µmol/L 23 84.3 ± 89.4 100 – 199 µg/L 

Bold indicates lower than reference range. 

3.2.2 Medication and/or supplements 
Approximately 30% of the study group were taking ADHD 

medication of which 82% were taking methylphenidate (MPH, 
e.g., Concerta, Ritalin, Focalin). Fifty-six percent (56%) of the 
cohort were taking at least one supplement. Popular supplements 
included omega-3 fatty acids (33%), multivitamin (16%), vitamin 
D, magnesium (16%), probiotics, vitamin C, melatonin. Out of 44 
of the 57 participants, 17 participants (39%) were reported to be 
fussy, restrictive, or avoidant eaters. 

3.2.3 Food intolerance testing (IgG) 
Thirty-eight participants undertook food intolerance testing. 

The data revealed that approximately 84% presented with food 
intolerances to cows’ milk, and 87% to the category “other dairy”. 
In addition, 53% of the sample presented with food intolerances to 
wheat; 42% to gluten; 60% to the category “other cereals and seeds”; 
29% to yeast and 42% to candida. 

3.2.4 Demographic and medical history data 
Data was available for 49 of the study group of which 

approximately 47% of participants experienced complications 
during delivery (e.g., umbilical cord complications, premature 
birth) and 33% of participants were delivered via c-section. 

Approximately, 30% experienced greater than 3 childhood 
infections and 41% of the children reported (n = 49) had been 
prescribed between 1 and 5 courses of antibiotic medication and 
22% had taken 5 or more courses. Intelligent Quotient (IQ) scores 
were obtained for 42% of the sample (n = 24). The mean score 
for verbal IQ was M = 111.7, for non-verbal IQ was 106.7 and for 
composite IQ was 111.2. 

Several nutritional insuÿciencies were observed within the 
total sample including both adults and children (see Table 3) 
with levels below recommended reference ranges for the following 
nutrients: vitamin B2, riboflavin (82%), alpha-carotene (79%), 
vitamin E gamma-tocopherol (63%), vitamin D (62%), iodine 
(54%), and zinc (53%) (see Figure 1). 

3.2.5 Omega-3 Index 
Approximately 63% of the full sample presented with 

suboptimal (0–4%) Omega-3 Index, 32.6% had intermediate scores 
(4–8%) and 4.7% fell in the optimal category (8–12%). The mean 
Omega-3 Index was M = 4.0 SD ± 2.42. 

3.2.6 Demographics for subgroup analysis 
A subgroup analysis was conducted with a smaller sample 

(n=36) of children only, comprising 25 males and 11 females (aged 
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FIGURE 1 

Full cohort nutrient level (%) vs. recommended reference range. 

between 4 and 18 years, M=9.7 years, SD=3.7) (see Tables 4, 5). 
All of the sample had a neurodivergent condition of some kind, 
approximately 86% had a diagnosis of ADHD. Sixty-nine percent 
of the children within the total sample had at least one other 
additional behavioral or learning condition, ranging from Speech 
Language Diÿculties (SLD) (25%), GAD (19%), and Dyslexia 
(14%), respectively. Around a third (32%) of the children were 
taking ADHD medication, with the majority (82%) prescribed a 
form of MPH. Around 58% of the children were taking at least 
one daily supplement (e.g., omega-3, multivitamin, vitamin D, 
magnesium, probiotics, vitamin C, and melatonin). For example, 
omega-3 PUFA (22%), multivitamin (19%), magnesium (14%) 
and melatonin (14%). Participants were asked to refrain from 
all supplements and stimulant medication for a period of 48-h 
prior to their blood draw. In relation to eating behaviors, data 
was available for 29 children, of which 41% were reported to be 
fussy, restrictive, or avoidant eaters. Food intolerance data was 
available for 20 children only, of which 80% were found to be 
intolerant to cows’ milk, and 50% intolerant to wheat. Other food 
intolerances were found, with 100% of the group (n=20) intolerant 
to at least one food item. 

3.3 Mode of delivery, antibiotics and IQ 

In the children’s group, 50% experienced complications during 
birth (n=35), 37% were delivered via c-section. Approximately, 22% 
(n=31) had experienced greater than 3 infections during childhood. 
Around 41% of children (n=31) had been prescribed between 1 and 
5 courses of antibiotic medication and 18% of children had been 
prescribed 5 or more antibiotic courses. 

Children’s IQ scores were assessed for 58% of the sample 
(n=21). Verbal IQ (M=109.8), non-verbal IQ (M = 107.00) and 
composite IQ (M = 110.9). 

3.4 Children’s results 

3.4.1 Nutrient levels 
Children presented with several nutrient values below 

recommended ranges (see Table 6 and Figure 2): vitamin D (65%), 
iodine (53%), zinc (71%), vitamin B2 Riboflavin (88%), vitamin E 
gamma-tocopherol (50%) and alpha-carotene (75%) were all below 
recommended ranges. 

3.4.2 Omega-3 Index 
65% of the children presented with suboptimal Omega-3 Index 

scores. Intermediate Omega-3 Index values were found in 27% 
(intermediate = 4–8%). None of the children had optimal Omega-3 
Index values (optimal = 8–12%). The mean score for the cohort was 
M = 4.35 SD ± 1.98. 

3.4.3 ADHD symptoms and nutrient levels 
The following associations between nutrient values and ADHD 

symptoms scores were observed. 

3.4.4 CPRS disruptive behavior index and RBC 
magnesium 

A statistically significant, moderate, negative correlation was 
observed between RBC magnesium and the CPRS Disruptive 
Behavior subscale scores, (rho =−0.597), p=0.024. 
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TABLE 4 Demographics and characteristics of the children’s group 
(n = 36). 

Demographics: diagnoses 
& symptoms for the 
children’s group 

Count/M+SDs Percentage 
(%) 

Gender 

Male 25 69% 

Female 11 31% 

Age mean (SD) 9.7 ± 3.7 

Type of ADHD (ChIPS) 

Predominantly inattentive 7 19% 

Predominantly hyperactive/impulsive 

type 

0 0% 

Combined type 8 22% 

Pre-existing ADHD diagnosis 

Predominantly inattentive 4 11% 

Predominantly hyperactive/impulsive 

type 

0 0% 

Combined type 12 33% 

Any ADHD 31 86% 

Other diagnosis or symptoms 

Any other diagnosis 25 69% 

Autism spectrum disorder (ASD) 2 6% 

ASD traits 5 14% 

Dyspraxia 3 8% 

Dyslexia 5 14% 

Dyscalcula 0 6% 

Dysgraphia 2 6% 

Obsessive compulsive disorder 

(OCD) symptoms 
1 3% 

Epilepsy 1 3% 

Depression 1 3% 

General anxiety disorder (GAD) 7 19% 

Eating disorders 1 3% 

Self-harm 2 6% 

Hypermobility 3 8% 

Tourette’s 4 11% 

Oppositional defiant disorder (ODD) 
or parent-reported aggression 

2 6% 

Trichotillomania 0 0% 

Suicide ideation 0 0% 

School phobia 2 6% 

Speech language diÿculties 9 25% 

Sensory or auditory processing 

disorder 

7 3% 

Global developmental delay 1 3% 

Social communication diÿculties 4 11% 

TABLE 5 Demographic data including medication, supplements, eating 
styles, food intolerances, childhood infections, antibiotic use and IQ in 
children and adults with ADHD and other neurodivergent 
conditions/symptoms in the children’s group (n = 36). 

ADHD medication Count/M+SDs Percentage 
(%) 

Methylphenidate (Concerta, Ritalin, 
Focalin) 

9 25% 

Amphetamines (Adderall, Vyvanse, 
Dexedrine) 

1 3% 

Non stimulants (Atomoxetine, 
Strattera, Clonidine) 

1 3% 

Supplement intake 

Any supplement 21 58% 

Omega-3 8 22% 

Multi-vitamin 7 19% 

Vitamin D 3 8% 

Magnesium 5 14% 

Probiotics 1 3% 

Vitamin C 2 6% 

Melatonin 5 14% 

Other supplement use non-specific 5 14% 

Fussy eater, parent-reported (n = 29) 

Yes 12 41% 

No 17 59% 

Food (IgG) intolerances (n = 20) 

Any intolerance 20 100% 

Cow’s milk 16 80% 

Egg yolk 8 40% 

Egg white 9 45% 

Casein 14 70% 

Other dairy 16 80% 

Wheat 10 50% 

Gluten 5 25% 

Other cereals and seeds 11 55% 

Yeast 5 25% 

Candida albicans 5 25% 

Nuts 8 40% 

Meats 4 20% 

Fish 2 10% 

Fruits 6 30% 

Vegetables 5 25% 

Complications at birth (n = 35) 

C-section 13 37% 

Premature 0 

Umbilical cord around neck 3 9% 

(Continued) 
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TABLE 5 (Continued) 

ADHD medication Count/M+SDs Percentage 
(%) 

Childhood infections (n = 31) 

Less than 3 20 65% 

3 to 5 7 23% 

5 or more 1 3% 

Antibiotic courses (n = 34) 

1 to 5 14 41% 

5 or more 6 18% 

IQ (Kaufman Brief Intelligence Test, Second Edition (KBIT-2) 

Verbal 110.5±3.9 

Nonverbal 109.3±7.2 

Composite 114.5±3.7 

Other IQ test scores 

Verbal 108.2±10.9 

Nonverbal 101.3±9.8 

Composite 100±10.7 

Connors’ Parent Rating Scale (CPRS) t scores 

Disruptive behaviour 75.5±17.0 

Learning language disorder 65.9±14.5 

Mood disorder 82.9±10.5 

Anxiety disorder 79.3±11.0 

ADHD indicator 74.2±19.5 

3.4.5 CPRS Learning Language Disorder index and 
omega-3 index scores 

A moderate, negative statistically significant correlation was 
observed between omega-3 index scores and the CPRS Learning 
Language Disorder subscale scores, (rho = -0.601, p = 0.018). 

3.4.6 Vitamin B2 and CPRS learning and language 
disorder index 

A positive (but not significant) relationship was observed 
between Vitamin B2 (deficient variable) and the CPRS Learning 
and Language Disorder subscale scores (rho=0.489, p=0.076). 

3.4.7 Beta carotene and CPRS mood disorder 
index 

A moderate negative, non-significant correlation was observed 
between beta carotene values and the CPRS Mood Disorder 
subscale scores, (rho = -0.497, p=0.071). 

3.4.8 Vitamin B1 (thiamine) and CPRS anxiety 
disorder index 

A moderate positive, statistically significant correlation was 
observed between vitamin B1 value and CPRS Anxiety Disorder 
subscale scores, (rho = 0.584, p=0.028). 

3.4.9 Alpha-carotene and CPRS ADHD indicator 
index 

A moderate negative, statistically significant correlation was 
observed between alpha-carotene values and total ADHD Index 
scores (rho = −0.617, p=0.012). 

3.4.10 RBC Magnesium and CPRS ADHD index 
A moderate negative, statistically significant correlation was 

observed between RBC magnesium and total ADHD index scores 
(rho=−0.612, p=0.02). No further relationships were observed. 

4 Discussion 

The relationship between nutrition and ADHD is gaining 
increasing scientific and public attention, although many 
unanswered questions remain. This study sought to provide 
insights into some of these complex patterns and reveal 
some preliminary observations which can provide a catalyst 
for further research. The participants personalized nutrient 
profiles were measured using blood samples and the results 
compared to recommended daily intakes (RDI). An RDI is a 
standardized guide used in the UK and EU to indicate the average 
amount of nutrients an individual should consume daily. The 
main findings of this study are that children and adults with 
ADHD and other neurodivergent conditions and symptoms 
presented with a range of nutrient levels below recommended 
reference ranges. The majority of neurodivergent adults (95%) 
presented with suboptimal omega-3 index scores and none of 
the children had optimal omega-3 fatty acid levels. Children 
and adults with ADHD and other neurodiverse conditions 
had at least one food intolerance and the majority presented 
with food intolerances to cow’s milk, other diary, and to a 
lesser extent wheat and gluten. Several significant relationships 
were observed between ADHD symptoms and nutrient levels 
providing interesting insights albeit in a small sample size. 
This study provides information regarding intakes of key 
nutrients linked to healthy neurotransmitter function which in 
turn are implicated in ADHD and associated brain (/mental) 
health symptoms. 

4.1 Omega-3 fatty acids 

There is robust evidence of the importance of omega-
3 PUFAs for brain development and throughout the lifespan 
(67–69). Omega-3 PUFA insuÿciencies are related to ADHD, 
autism, dyslexia, depression, sleep disturbances, dysregulated 
mood and attention deficits (4, 6, 24, 70–75). The finding 
of lower blood levels of omega-3 fatty acids have been 
consistently reported in ADHD and depression (49, 50, 73, 
76). Conversely, supplementation with omega–3 PUFA has 
been found in several studies to improve attention-deficits, 
literacy and cognitive outcomes (77, 78) as well as callous 
and unemotional traits (CU) and antisocial behaviors (74, 
75). Increasing evidence suggests that omega–3 PUFAs in 
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TABLE 6 Reference ranges for the children’s cohort for all nutrients according to laboratory (viva health and BioLab medical unit). 

Nutrient Sample M and 
SDs 

Reference ranges 
according to viva 

health 

Sample 
size 

M and 
SDs 

Reference ranges 
according to 

BioLab 

Vitamin A 2 1.94 ± 0.61 2.20 – 4. 00 µmol/L 15 1.46 ± 0.1 1.05 – 2.80 µmol/L 

Vitamin E alpha tocopherol 2 28.65 ± 0.45 29.5 – 87.4 µmol/L 15 27.0 ± 3.1 25 – 60 µmol/L 

Vitamin E gamma tocopherol 2 15 4.8 ± 2.5 2.0 – 8.5 µmol/L 

Alpha carotene 2 0.27 ± 0.18 0.13 – 0.86 µmol/L 15 0.2 ± 0.02 0.30 – 1.50 µmol/L 

Beta carotene 2 0.12 ± 0.07 0.60 – 2.60µmol/L 15 1.0 ± 0.1 0.40 – 3.0 µmol/L 

Vitamin B1 thiamine 2 28.5 ± 0.5 118 – 235 nmol/L 15 1.5 ± 0.02 < 1.15 = normal 

1.15 – 1.25 borderline 

> 1.30 deficient 

Vitamin B2 riboflavin 2 819.5 ± 84.5 797 - 1860 nmol/L 15 1.4 ± 0.05 < 1.20 = normal 

1.20 – 1.30 borderline 

> 1.30 deficient 

Vitamin B6 pyridoxine 2 78.5 ± 26.50 85-505 nmol/L 15 1.4 ± 0.06 < 1.75 = normal 

1.75 – 2.00 borderline 

> 2.00 deficient 

Active B12 2 73.2 ± 27.8 37.5-150 pmol/L 15 136.8 ± 17.5 25.1 – 165.0 pmol/L 

Folate 2 258.0 ± 28.0 285.4 – 1474.7 nmol/L 15 497.9 ± 43.3 285.4 – 1474.7nmol/L 

Vitamin D 2 47.05 ± 13.25 82 – 217 nmol/L 15 74.5 ± 4.1 75 – 200 nmol/L 

Iron 2 20.9 ± 4.2 5.83 -34.5 µmol/L 15 15.2 ± 1.6 14.3 – 38.0 µmol/L 

Copper 2 13.7 ± 1.2 11.1 – 27.4 µmol/L 15 17.1 ± 0.8 12.5 – 25.0 µmol/L 

Magnesium 2 0.7 – 1.0 mmol/L 15 0.86 ± 0.01 0.70 – 1.00 mmol/L 

Zinc 2 10.7 ± 0.6 10.1 – 20.2 µmol/L 15 10.8 ± 0.4 11.5 – 20.0 µmol/L 

Red blood cell magnesium 2 2.0 ± 0.1 1.7 – 2.6 mmol/L 15 2.3 ± 0.1 2.08 – 3.00 mmol/L 

Iodine (urine) 2 0.63 0.05-0.36 µmol/L 15 86.7 ± 21.1 100 – 199 µg/L 

Bold indicates lower than reference range. 

combination with other nutrients may have a protective and 
inhibitory role and is implicated in a range of brain health 
and visual conditions (79, 80). Emerging research findings 
position nutrition as an epigenetic neuromodulator with the 
ability to modify gene expression at transcriptional levels 
(81–84). 

The results of this study demonstrated that 95% of participants 
in the full cohort presented with a suboptimal omega-3 index 
and furthermore the omega-3 index was negatively associated 
with learning and language disorder scores. Several other 
published studies support the finding of a low omega-3 index 
scores. First, the DOLAB study, reported a mean omega-3 
index score of 4.23% in UK school children (85). Meanwhile, 
Parletta et al. (37) reported a mean omega–3 index score of 
3.95% in individuals with schizophrenia and depression (37). 
The NORAA trial (Neuroimaging, Omega-3 and Reward in 
Adults with ADHD clinical trial, unpublished data) observed 
an omega-3 index of 4.33% in adults with ADHD (n = 36) 
(86, 87). Additionally, a recent study reported an omega-3 
index of 5.5% in young adults with subthreshold depression 
(88). Collectively, these studies support our finding of low 
omega-3 index scores in clinical populations. The finding of 
low omega-3 fatty acids may directly reflect a lack of dietary 

intake from fish/seafood. However, a third of participants 
(in the full cohort) reported taking fish oil supplements 
although use was inconsistent, and the type and form were 
not recorded. There is the possibility of potential problematic 
absorption and impaired synthesis as reported by others but 
that is beyond the scope of this study (89, 90). Omega-6 
and omega-3 PUFAs compete for absorption and a diet high 
in omega–6 PUFAs decreases the levels omega-3 PUFAs (91). 
Almost half of the children (41%) in this study were reported 
as fussy eaters. 

4.2 B-vitamins 

This study revealed that the majority of participants (in the 
full cohort) had insuÿcient vitamin B2 levels (riboflavin) and 
furthermore, that low vitamin B2 was negatively associated with 
higher learning and language disorder scores. Previous studies 
have reported that lower levels of vitamin B2 are associated 
with greater severity of ADHD symptoms (51). B-vitamins 
are critical for neurotransmitter function and in particular 
help regulate gamma-aminobutyric acid (GABA), dopamine, 
serotonin and norepinephrine (92). Dopamine is critical for 
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FIGURE 2 

Children’s cohort nutrient levels (%) vs. Recommended Reference Range. 

motivation and reward-related processes and dopamine deficits 
are considered a hallmark feature of ADHD (93). GABA helps 
reduce hyperactivity, anxiety and is critical for sleep regulation 
(94). Lower levels of GABA are linked to depression, stress 
and anxiety (95, 96) and shorter sleep duration (97). Vitamin 
B6 assists in the production of serotonin, and supplementation 
with B6 has resulted in self-reported reductions in anxiety (98). 
Several research studies have reported that high-dose vitamin 
B supplementation may be eective in reducing symptoms of 
anxiety (98, 99). In addition to assisting in the production 
of serotonin and melatonin, B-vitamins also help produce 
norepinephrine and lower levels can lead to an overactive 
noradrenergic system resulting in social and behavioral problems 
(100). This study revealed lower vitamin B2 in children and 
adults with ADHD and other neurodivergent associated conditions. 
Landass and colleagues recently examined the vitamin status 
of 131 young adults with ADHD compared to controls and 
reported lower vitamins B2, B6 and B9 were related to their 
ADHD diagnosis, and vitamins B2 and B6 with symptom 
severity (51). 

4.3 Magnesium 

This study reported that lower levels of magnesium were 
negatively associated with both disruptive behavior and ADHD 
symptom scores. This finding supports research by Portnoy et al. 
(101) who reported that lower dietary intake of magnesium 
is associated with higher scores of callous and unemotional 
traits (CU) in children (101). Over a decade of research has 
presented findings of lower levels of magnesium in children 

and adults with ADHD (102–105). Conversely, higher dietary 
intake of magnesium is associated with improved emotional, 
conduct, social and peer problems in children with ADHD (106– 
108). 

4.4 Zinc 

This study’s findings observed that over half of the full cohort 
presented with levels of zinc below recommended reference ranges. 
Insuÿcient levels of zinc have been linked to mood instability, 
antisocial behavior and learning problems (109–111). A small 
research study in 58 children with ADHD reported significantly 
lower zinc, ferritin and magnesium status compared to controls 
(112). Collectively, zinc status in ADHD has yielded mixed findings 
and due to the complexity and heterogeneity of nutrition research 
this is not unusual (113, 114). Zinc is an important cofactor directly 
impacting dopamine metabolism and also relevant to prostaglandin 
and melatonin activity (109). As a cofactor for enzymes involved 
in dopamine synthesis and transport, zinc insuÿciency may 
contribute to ADHD symptoms through dysregulated dopamine 
pathways (115). Low zinc may also interfere with psychostimulant 
medications for ADHD with higher zinc enabling a lower dose of 
MPH (109). It may also play a preventative role in the development 
of mood disorders and has been demonstrated to improve the 
eÿcacy of antidepressants in treatment-resistant patients (116). 
The copper-zinc ratio and balance is relevant given that excess 
copper (Cu) depletes zinc (Zn) in the body and increases risk 
of insuÿciency/deficiency. The Cu:Zn ratio has been found to be 
significantly higher in children with ADHD than controls and may 
significantly contribute to ADHD variability (117). 
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4.5 Antioxidants 

The antioxidants alpha-carotene and vitamin E were lower than 
recommended reference ranges in 80 and 63% of the full cohort, 
respectively. Reduced antioxidant enzyme activity and specifically 
vitamin E has been reported in children with ADHD (118). 
Additionally, oxidative stress and inflammation are both influenced 
by the diet and implicated in ADHD and other metabolic 
health conditions (119–122). Omega-3s contain antioxidant and 
anti-inflammatory properties and supplementation has resulted 
in small-modest eect sizes in reducing clinical symptoms of 
ADHD (53). In addition, zinc influences antioxidant defense 
mechanisms, and fat-soluble vitamins D and E regulate the 
production of immune cells and help combat inflammation 
(123). Given the children and adults with ADHD in this study 
also presented with low omega–3 and to a lesser extent low 
zinc, these collective findings may have important implications 
for future exploration in oxidative stress pathways in ADHD 
(119, 121). There is little research on alpha-carotene specifically 
in ADHD, however, it is converted to retinol (Vitamin A) 
in the body and supports immune system functioning. The 
MIND study reported that higher circulating alpha-carotene 
was associated with improved cognitive function in adults at 
risk for cognitive decline (124). Lower vitamin A and vitamin 
D have been observed in children with ADHD and were 
linked to a worsening of symptoms (125). Both vitamin A and 
vitamin D work synergistically to regulate gene expression and 
support the immune system (126). This study also reported 
a negative correlation between alpha-carotene and ADHD 
symptoms, indicating that lower alpha-carotene is related to greater 
ADHD symptom severity. 

4.6 Vitamin D 

Around sixty-two percent of children and adults with ADHD 
presented with low levels of vitamin D. A systematic review and 
meta-analysis examined vitamin D status in 10,334 children and 
adolescents with ADHD compared to controls (127). A small 
study by Sharif et al. (128) reported significantly lower levels of 
serum vitamin D in children with ADHD (n = 37) compared 
to controls (n = 37) (128). Another systematic review and meta-
analysis reported that vitamin D had a moderately favorable 
antidepressant eect in lowering symptoms of depression and 
anxiety (129). Vitamin D and omega-3 support the production 
of serotonin which has specific relevance for ADHD and mood. 
Patrick and Ames (130) report that vitamin D insuÿciencies 
(found in approximately 70% of the population) and inadequate 
omega-3 fatty acids levels are common and that this is likely 
to impact serotonin levels (130). A systematic review and meta-
analysis examined the adjunct eects of vitamin D in 256 children 
taking MPH and found a small, but statistically significant 
benefit in reducing symptoms (131). Goksugur et al. (132) 
reported significantly lower serum vitamin D in children and 
adolescents with ADHD compared to controls (132). ADHD is 
commonly accompanied by low mood, depression and anxiety, 
and therefore optimal levels of vitamin D should be carefully 
monitored (133). 

4.7 Iodine 

Over half of children and adults with ADHD and 
neurodivergence presented with low levels of iodine. There 
were no relationships with ADHD symptom severity. Iodine is 
an essential trace element needed in the diet. Iodine insuÿciency 
is linked to a range of complications including cognition, lower 
IQ and risk of thyroid disorders in adults (134). A link between 
insuÿcient iodine levels during pregnancy and increased risk of 
ADHD symptoms has been reported (135). The cognitive eects of 
iodine insuÿciency in children with ADHD has been explored and 
relationships between low iodine and higher incidence of learning 
problems with consequences for neurodevelopmental conditions 
(136, 137). 

4.8 Food intolerances (IgG) 

Research dating back to almost 100 years ago identified 
increased restlessness and sleep disturbances in children with 
food intolerances (138). Following the removal of specific 
food items, they reported a reduction or disappearance of 
symptoms (138). In the twenty-first century, modern research 
continues to acknowledge the benefits of a restriction diet 
in some children with ADHD (139). The growing inclusion 
of food additives, i.e., flavoring, preservatives and dyes in 
ultraprocessed foods is of current global concern (18). UPFs 
are linked to problematic behavior and poor gut health and 
arguably children are the most vulnerable to potential harms 
(140–143). Over a decade ago, McCann et al. (144) reported 
that sodium benzoate in juice versus a placebo drink resulted 
in increased hyperactivity in children (144). Children with 
ADHD are commonly found to present with a variety of 
food sensitivities and intolerances including sugar, dairy, wheat 
and wheat gluten (145). This study reports a range of high 
IgG reactivity scores to dairy, wheat, and gluten in children 
and adults with ADHD. Almost 85% of the cohort presented 
with a cow’s milk intolerance. There is a history of cow’s 
milk intolerance associated with ADHD and in fact around 
65% of the population are considered to be intolerant. The 
milk protein casein is converted to casomorphin (morphine-
type compounds) in the body which attach to opiate receptors 
in the brain (146). Elevated amounts of casoporphin are often 
linked to inactive “dipeptidyl peptidase IV” (DPP-IV) enzyme 
activity and may lead to symptoms of brain fog, irritability, 
aggression, anxiety and depression, fatigue, sleep and mood 
problems (147, 148). Gluten is also converted into an opioid 
peptide called gliadomorphin and gluteomorphin and eects align 
with casomorphins. Both are hypothesized to impact gut health 
and are implicated in a range of inflammatory and autoimmune 
conditions (146). Emerging discoveries and research into the gut-
brain axis casts no doubt that this intricate relationship has 
a wide-range of bodily and brain health impacts influencing 
neurodevelopment and behavior (149–152). Food cravings are 
likely to be indicative of the balance and diversity of gut 
microbiome, highlighting a connection between food preferences 
and microbiome composition (153). From this perspective, 
children with ADHD and (undiagnosed) food intolerances may 
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crave the very foods they are in fact intolerant to reflecting a 
type of microbial manipulation (154–156). The link between gut 
health and ADHD and neurodivergent conditions warrant further 
exploration (157–159). 

It is important to note that conducting nutritional research 
is challenging often because isolating a specific nutrient 
and then supplementing is too simplistic and arguably 
outdated. There is a growing need to better understand the 
concept of nutritional synergy by researchers to optmise 
clinical trial outcomes (2). Within ADHD and omega-
3 research specifically, Bloch et al. (160) has previously 
highlighted repeated issues in published nutritional studies, 
including missing power calculations, small sample sizes, 
and inconsistencies in design, methodology, micronutrient 
dosage, duration, and baseline measurements (161). A holistic, 
personalized and integrative approach in nutritional research 
is recommended. For example, involving a combination 
of a range of assessments including nutrient profiles 
from blood draws, measures of gut health, e.g., stool 
samples, food records of daily nutrient intake and food 
intolerance/allergy testing to permit a clearer, informed, 
picture to evolve. 

4.9 Strengths and limitations 

This study conducted detailed self-report educational and 
medical histories, the completion of psychological questionnaires, 
and nutritional data with families seeking consultancy within 
private practice. This enhances external validity by reflecting 
real-world conditions, making findings more applicable to 
everyday settings. Blood samples are considered a reliable 
and robust method to measure an individual’s nutritional 
status and to detect nutritional insuÿciencies compared to 
self-reported food dairies (162). However, the study faced 
several limitations, including the absence of a comparison 
group (i.e., non-diagnosed age and sex-matched controls), 
potentially influencing the interpretation of the results. The 
study also acknowledges that the smaller sample size may 
inadequately represent diverse demographics. Additionally, the 
majority of participants were from high-income families, who 
could aord to pay for nutritional testing. Variations in genetic 
and lifestyle factors that influence nutrient metabolism were not 
explored. 

5 Conclusion 

This study presents for the first time preliminary data 
about nutritional blood level status in ADHD and other 
neurodivergent conditions. The nutritional insuÿciencies namely, 
omega-3 PUFAs, zinc, vitamin E, alpha-carotene, vitamin D, 
vitamin B2, iodine and magnesium, respectively, are linked to 
neurotransmitter function which arguably have implications for 
learning, behavior and mood. Furthermore, the study findings 
identified relationships between some of these key nutrients 
and ADHD symptoms which may underlie brain activity and 

neurotransmitter function. Finally, it highlighted several food 
intolerances which are speculated to relate to food cravings and 
gut health and warrant further exploration. Investigations in gut 
health and ADHD and ASD is of current scientific interest, and 
emerging data has highlighted links between an autism diagnosis 
and gut health disturbances. Food intolerances and gut dysbiosis 
are linked, and diet is a critical factor that aects gut microbiome. 
Our preliminary, observational study highlights the need for larger 
clinical research investigating nutrient intakes in the wider UK 
population and a control group. Future research studies should 
further investigate the role of brain-selective nutrients in children 
and adults with and without ADHD with larger sample sizes 
to better understand their collective influence in brain health, 
learning, behavior and mood. 
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