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Diabetes mellitus (DM), a chronic metabolic disorder characterized by impaired

glucose metabolism, has emerged as a significant global health challenge.

E�ective management of diabetes encompasses not only medical interventions

but also lifestyle and dietarymodifications. Artificial sweeteners (ASs), due to their

low caloric content andminimal impact on blood glucose levels, o�er promising

potential as sugar substitutes for individuals aiming to manage glycemic control.

Compounds such as aspartame, sucralose, and stevia mimic the sweetness of

sugar without causing hyperglycemia, making them suitable for diabetic patients.

This chapter explores the role of ASs in diabetes management, with a special

focus on their mechanisms of action, including modulation of insulin sensitivity

and glucose metabolism. An extensive review of preclinical and clinical studies

evaluates the e�cacy, safety, and long-term e�ects of ASs in glycemic control,

highlighting their ability to reduce caloric intake, promote satiety, and support

glycemic control and insulin sensitivity in individuals with diabetes. Emerging

evidence suggests that ASs may influence gut microbiota, potentially a�ecting

metabolic outcomes and insulin sensitivity, thus presenting opportunities for

personalized interventions. Despite their benefits, awareness of potential risks,

such as altered taste perception and over-reliance on ASs, is crucial. Integrating

ASswithin a broader lifestyle approach, comprising regular exercise and balanced

nutrition, ensures optimal outcomes in diabetes management. This chapter

emphasizes the importance of precisionmedicine in tailoring AS use to individual

metabolic responses, underscoring its role as an adjunct to comprehensive

diabetes care strategies.
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistently

high blood sugar levels resulting from insufficient insulin production, insulin resistance,

or both. Its global prevalence has quadrupled since 1990, now affecting over 800 million

adults, making it a major health crisis (1). This dramatic rise is largely fueled by aging

populations, increasingly sedentary lifestyles, and the growing prevalence of obesity, which
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contributes to the rising incidence of type 2 diabetes (T2D).

Alarmingly, more than half of all diabetes cases occur in low-

and middle-income countries, where access to essential healthcare

and treatments remains a significant challenge (2). Diabetes

can lead to severe complications such as heart disease, kidney

failure, neuropathy, vision loss, and amputations, contributing to

significant global morbidity and mortality. In 2021, it was linked

to ∼6.7 million deaths worldwide (3). Beyond its devastating

health impact, diabetes also carries a heavy financial toll. In 2021,

global healthcare spending related to diabetes reached an estimated

US$966 billion, a staggering 316% increase over the past 15 years

(4). Effective blood sugar control is vital to prevent complications

and improve the quality of life in individuals with diabetes. This

requires lifestyle changes, regular monitoring, and medical care.

However, many remain undiagnosed or untreated, highlighting the

need for increased awareness and accessible healthcare (5, 6).

Managing diabetes effectively requires a well-rounded
approach that combines lifestyle changes with proper diagnostic
approaches (7) and medical treatments (8). Healthy daily habits,
especially dietary choices, are essential for regulating blood

sugar levels and maintaining overall wellbeing. Carbohydrate
intake directly affects glucose levels, and organizations like the
ADA emphasize the importance of mindful eating for effective

diabetes control (9). Managing diabetes involves choosing
low-glycemic foods, controlling portion sizes, and reducing
added sugars. A balanced diet with fiber, lean proteins, and

healthy fats supports blood sugar control and insulin sensitivity.

Regular physical activity further enhances insulin efficiency

and glucose uptake (10). Maintaining an active lifestyle also

supports weight management, which is especially important

for people with type 2 diabetes, as excess weight is often linked

to insulin resistance (11). In addition to diet and exercise,

habits like regular meal timing, blood sugar monitoring, and

stress management help stabilize glucose levels. Stress can

increase blood sugar, so relaxation and sleep become important.

Combined with medication, these lifestyle changes enhance

treatment effectiveness and reduce the risk of complications

(12, 13).

With increasing efforts to reduce sugar intake, Artificial

sweeteners (ASs), such as aspartame, sucralose, saccharin, and

stevia, offer low-calorie alternatives found in many foods and

drinks. For people with diabetes, they provide sweetness without

spiking blood sugar, aiding in glucose control and complication

prevention (14, 15). Despite their popularity, ASs remain under

scrutiny for possible effects on metabolism, insulin sensitivity,

and appetite. Some may trigger insulin responses or alter gut

bacteria, potentially impacting digestion, inflammation, and blood

sugar regulation (16). To understand ASs’ role in diabetes

management, it is crucial to consider their benefits, risks, and

health impacts. They can help reduce sugar intake and manage

blood sugar levels, but individual responses vary, and potential

side effects should not be ignored. Ongoing research is essential

to understand the long-term effects better and establish clear

guidelines for both people with diabetes and the general population

(17). This manuscript aims to critically evaluate the current

evidence on the impact of ASs on glycemic control and their

potential role, favorable or adverse, in the management of

diabetes mellitus.

2 Mechanisms of action of ASs

2.1 Mimicking sweetness without causing
hyperglycemia

Consuming sugary foods and drinks increases the risk of

obesity, a key contributor to insulin resistance and the onset

of type 2 diabetes, metabolic syndrome, and heart diseases,

which are closely linked to diabetes. Reducing sugar intake is

crucial for managing blood sugar and preventing complications.

While natural sweeteners may help lower blood sugar and

improve metabolism, the long-term safety of AS remains under

debate and requires further research (18). Innovative strategies

for low-sugar, low-fat beverages aim to maintain taste, texture,

and appearance while supporting glycemic control in diabetes

management. These approaches use natural sugar and fat replacers,

with future efforts focusing on developing new replacers, enhancing

sensory profiles, and investigating their health impacts (19). A

study found that chronic consumption of ASs at safe intake

levels caused vascular endothelial dysfunction and increased

adipose tissue storage in healthy rats, potentially impairing

insulin sensitivity and glycemic control. This suggests a link

to the elevated cardiometabolic risk seen in epidemiological

studies (20). Aspartame has been shown to exacerbate obesity,

inflammation, and gut dysregulation—factors closely linked to

insulin resistance and diabetes pathophysiology. This suggests that

Siraitia grosvenorii extracts could serve as a promising natural

alternative to ASs in preventing metabolic disorders, including

insulin resistance and type 2 diabetes (21). The ability of meals

to increase blood sugar levels after a meal is ranked using the

glycemic index (GI). Patients with diabetes should eat foods with

a low GI since controlling blood sugar levels is crucial. It is well

recognized that eating foods with a high GI can cause rapid,

high, and persistent postprandial hyperglycemia, which makes it

more challenging to manage diabetes and avoid complications

(22, 23). Zùsto R© is a low-glycemic index sweetener (GI 22)

that may help manage glycemic control in diabetic patients.

It has better consumer acceptance than other ASs due to its

lack of aftertaste and minimal effect on insulin and C-peptide

levels. Its potential long-term benefits, including reduced glycemic

variability, warrant further studies to confirm its efficacy (24).

Stevia rebaudiana, a natural sweetener with zero calories, is rich

in steviol glycosides like stevioside and rebaudioside (25). These

compounds offer promising health benefits, such as antimicrobial,

antiobesity, anticancer, and antidiabetic properties (26). Stevia is

a safe, non-toxic alternative to ASs, used in foods, drinks, and

supplements (27).

2.2 Impact on glycemic load and blood
glucose levels

ASs affect blood glucose levels differently, depending on their

type and use. Studies show Stevia and nano-Stevia may help

manage diabetes and its complications. Stevia refers to the crude

or conventional extract of the Stevia plant, containing natural

glycosides used as sweeteners (28). In contrast, nano-Stevia is
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a nanoformulation of Stevia, in which Stevia compounds are

encapsulated or processed at the nanoscale to enhance their

bioavailability, stability, and efficacy. This nanosizing is believed to

improve absorption and facilitate improved therapeutic outcomes

compared to regular stevia extracts (29). In diabetic rats, both Stevia

and nano-Stevia reduced hyperglycemia, anxiety, and memory

issues, with nano-Stevia proving more effective, suggesting its

potential in treating diabetes-related metabolic and psychological

disorders (30). Another study highlighted the beneficial effects

of stevioside in improving glucose tolerance, reducing oxidative

stress, and modulating inflammatory mediators in a diet-induced

obese zebrafish model. These effects suggest that stevioside may

counteract insulin resistance through epigenetic, oxidative stress,

and inflammatory regulation, providing insights into its potential

as a natural therapeutic agent for obesity-related type 2 diabetes

by preventing the development of insulin resistance, which is a

key driver of disease progression (31). Other ASs, like the stevia

derivative Reb M, have been studied for their effects on metabolic

health. Long-term use of the majority of ASs does not cause

weight gain or impaired glucose metabolism in mice. Reb M, in

particular, improved insulin sensitivity and reduced weight gain in

obese mice, emphasizing the need to evaluate each AS individually

(32, 33). The effects of saccharin on glucose metabolism depend on

the context. Short-term studies indicate that it is safe for healthy

individuals, but some findings suggest it may disrupt glucose

balance in certain conditions (34). High-dose saccharin does not

affect gut microbiota or induce glucose intolerance in healthy

humans or mice, indicating that it is likely safe when consumed

within recommended limits for those managing weight or calorie

intake (35). A study found that saccharin disrupted glucose balance

in rats and reduced glucagon-like peptide-1 (GLP-1) release during

glucose tolerance tests, even though insulin secretion remained

unchanged. This may be due to saccharin interfering with the

link between sweet taste and caloric intake, potentially leading

to hyperglycemia, increased food intake, and weight gain (36).

These findings underscore the potential metabolic risks of ASs,

aligning with human data linking their use to obesity and adverse

health outcomes.

2.3 Interaction with sweet taste receptors
(STRs) and signaling pathways

AS interacts with sweet taste receptors, affecting signaling

pathways involved in glycemic control and metabolism. Early-life

consumption of ASs can impact taste preferences, sugar-related

behaviors, and metabolic outcomes, as seen in rodent studies

(37). Studies suggest that ASs may affect the gustatory system,

influencing both sweetness and glucose-sensing pathways. This

could have long-term effects on sugar intake and metabolism,

potentially contributing to metabolic diseases such as diabetes.

Additionally, sweet and bitter tastants can trigger the release

of satiety hormones, such as cholecystokinin (CCK) and GLP-

1, with some commercial sweeteners, such as Tagatesse (a blend

containing polyols and sweeteners), being reported to be more

effective than sucrose in stimulating hormone release, indicating

their potential to regulate appetite (38). These findings highlight

the role of taste stimuli in regulating satiety and food intake,

which can aid in developing strategies for managing appetite and

diabetes. One study explored the crystal structure of Mabinlin II

(Mab II), a sweet protein from Capparis masaikai. The human

sweet taste receptor is a heterodimer composed of two G protein-

coupled receptor subunits, hT1R2 and hT1R3. This receptor

complex is primarily expressed in taste bud cells on the tongue.

It is responsible for detecting sweet-tasting compounds, including

natural sugars (like glucose and sucrose), AS (such as aspartame

and sucralose), and certain sweet proteins. Upon activation by a

sweet stimulus, hT1R2/T1R3 initiates a signaling cascade that leads

to the perception of sweetness in the brain. Beyond the oral cavity,

this receptor is also expressed in other tissues, including the gut

and pancreas, where it may play roles in nutrient sensing and

metabolic regulation. Sweetness perception in humans is mediated

by the heterodimeric sweet-taste receptor T1R2/T1R3, which is

expressed on the surface of taste receptor cells within the taste

buds (39). This receptor consists of two subunits, T1R2 and T1R3,

that together form a binding site capable of recognizing a wide

variety of sweet compounds (40). The unique structural features

of [the compound or sweetener], such as its specific arrangement

of functional groups, allow it to bind to the T1R2/T1R3 receptor

with high affinity. This binding activates intracellular signaling

pathways that ultimately trigger the sensation of sweetness. Its

unique structure enables it to interact with the sweet-taste receptor

hT1R2/T1R3, triggering the perception of sweetness. The B-

chain of Mab II is responsible for sweetness, while the A-chain

contributes to a lasting aftertaste. These insights could lead to

the development of new sweeteners based on Mab II’s structure

(41). Fibroblast growth factor 21 (FGF21) is a hormone that is

induced by sugar and plays a critical role in regulating sweet

consumption. Elevated plasma levels of FGF21 are associated with

reduced sweet preference, suggesting its role in regulating sugar

intake by influencing the brain’s reward system (42). Research has

shown that FGF21 interacts with glutamatergic neurons in the

ventromedial hypothalamus (VMH), where it suppresses sucrose

intake by increasing neuronal activation. Notably, the induction

of FGF21 is triggered by ingestion of simple sugars, including

sucrose, rather than AS. This highlights its role in maintaining

metabolic balance and nutrient regulation. Understanding FGF21′s

mechanisms could help develop therapies to address unhealthy

eating habits and manage diabetes (43). Steviol glycosides, such

as stevioside and rebaudioside A, enhance the TRPM5 channel

in pancreatic β-cells and taste receptor cells. This improves

taste perception and increases insulin secretion in response to

glucose. This mechanism helps prevent diabetic hyperglycemia

in mice, making TRPM5 a promising target for affordable and

effective diabetes treatments (44). The T1R2 receptor functions

as a glucose sensor in the intestine, facilitating the control of

glucose absorption by regulating the movement of the GLUT2

transporter in enterocytes. Studies show that T1R2-mediated

glucosensitization is important during high sugar intake, as

it boosts glucose transport through GLP-2. However, long-

term sugar consumption may lead to desensitization of this

pathway, thereby preventing hyperglycemia as metabolic diseases

progress (45).
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3 Role in glucose regulation and
insulin sensitivity

3.1 ASs and glucose absorption

ASs, though designed to provide sweetness without raising

blood glucose levels, can influence glucose absorption in the

gut through multiple mechanisms. Some ASs, like sucralose

and saccharin, may activate sweet taste receptors (T1R2/T1R3)

on intestinal cells, leading to increased expression of glucose

transporters such as SGLT1 and GLUT2, which can enhance

glucose uptake when sugar is present (46). Additionally, these

sweeteners may alter the gut microbiota, potentially promoting

inflammation and impairing glucose tolerance and insulin

sensitivity (47). While the direct effects on glucose absorption in

humans remain inconsistent across studies, the influence of AS

on the gut environment suggests they are not metabolically inert.

Notably, stevia appears to have a more neutral or even beneficial

profile, possibly improving insulin sensitivity without significantly

affecting glucose absorption (48).

ASs, including intense sweeteners such as saccharin, aspartame,

and acesulfame-K (ace-K), and a bulk sweetener like glucose,

exert different effects on hunger and food intake (49). Glucose

reduces hunger and affects food preferences, while intense

sweeteners may increase hunger and preferences but slightly

reduce meal intake due to sensory stimulation (49, 50). Aspartame

has the strongest effect, showing the complex role of sensory,

cognitive, and post-ingestive factors in appetite control. ASs,

like sucralose and saccharin, may impact glycemic responses

in healthy adults by altering the microbiome and metabolome

(34). These effects vary by individual, suggesting ASs can cause

microbiome-dependent changes in glycemic control, requiring

more research (51). Caloric sweeteners such as glucose and

fructose inhibit motilin secretion and antral motility while

increasing CCK secretion, which promotes satiety. In contrast,

the AS acesulfame-K (ace-K) does not affect these gastrointestinal

processes, suggesting that caloric and AS influence gastrointestinal

motility and hormone secretion differently, potentially impacting

hunger regulation (52). Further research is needed to explore ASs

that mimic the effects of caloric sweeteners on appetite control. The

Diabetes Research in Kids Type 1 Diabetes (DRINK-T1D) study

examines the effect of the AS restriction on glycemic variability,

adiposity, lipid profiles, and inflammation in children with type 1

diabetes. The study suggests that ASs could offer cardiometabolic

benefits, prompting a revision of current nutritional guidelines for

children with T1D (53). The active compound 3-hydroxymethyl

xylitol (3-HMX), isolated from the root of Casearia esculenta,

demonstrates significant long-term antihyperglycemic effects in

streptozotocin-diabetic rats by enhancing insulin secretion and

inhibiting gluconeogenesis, exhibiting comparable efficacy to

glibenclamide while remaining non-toxic to hepatic enzymes (54).

Another study reveals that 77.8% of Chilean pregnant women

consumed ASs daily, with sucralose being the most prevalent.

Its consumption was significantly associated with an increased

risk of gestational diabetes mellitus, highlighting a pressing need

for further research and dietary considerations for pregnant

populations (55).

However, research also demonstrates that ruminant intestines

express T1R2-T1R3, which can be activated by ASs like Sucram

to enhance glucose absorption and intestinal growth (56).

Activation of these receptors increases GLP-2 release, enhancing

SGLT1 expression and mucosal development, and suggesting

dietary strategies to improve nutrient absorption in ruminants.

Additionally, adding 60 g of fructose as a natural sweetener to the

diet of obese type II diabetes patients for 12 weeks may slightly

improve glycemic control without harming lipid metabolism (57).

These results suggest alterations in apoprotein composition that

might reduce the risk of coronary artery disease, with no significant

adverse effects observed.

Health professionals are advised against adding sweeteners

to foods for infants and young children (1–3 years) and are

encouraged to develop expertise in selecting suitable sweeteners.

Further research is needed to optimize their use in children’s diets

(58). Regular consumption of ASs, such as saccharin, sucralose,

or aspartame + acesulfame-K, for 4 weeks did not significantly

affect glycemic response, insulin sensitivity, GLP-1 secretion, or

body weight in healthy individuals (59). These findings suggest

that ASs intake at typical daily doses is metabolically neutral in

normoglycemic adults. However, one crossover trial found that

acute saccharin consumption did not significantly affect glycemic

response or insulin levels in healthy young men, although minor,

non-significant increases in mean insulin levels were observed

after saccharin intake compared to water (60). This highlights the

need for larger, long-term trials to clarify saccharin’s metabolic

effects across populations. Meanwhile, stevia leaf extract, a natural

sweetener, significantly enhances SGLT1 activity and expression

in rabbits, improving glucose absorption and reducing Escherichia

coli-induced diarrhea (61).

3.2 Influence on insulin secretion and
sensitivity

ASs, including aspartame, have varied effects on glucose

regulation and insulin sensitivity. Aspartame was detected in saliva

at higher levels after consuming diet soft drinks compared to

water with sweeteners, and increased salivary insulin levels were

observed, particularly with diet soft drinks, showing a correlation

between salivary aspartame and insulin levels (62). These findings

suggest potential biological effects and health implications of AS

consumption. However, a 12-week study indicated that consuming

two cans daily of a carbonated beverage containing aspartame and

acesulfame-K had no significant impact on insulin sensitivity or

secretion in nondiabetic adults (63). High-intensity sweeteners in

beverages do not affect key metabolic markers, such as insulin

levels, body weight, or behaviors. However, sucrose intake during

a mixed meal does not cause additional hyperglycemia compared

to isocaloric starch in well-controlled diabetic patients, suggesting

that moderate consumption of sucrose, a nutritive sweetener, may

be compatible with good glycemic management (64). Similarly,

studies on saccharin consumption in Wistar rats revealed weight

gain without an increase in total caloric intake or associations

with insulin resistance, fasting leptin, or peptide YY (PYY) levels
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(65). Saccharin’s sweet taste may contribute to weight gain by

affecting glucose transport or energy expenditure, and further

research is required. Stevioside from Stevia rebaudiana shows

significant antihyperglycemic, insulin-promoting, and glucagon-

inhibiting effects in type 2 diabetic rats, highlighting its potential as

a novel antidiabetic agent (66). Furthermore, beverages sweetened

with sucrose (a caloric sugar), sucralose, or stevia showed varied

effects on glycemic responses and insulin sensitivity (65, 67–71).

At the same time, stevia demonstrated slightly better glycemic

control, whereas sucrose and sucralose impaired glycemic response

and insulin sensitivity. However, the evidence remains inconclusive

to support the widespread use of ASs (72). In healthy adults,

inhibition of gastrointestinal sweet taste receptors with lactisole—

a compound known to block sweet taste perception —was

found to modify insulin responses during oral glucose intake,

leading to elevated plasma insulin levels and inducing mild,

temporary insulin resistance (73). These findings suggest that STR-

mediated mechanisms in the gut may regulate glycemia, possibly

through gut–brain axis interactions, requiring further research.

Additionally, sugar-sweetened beverages (SSBs) are associated with

increased insulin resistance, higher insulin levels, and elevated

leptin levels, particularly in men and non-overweight women

(74). These biomarkers—such as elevated fasting insulin, C-

reactive protein, and markers of hepatic fat accumulation—suggest

that metabolic dysfunction can arise early in response to the

consumption of SSBs. This effect is particularly evident even among

women with normal BMI and waist circumference, indicating

that excess sugar intake can trigger insulin resistance, low-grade

inflammation, and ectopic fat deposition independently of overt

obesity. These pathophysiological changes are well-established

precursors to type 2 diabetes and other metabolic disorders. This

revision clarifies the mechanistic link between these biomarkers

and disease risk.

3.3 Comparative analysis of common ASs
(e.g., aspartame, sucralose, and stevia)

Maternal consumption of artificial sweeteners, particularly

acesulfame K (ace-K), is associated with adverse metabolic

outcomes in mice, including glucose intolerance, metabolic

dysfunction, and fetal growth restriction (75). Similarly, sugar-

sweetened beverages (SSBs) have been shown to impair maternal

glucose metabolism, promote excessive gestational weight gain,

and increase the risk of adverse pregnancy outcomes such as

gestational diabetes mellitus and macrosomia (76). Both ASs and

SSBs have been linked to shortened pregnancy duration and altered

fetal glucose levels, raising concerns about their safety during

pregnancy (77). High consumption of refined carbohydrates and

sugars is strongly implicated in the rising rates of obesity and

diabetes, underscoring the need for effective strategies to reduce

their intake. These dietary habits induce oxidative stress and β-

cell damage in genetically predisposed individuals, contributing

to the onset and progression of metabolic diseases (78). Some

ASs, such as stevia and aspartame, show promise in diabetes

management. Preloads with stevia or aspartame do not increase

food intake compared to sucrose, and stevia has been shown to

reduce postprandial glucose and insulin levels, indicating potential

benefits for glucose regulation and weight management (79).

Natural alternatives, such as miracle fruit (Synsepalum dulcificum),

show potent antihyperglycemic and hepatoprotective properties.

Its ethanol extract, rich in flavonoids and antioxidants, effectively

reduces blood glucose and restores liver function in diabetic

models, outperforming aspartame, suggesting its potential as a

natural substitute for ASs (80). However, not all sugar substitutes

yield positive results. Long-term consumption of sorbitol has been

shown to alter the gut microbiome, reducing the abundance of

beneficial bacteria, such as Bifidobacterium and Lachnospiraceae.

These changes contribute to glucose intolerance and may increase

the risk of diabetes (81). Similarly, artificially sweetened beverages

(ASBs) and SSBs are associated with an increased risk of diabetes

mellitus (DM), particularly in postmenopausal women. SSBs pose a

higher risk (43%) compared to ASBs (21%) (82). While substituting

sugar-sweetened or artificially sweetened beverages with water

significantly reduces diabetes risk, further research and innovation

are needed to make sweetened drinks healthier, as complete

substitution with water may not be feasible or acceptable for

all consumers.

4 ASs and the gut–brain axis

The gut–brain axis (GBA) is a complex communication

network connecting the brain’s emotional and cognitive

centers with intestinal functions (Figure 1). This relationship

is bidirectional, with signals traveling through hormonal, immune,

and neural pathways. When food is consumed, the gut sends

signals to the brain, conveying information about the meal’s

composition and size. The hypothalamus, located between the

thalamus and pituitary gland in the brain, acts as a key regulator

by processing these signals to control energy use, food intake, and

glucose balance. Special cells in the gut, called enteroendocrine

cells, detect the contents of the gut and release hormones such

as cholecystokinin and glucagon-like peptide-1 to help manage

metabolism (83, 84).

According to the National Health and Nutrition Examination

Survey (NHANES), a program conducted by the Centers for

Disease Control and Prevention designed to assess the health

and nutritional status of adults and children in the United States

through interviews and physical examinations, the prevalence of

AS consumption increased from 6.1 to 12.5% in the younger

population and from 18.7 to 24.1% in the adult population between

1999 and 2007. While more recent cycles of the NHANES have

been conducted, comprehensive published analyses quantifying AS

consumption trends beyond 2007 remain limited, underscoring

the need for updated surveillance (85). Other statistical data, such

as the Nurses’ Health Study (56% usage reported between 1991

and 1995), the Health Professionals Follow-Up Study (54% usage

between 1990 and 1994), and the San Antonio Heart Study (48%

usage between 1984 and 1988), reported even higher usage rates

over different periods (86). Despite the increasing use of ASs, the

consumption of sugary beverages and foods has not decreased

(87). The mechanisms through which AS influence appetite and

satiety are rooted in their effects on behavioral and neurochemical

pathways. Sugar is known to have a high potential for addiction
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FIGURE 1

Role of gut–brain axis and ASs in diabetes. CCK, cholecystokinin; GIP, gastric inhibitory polypeptide; PYY, peptide YY; GLP-1, glucagon-like peptide-1.

due to its ability to bind opioid receptors, and downstream effects

on dopamine and acetylcholine release in the nucleus accumbens.

These neural adaptations promote the reward phenomenon, which

leads to excessive sugar consumption. Food reward is regulated

through both sensory and post-ingestion pathways (88). These

altered rewardmechanismsmay drive excessive sugar intake, which

can worsen glycemic control and contribute to the development of

type 2 diabetes.

ASs influence satiety and appetite regulation through intricate

mechanisms involving post-ingestion pathways and appetite

regulation. When AS are consumed, they in turn activate sweet

taste receptors such as T1R2 and T1R3 in the gastrointestinal

tract and oral cavity (89). These receptors send signals to

the reward centers of the brain, including the amygdala and

hypothalamus, via neural pathways such as the vagus nerve.

This signaling triggers the release of dopamine and generates the

perception of sweetness in areas associated with pleasure and

reward. However, unlike sugar, ASs provide no caloric energy,

leading to a mismatch between the absence of an expected rise

in blood glucose levels and the sensory perception of sweetness

and insulin secretion (90). This disruption creates an imbalance

in physiological satiety signals, leaving the body in a state

of incomplete fullness, which can disrupt glycemic control in

individuals with diabetes. Additionally, AS may alter the release

of key gut hormones involved in appetite regulation, such as

glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and ghrelin

(91). These disruptions can impair the natural cues for fullness and

hunger. Neurochemical pathways play a critical role as well, where

AS overstimulates dopamine release without the accompanying

caloric intake, leading to desensitization of the reward system and

requiring higher levels of sweetness or increased food consumption

to achieve the same level of satisfaction (90). Modulation of other

neurotransmitters, such as acetylcholine and opioid pathways,

further complicates the regulation of appetite and satiety. The

overall outcome of these mechanisms is an increase in food

cravings and appetite, often resulting in higher caloric intake

(15, 92, 93).

5 Impact of ASs on gut microbiota
composition

A study utilized the fecal samples from healthy volunteers,

and the study demonstrated that additives such as aspartame-

based sweetener, maltodextrin, and sodium benzoate promoted

the growth of beneficial microbes such as Bifidobacterium,

whereas substances like carrageenan-kappa, sodium sulfite, and

polysorbate-80 inhibited their growth (94). These additives and

products also affected the production of short-chain fatty acids

(SCFAs), with acetic acid levels increasing with maltodextrin and
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aspartame-based sweeteners but decreasing with sodium sulfite.

In contrast, butyrate levels, a vital SCFA for gut health, dropped

significantly with cinnamaldehyde.

Furthermore, microbial diversity was altered, with stevia

increasing α-diversity and cinnamaldehyde (94). Another study

highlighted the profound effects of ASs on the structure and

functionality of duodenal microbial communities, emphasizing

their potential to disrupt the delicate balance of gut health.

The research reveals that ASs significantly reshape the microbial

composition in the duodenum, the critical first segment of the small

intestine where digestion and nutrient absorption begin (95). ASs

can disrupt gut microbiota diversity and function, especially in the

duodenum, potentially affecting gut health and metabolism. With

the rising consumption of ASs, these findings highlight the need for

further research into their long-term health effects and interactions

with the gut microbiome (95).

Changes in gut microbiota are now recognized as key to

understanding how metabolic disorders, such as type 2 diabetes,

develop. The gut microbiome plays a crucial role in maintaining

metabolic balance, and an imbalance (dysbiosis) is closely linked

to poor glucose control, insulin resistance, and T2DM (96). One

significant mechanism involves increased intestinal permeability,

often referred to as a leaky gut, which facilitates the translocation

of bacterial components, like lipopolysaccharides, into the systemic

circulation (97). This triggers chronic low-grade inflammation,

a hallmark of metabolic syndrome. Dysbiosis also affects the

production of short-chain fatty acids such as butyrate, acetate,

and propionate, which are derived from the fermentation of

dietary fibers. SCFAs influence energy metabolism, improve insulin

sensitivity, and stimulate the secretion of gut hormones like

glucagon-like peptide-1 and peptide YY (PYY), which regulate

glucose levels and appetite (98, 99). A reduction in butyrate-

producing bacteria, commonly observed in individuals with type

2 diabetes mellitus, is linked to decreased colonocyte health and

impaired glucose homeostasis. Colonocytes are the epithelial cells

that line the colon and rely on butyrate as a primary energy

source to maintain gut barrier integrity, regulate inflammation, and

support metabolic functions. Consequently, a decline in butyrate

production may compromise intestinal health and contribute

to dysregulated glucose metabolism (100). Additionally, the gut

microbiota significantly impacts bile acid metabolism, converting

primary bile acids into secondary forms that regulate glucose

metabolism through receptors, such as farnesoid X receptor (FXR)

and TGR5 (101). In individuals with type 2 diabetes, alterations

in bile acids can interfere with key signals that help regulate

blood sugar levels. Gut bacteria also affect levels of branched-chain

amino acids (BCAAs), which, when elevated, are associated with

insulin resistance. An imbalanced gut microbiome can raise BCAA

levels and worsen glucose control. Targeting the gut microbiome

may offer new treatment options (102, 103). For instance,

supplementation with specific probiotics has been shown to

increase GLP-1 levels and improve glucose tolerance in both animal

models and human studies (104). Moreover, fecal microbiota

transplantation from healthy donors to individuals with metabolic

syndrome has resulted in improved insulin sensitivity, highlighting

the causal role of gut microbiota in glucose metabolism (105).

These findings underscore the intricate interplay between the gut

microbiome and hostmetabolic processes, suggesting that restoring

microbial balance could be a cornerstone in managing T2DM

and related conditions. Dysbiosis promotes inflammation, disrupts

energy metabolism, and impairs glucose regulation. Targeting the

gut microbiome through diet, probiotics, or fecal transplants may

reduce insulin resistance and improve metabolic health, offering

the potential for managing and preventing T2DM and related

conditions, including Alzheimer’s disease (106, 107).

6 Preclinical and clinical studies

6.1 Summary of preclinical findings on ASs
and diabetes

ASs have been widely investigated for diabetes management

through studies ranging from animal models to clinical trials,

offering insights into their efficacy, safety, and long-term effects.

Preclinical studies in rodents, such as Sprague-Dawley rats

and C57BL/6 mice, have shown mixed, dose- and context-

dependent impacts on glucose metabolism. Notably, saccharin

impaired glucose tolerance in C57BL/6 mice by altering the gut

microbiota, thereby increasing Bacteroides populations associated

with metabolic changes (34). This research highlighted the indirect

impact of ASs on glucose regulation through microbial pathways,

raising concerns about their broader metabolic effects. Further

research used Zucker diabetic fatty (ZDF) rats to investigate the

effect of sucralose on insulin sensitivity. Their findings showed

that lower doses of sucralose improved insulin signaling by

modulating hepatic glucose production. However, higher doses

disrupted insulin pathways, illustrating the complexity of dose-

dependent effects (108). Similarly, a study found that ASs induced

significant changes in the gut microbiota, such as a reduction

in Lactobacillus spp., which was linked to impaired glucose

tolerance (109). This reinforced the idea that gut microbiota

plays a crucial role in mediating the metabolic effects of ASs. In

contrast, another study observed that saccharin-induced changes

in microbial populations—particularly an increase in Akkermansia

muciniphila—could affect glucose regulation and inflammatory

pathways (110). These findings suggest that targeting the gut

microbiota through dietary interventions may help mitigate some

adverse effects of Ass and offer potential therapeutic strategies.

Additionally, preclinical studies have examined the impact of ASs

on weight management, demonstrating that aspartame reduced

calorie intake and promoted weight loss in diet-induced obese

(DIO) mice, likely through hypothalamic pathways involved in

satiety, which may improve insulin sensitivity and glycemic

control (111).

6.2 Clinical trials: safety and e�cacy

Clinical trials are essential in evaluating the real-world

applicability of AS for individuals with diabetes. These studies

assess their impact on blood glucose control, insulin response,

weight management, and overall safety profiles, providing crucial

evidence for their use in diabetes management. Clinical studies
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suggest that AS does not raise blood glucose levels, making it a

safe alternative to sugar for people with diabetes. For instance, a

study involved 200 participants with type 2 diabetes and showed

that replacing sucrose with aspartame over 12 weeks significantly

reduced HbA1c levels without adverse effects (112). This finding

underscores the potential of ASs in supporting glycemic control

while minimizing caloric intake. Similarly, a review found that ASs

like sucralose have negligible effects on both fasting blood glucose

and postprandial glucose responses (113). While ASs generally do

not directly influence insulin secretion, some studies suggest that

certain sweeteners may trigger a response known as the cephalic-

phase insulin release. For example, a study examined the effects

of sucralose on insulin response in 40 non-diabetic individuals

and found a slight, transient increase in insulin levels, though

without significant metabolic consequences (114). Further studies

suggest that the cephalic-phase insulin response induced by ASmay

vary among individuals and does not necessarily affect metabolic

outcomes universally (115). ASs are also commonly recommended

for weight management due to their low caloric content. The

CHOICE study demonstrated that overweight participants who

replaced sugar-sweetened beverages with AS-based drinks lost an

average of 2.5 kg over 6 months (116). These results highlight

the potential of ASs in reducing caloric intake when used in

conjunction with lifestyle interventions. Additionally, a study noted

that ASs might reduce cravings for sugary foods, further supporting

their role in weight management strategies (117).

Long-term safety evaluations of AS indicate that they are

generally well-tolerated. However, some studies raise concerns

about gastrointestinal and metabolic effects. For instance, a study

reported mild gut dysbiosis (an imbalance in gut bacteria) and

gastrointestinal discomfort among high AS consumers in a cohort

study of 500 participants (118). These findings are consistent with

those of Suez et al. (34), who demonstrated that prolonged AS

use can alter gut microbiota in susceptible individuals, potentially

affecting glucose metabolism. Such studies emphasize the need

for long-term follow-up trials to better understand the broader

implications of chronic AS consumption (34). Overall, while AS

provides significant benefits in terms of glycemic control and

weight management, its long-term effects on gut health and overall

metabolic outcomes require further investigation. Personalized

approaches to incorporating AS into diabetes management plans

should be considered, taking into account individual metabolic

responses and potential risks associated with AS.

6.3 Long-term e�ects and risk-benefit
analysis

Although ASs have become an integral component of

dietary strategies aimed at managing diabetes, their long-term

effects and risk-benefit profiles continue to spark debate. This

discussion examines the nuanced outcomes of chronic AS use,

focusing on critical areas such as chronic disease risk, gut

microbiota implications, behavioral effects, and the importance

of individualized guidance. Epidemiological studies raise concerns

about the potential association between high AS consumption

and chronic diseases, which are comorbid with or precursors

to diabetes mellitus. For instance, a longitudinal study involving

1,000 individuals over 5 years found that saccharin use was

linked to a slight increase in cardiovascular risk markers, such as

elevated triglycerides and LDL cholesterol levels (119). However,

because factors such as diet, exercise, and existing health issues

may influence the results, more controlled studies are needed

to confirm if saccharin directly causes these health risks. Long-

term use of ASs has also been shown to impact gut microbiota, a

key player in metabolic health. It is demonstrated that prolonged

saccharin consumption in both animal models and humans led

to dysbiosis, characterized by altered microbial diversity and

an increase in pro-inflammatory species (34). These changes

were associated with impaired glucose tolerance and decreased

insulin sensitivity. Further studies highlighted that the metabolic

implications of microbiota shifts depend on the individual’s

baseline gut composition and genetic predispositions (120). The

psychological and behavioral effects of ASs play a significant role

in their risk-benefit profile.

Sweeteners such as aspartame and sucralose may reinforce

sweet preferences, potentially leading to overconsumption of

sweet-tasting foods and beverages. Behavioral intervention studies

suggest that educating patients on mindful AS consumption and

understanding compensatory eating behaviors can mitigate these

risks. For example, incorporating ASs into a balanced diet, rather

than using them as unrestricted replacements for sugary foods,

helps maintain overall caloric balance (50). The risk-benefit profile

of ASs varies widely among individuals due to differences in health

conditions, dietary habits, and metabolic responses.

7 Optimization of ASs for diabetes
management

Effective utilization of ASs in diabetes management involves

integrating them into patient care to maximize benefits and

minimize risks. Strategies include substituting ASs for high-calorie

sugars in beverages and food products, which can help reduce

overall caloric intake and manage blood glucose levels (121).

Clinical guidelines emphasize educating patients on the types

and quantities of ASs that can be safely incorporated into their

diet, focusing on balance and moderation (122). Combining ASs

with broader lifestyle management programs, including regular

exercise and a healthy diet, can enhance their efficacy in achieving

glycemic control and weight loss (123). Emerging research on the

gut microbiota’s role in metabolic health presents opportunities

for tailoring AS use based on individual microbiota profiles. A

study also indicates that certain AS can induce shifts in gut

microbial populations, potentially affecting glucose metabolism

and insulin sensitivity (34). Personalized approaches, such as

microbiota profiling, could identify individuals more likely to

benefit from specific ASs while avoiding adverse effects like

dysbiosis (124). This precision medicine approach ensures ASs are

optimized to align with individual metabolic responses, offering a

novel avenue for improving diabetes outcomes. Patient education

on ASs is crucial in diabetes care, emphasizing both their benefits,

such as lower calorie intake and improved blood sugar control,

and potential risks, including changes in gut microbiota and

long-term metabolic effects. Awareness efforts should discourage
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overuse, as it may lead to overeating or taste changes that can

disrupt overall dietary balance (125). Health professionals should

promote the mindful use of ASs as part of a broader diabetes

management plan, ensuring intake stays within safe limits, such

as the 40 mg/kg ADI for aspartame. Regular monitoring of

glucose, HbA1c, and metabolic markers helps assess effectiveness

and avoid potential harm, supporting personalized, evidence-based

care (126).

8 Risks and challenges

ASs pose potential risks, including effects on insulin sensitivity,

glucose metabolism, and gut microbiota, which may lead to

inflammation and metabolic issues. Although calorie-free, some

can trigger insulin responses or increase cravings, possibly leading

to overeating and poor glycemic control in people with or at risk for

diabetes. Although short-term studies indicate that ASs are mostly

safe, their long-term effects on heart health and the development

of chronic diseases remain uncertain. Confusing regulations and

misleading labels make it difficult for consumers to make informed

choices. Groups such as pregnant women, children, and those with

metabolic issues may be more at risk; therefore, cautious use is

advised (127).

8.1 Potential adverse e�ects of long-term
AS use

Although ASs are commonly used as sugar substitutes, their

long-term health effects are still debated. Some studies link regular

use to metabolic imbalances, insulin resistance, and appetite

disruptions (128). Another ongoing debate is whether ASs affect

appetite and food intake. Some studies suggest that they may

disrupt natural hunger signals, leading to stronger cravings for

sweets and higher calorie intake, which can potentially result in

weight gain. Although often marketed as beneficial for people

with diabetes, some extensive studies have linked their use to

higher risks of heart disease, metabolic syndrome, and even death.

However, more research is needed to understand these links and

the underlying mechanisms (129, 130).

8.2 Considerations for vulnerable
populations

Health organizations such as the FDA and EFSA consider

sweeteners like aspartame and sucralose safe within recommended

limits, but saccharin is discouraged due to concerns about fetal

exposure (131). Children are increasingly consuming ASs found

in sugar-free snacks, drinks, and processed foods. As their

metabolic systems are still developing, excessive intake could

impact their insulin response, gut microbiota, and taste preferences

(132). Experts worry that early exposure to ASs may lead to

a preference for sweet foods, contributing to unhealthy eating

habits and a higher risk of obesity and metabolic disorders

later on. While some sweeteners are approved for children,

many health organizations advise limiting their use, especially in

younger children, until more research clarifies their long-term

effects (129).

8.3 Ethical and regulatory aspects of AS
consumption

The increasing use of ASs raises concerns about consumer

safety, transparency, and public health, as well as ethical and

regulatory issues. Agencies, such as the FDA, EFSA, and WHO,

have established acceptable daily intake (ADI) levels based on

current research; however, regulations vary by country, resulting

in inconsistencies in approval and use. As scientific knowledge of

ASs evolves, it is important to regularly update safety guidelines

to reflect new findings (18). Moreover, ASs are currently common

in processed foods and beverages, often marketed as “sugar-free”

or “diet” products. However, many consumers may not fully

understand their potential risks and benefits. Ethical concerns

arise when food manufacturers fail to provide clear labeling or

use marketing tactics that create misleading perceptions about

their health effects. Regulatory agencies stress the importance of

transparent food labeling and honest communication about ASs to

empower consumers (133). The food and beverage industry greatly

influences public perception of ASs, but critics argue that industry-

funded research often highlights benefits while downplaying risks.

Public health initiatives should provide balanced, evidence-based

information to help people make informed dietary choices (134).

Ethical concerns also involve vulnerable communities with limited

access to fresh, natural foods. It is important to ensure that ASs

do not disproportionately affect these groups, emphasizing the

need for policies that prioritize safety and fair access to nutritious

food (135).

9 Future directions and research
opportunities

As ASs continue to be important in managing diabetes

and reducing sugar intake, research is shifting toward exploring

their broader metabolic effects, safety, and potential benefits

beyond blood sugar control. Future directions in sweetener

development focus on improving taste, safety, and effectiveness,

with the integration of new technologies and personalized nutrition

helping to create more suitable alternatives for people with

diabetes. These innovations aim to provide sweetness without

the negative effects of traditional sweeteners while supporting

better metabolic health and insulin sensitivity. Researchers are

also working on making sweeteners more stable and acceptable in

various food products, enabling their successful integration into

everyday diets.

Research opportunities in this field include further

investigating the long-term effects of new sweeteners on insulin

response, weight management, and metabolic health. As some

sweeteners may affect gut microbiota, future studies should focus

on understanding how these changes impact diabetes outcomes.

Additionally, exploring the prebiotic effects of certain sweeteners,

Frontiers inNutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2025.1587690
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Begum et al. 10.3389/fnut.2025.1587690

like stevia derivatives and allulose, and their role in gut health could

offer promising therapeutic strategies. A deeper understanding

of how sweeteners interact with hunger hormones and appetite

regulation will also be crucial to refining their use. By addressing

these gaps, researchers can pave the way for more personalized,

effective dietary strategies for managing diabetes and improving

overall metabolic health.

10 Conclusion

ASs are commonly used as sugar substitutes, offering a way

to enjoy sweetness without significantly affecting blood glucose

levels. They are especially useful in diabetes management when

combined with personalized strategies that account for gut health

and insulin dynamics, helping people control blood sugar and

reduce calorie intake. Some sweeteners, such as allulose and

stevia, may even improve insulin sensitivity. However, concerns

persist about their long-term effects on insulin response, appetite,

gut microbiota, and overall metabolism. Evidence linking ASs to

changes in gut microbiota calls for further research to achieve a

better understanding of their impact on glucose metabolism and

inflammation. As demand for healthier sugar alternatives grows,

future research should focus on creating new sweeteners that

reduce metabolic risks while maintaining taste and stability in

food. Personalized nutrition, based on individual variations in gut

health and metabolism, could optimize sweetener use for diabetes

management. It is also important to have transparent labeling

and consumer education to ensure informed decisions. While ASs

offer benefits for blood sugar control and weight management,

they should not be seen as a one-size-fits-all solution. A balanced

approach, incorporating whole foods and ongoing research, will be

key to the effective and safe use in diabetes care.
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