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Background: The creatinine-to-cystatin C ratio (CCR) is an emerging marker 
of muscle mass, which influences the progression of nonalcoholic fatty liver 
disease (NAFLD). However, the relationship between CCR and long-term all-
cause and cardiovascular mortality remains unclear in the US NAFLD population.

Methods: This nationally representative study analyzed data from the National 
Health and Nutrition Examination Survey (NHANES) 1999–2004, with mortality 
follow-up through December 31, 2019 via linkage to the National Death Index 
(NDI). NAFLD was determined using the Fatty Liver Index (FLI), while CCR was 
calculated as serum creatinine to cystatin C ratio. We employed multivariable Cox 
proportional hazards models to assess associations between CCR and mortality 
risk, expressed as hazard ratios (HRs) with 95% confidence intervals (CIs). The 
analytical approach included Kaplan–Meier survival analysis, restricted cubic 
spline regression for non-linear relationship assessment, and comprehensive 
subgroup and sensitivity analyses to evaluate result robustness.

Results: This study included 3,897 participants with NAFLD (53.34% male, 
mean age 48.98 years), with 1,174 all-cause deaths and 333 cardiovascular 
deaths over a median follow-up of 206 months. CCR demonstrated 
significant inverse associations with both all-cause mortality (adjusted HR 
0.83; 95% CI 0.78–0.88; p < 0.001) and cardiovascular mortality (adjusted 
HR 0.80; 95% CI 0.73–0.87; p < 0.001). In tertile analyses, higher CCR groups 
showed progressively lower risks, in Model 3(fully adjusted model): all-cause 
mortality: T2 = 0.65 (0.53, 0.79), T3 = 0.43 (0.32, 0.60), P for trend<0.001; 
cardiovascular mortality: T2 = 0.67 (0.50, 0.89), T3 = 0.34 (0.21, 0.53); 
P for trend<0.001. Restricted cubic spline analysis revealed an L-shaped 
association between CCR and all-cause mortality (turning point: 11.06), 
with each unit increase below 11.06 associated with a 36% risk reduction 
(HR 0.64; 95% CI 0.53–0.77; p < 0.001). In contrast, a linear relationship was 
observed for cardiovascular mortality (P for non-linearity = 0.972). Kaplan–
Meier analysis confirmed superior survival rates in the highest CCR tertile for 
both endpoints (log-rank p < 0.001), with subgroup and sensitivity analyses 
affirming the robustness of these results.
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Conclusion: In this study of US adults with NAFLD, we  identified a significant 
inverse association between CCR levels and risks of both all-cause and 
cardiovascular mortality. The stability of this association was confirmed through 
subgroup and sensitivity analyses, suggesting that CCR may play an important 
role in long-term prognosis among NAFLD patients.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is the prevalent chronic 
liver condition globally, impacting around 24% of the world’s 
population (1). NAFLD includes a range of liver damage, from simple 
hepatic steatosis to nonalcoholic steatohepatitis, potentially advancing 
to cirrhosis, liver failure and hepatocellular carcinoma (2, 3). It is also 
associated with extrahepatic metabolic disorders, including 
cardiovascular events and type 2 diabetes mellitus (4). Notably, 
patients with hepatic steatosis accompanied by advanced liver fibrosis 
exhibit a significantly elevated risk of both all-cause mortality (5, 6) 
and cardiovascular disease mortality (7, 8). The increased 
cardiovascular risk in these patients is thought to be  driven by 
involving interrelated pathways of insulin resistance, oxidative stress, 
chronic inflammation, endothelial dysfunction, gut microbiota 
alterations, and dysregulated lipid metabolism (9–12). The newly 
proposed metabolic dysfunction-associated fatty liver disease 
(MAFLD) (13) and metabolic dysfunction-associated steatotic liver 
disease (MASLD) (14) concepts place greater emphasis on the 
metabolic nature of this disease. However, given their substantial 
population overlap with NAFLD, this study maintains the traditional 
NAFLD diagnostic criteria.

Low muscle mass has been established as a significant risk factor 
for the progression of NAFLD (15). Creatinine, primarily derived 
from muscle tissue, particularly skeletal muscle (16), is a byproduct of 
muscle metabolism and is almost entirely excreted by the kidneys. 
However, creatinine production is not solely dependent on muscle 
mass but is also influenced by various factors such as age, sex, 
ethnicity, and dietary habits (e.g., meat intake), especially in elderly 
individuals or patients with impaired renal function (17). CysC is a 
small, non-ionic protein synthesized by all nucleated cells. It is filtered 
by the glomeruli and then fully reabsorbed and metabolized by 
proximal tubular cells, making it less affected by muscle mass (18). 
CCR was calculated as serum creatinine to cystatin C ratio. It is 
considered a marker for muscle mass and a surrogate indicator of 
sarcopenia (19–21).

Tetssuka et al. (22) conducted a study suggested that the serum 
CCR may be an indicator for evaluating amyotrophic lateral sclerosis 
severity. Kashani et al. (18) confirmed the relationship between CCR 
and muscle mass, introducing it as sarcopenia index in 2017. 
Currently, CCR has been widely proposed as a biomarker for muscle 
mass and a surrogate indicator for sarcopenia (19–21). A Japanese 
study involving 641 participants demonstrated a significant 
association between CCR and muscle mass as well as strength with 
NAFLD patients (15). Moreover, research suggests that CCR is more 
suitable than muscle mass measurement alone for evaluating visceral 
fat mass adjusted for muscle mass (23). It exhibits high diagnostic 

accuracy in assessing muscle mass and sarcopenia in conditions such 
as diabetes (21), and cancer (24). A retrospective cohort study 
revealed that elevated serum CCR ratios were significantly associated 
with reduced all-cause mortality at 30 and 90 days in patients 
undergoing continuous kidney replacement therapy (25). In a 
U.S. adult cohort, CCR was inversely correlated with all-cause 
mortality, cardiovascular mortality (26, 27), and cancer mortality (26). 
However, research on the relationship between CCR and 
cardiovascular or all-cause mortality with NAFLD populations 
remains unexplored.

Among individuals with NAFLD, long-term follow-up studies on 
the association between CCR and all-cause and cardiovascular 
mortality remain limited. Leveraging weighted data from NHANES 
1999–2004 and NDI database, this study utilizes a nationally 
representative sample to investigate the relationship between CCR and 
long-term risks of all-cause and cardiovascular mortality in individuals 
with NAFLD.

2 Materials and methods

2.1 Study population

The data analyzed were sourced from the NHANES database, a 
national program that assesses the health and nutritional status of 
U.S. adults and children using a rigorous multi-stage probabilistic 
sampling method to ensure national representativeness (28). The 
Centers for Disease Control and Prevention’s National Center for 
Health Statistics research ethics review board approved the NHANES 
study protocol, and participants provided written informed consent 
at enrollment (the website is https://www.cdc.gov/nchs/nhanes/
about/erb.html). Ethical approval and consent were not required as 
this study was based on publicly available de-identified data. 
Our secondary analysis adheres to the Strengthening the 
Reporting of Observational Studies in Epidemiology (STROBE 
guidelines) for cohort studies. Comprehensive details about the 
NHANES survey can be accessed publicly at https://wwwn.cdc.gov/
nchs/nhanes.

In this cohort study, the data from three survey cycles (1999–
2004) were used because the CysC information was available, and 
there were 31,126 participants in the cohort. We excluded subjects 
with pregnancy status (n = 968), excessive alcohol consumers (defined 
as having 5 or more drinks daily) (n = 1,846), positive HBV surface 
antigen or HCV antibody (n = 218). In addition, we also excluded 
participants under 20 years old (n = 15,648). Moreover, we excluded 
individuals with eGFR less than 30 mL/min/1.73m2 (n = 1,949), 
missing values for CCR (n = 715), missing values for FLI or FLI < 60 
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(n = 5,881), missing values for mortality (n = 4). A total of 3,897 
subjects with NAFLD participated in this study. Figure 1 illustrates the 
complete data selection process.

2.2 Definition of NAFLD

Although histopathological biopsy remains the gold standard for 
assessing hepatic steatosis and fibrosis, FLI is gaining widespread use 
as a non-invasive method in clinical practice. FLI is a straightforward 
score, ranging from 0 to 100, derived from BMI, waist circumference, 
triglycerides, and gamma-glutamyl transferase levels to assess fatty 
liver probability. FLI, with a value of ≥ 60, is used to diagnose NAFLD 
in the absence of chronic liver disease and significant alcohol 
consumption (29). This non-invasive diagnostic tool is gaining 
wider adoption.

FLI is calculated using the formula below (30):

 

( ) ( )( )
( ) ( )
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2.3 Definition of CCR

Serum creatinine levels in the NHANES datasets were assessed 
using the kinetic alkaline picrate method, known as the Jaffe reaction. 
The methodology for measuring serum creatinine in NHANES is 
documented in other sources. According to NHANES analytical 
guidelines, creatinine values from 1999 to 2000 require adjustment 
using Deming regression (standard creatinine = 1.013 * NHANES 
creatinine + 0.147), whereas no such correction is necessary for 
NHANES 2001–2002 and 2003–2004 (31). Serum CysC levels were 
determined using a CysC immunoassay on a Siemens Dimension 
Vista 1,500 automated multi-channel analyzer (Siemens Healthcare 
Diagnostics). The detection range spans from 0.23 mg/L to 
8.00 mg/L. CCR is calculated by dividing serum creatinine (mg/dL) 
by cystatin C (mg/L) and multiplying by 10 (26). Initially, CCR was 
analyzed as a continuous variable and subsequently categorized into 
tertiles for further analysis.

2.4 Ascertainment of mortality

The mortality data were obtained from NDI maintained by the 
Centers for Disease Control and Prevention (accessible at https://
www.cdc.gov/nchs/data-linkage/mortality-public.htm). Participant 
follow-up duration was calculated from study enrollment until either 

FIGURE 1

Flowchart of the enrolled participants. NHANES, National Health and Nutrition Examination Survey; eGFR, estimated glomerular filtration rate; CCR, 
creatinine to cystatin C ratio; FLI, fat liver index; NAFLD, nonalcoholic fatty liver disease.
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the occurrence of death or the cutoff date of December 31, 2019, 
which represents the most recent update in the NDI records. 
Cardiovascular-related fatalities were classified using specific 
diagnostic codes (I00-I09, I11, I13, and I20-I51) as defined by the 
Tenth Revision of the International Classification of Diseases (ICD-10) 
system (32).

2.5 Assessment of covariates

Gender, age, race, education level, marital status, income to 
poverty ratio (PIR), moderate activity, smoke status, hypertension, 
diabetes, coronary heart disease, cancer and BMI were sourced from 
NHANES survey questionnaires. Age was treated as a continuous 
variable, while gender and race were considered categorical variables. 
Race categories included as non-Hispanic White, non-Hispanic Black, 
Mexican American and other. Education level was categorized as less 
than high school, high school, university and above. Marital status was 
categorized as married or living with partner, never married, or other. 
PIR was categorized as low (PIR ≤ 1.3), medium (PIR > 1.3 to 3.5) or 
high (PIR > 3.5). Moderate activity was defined as activities that 
participants engage in for at least 10 min continuously and result in 
minor increases in breathing or heart rate. Smoke status, was defined 
as history of smoking at least 100 cigarettes. Hypertension was defined 
as a self-reported history of hypertension. Diabetes was defined as a 
self-reported history of diabetes. Coronary heart disease was defined 
as a self-reported history of coronary heart disease. Cancer was 
defined as a self-reported history of cancer. BMI was calculated as 
weight in kilograms divided by height (m) squared. The estimated 
glomerular filtration rate (eGFR) was calculated using the Chronic 
Kidney Disease Epidemiology Collaboration Scr equation (33). 
Glycosylated hemoglobin A1C (HbA1c), uric acid (UA), total 
cholesterol (TC), high-density lipoprotein cholesterol (HDL), and 
triglyceride (TG) were obtained from laboratory test results.

2.6 Statistical analysis

In our study, analyses followed the National Center for Health 
Statistics’ stratification and weighting guidelines for NHANES (34). 
For the weighted analyses of NHANES 1999–2000 and 2001–2002 
data, a four-year sample weight (WTSSCB4Y) set was used. For the 
2003–2004 data, the sample weight (WTSSCB2Y) set was used. The 
sampling weights for 1999–2004 were calculated as follows: 1999–
2002 weights are 2/3 × WTSSCB4Y, otherwise 1/3 × 2003–2004. 
Missing values in covariates were addressed using a multivariate single 
imputation method. This approach utilized an iterative imputer, with 
a Bayesian Ridge model serving as the estimator in each step of the 
round-robin imputation process (35). Multicollinearity was assessed 
using variance inflation factor, with a threshold of 5 indicating 
potential collinearity. After excluding participants with missing 
covariates, sensitivity analyses were performed on the final study 
population. Continuous variables with a normal distribution are 
presented as mean ± standard deviation (SD), those with a 
non-normal distribution as interquartile range (IQR), and categorical 
variables as percentages (%). CCR was divided into tertiles from 
lowest (T1) to highest (T3). Categorical data differences among the 
three subgroups were assessed using chi-squared tests. One-way 

ANOVA was used for normally distributed data, while the Kruskal-
Wallis test was applied for data that did not follow a normal 
distribution. A restricted cubic spline (RCS) with three knots was used 
to illustrate the potential nonlinear relationship between the CCR and 
both all-cause and cardiovascular mortality with NAFLD patients. 
Survey-weighted Cox regression analysis was used to evaluate the 
relationship between CCR and both all-cause and cardiovascular 
mortality in patients with NAFLD. Three models were developed with 
increasing levels of adjustment for potential outcome confounders: 
Model 1 was unadjusted; Model 2 accounted for gender, age and race; 
model 3 was adjusted for gender, age, race, education level, marital 
status, PIR, moderate activity, smoke status, hypertension, diabetes, 
coronary heart disease, cancer, BMI, eGFR, HbA1c, UA, HDL, TG, 
and TC. Survival outcome probabilities were estimated using the 
Kaplan–Meier method and compared via the log-rank test. The 
relationship between CCR and mortality was examined across 
subgroups defined by gender, age, hypertension, diabetes, coronary 
heart disease, cancer and eGFR, and their interactions were explored. 
Statistical analyses were performed using R software (version 4.2.2; 
http://www.r-project.org). All tests were two-tailed and p values less 
than 0.05 were considered statistically significant.

3 Results

3.1 Baseline characteristics of participants

Table 1 presents the demographic, comorbidity, socioeconomic, and 
laboratory data of the 3,897 participants, representing 62,884,461 
NAFLD patients in the U.S. The cohort consisted of 2,004 males (53.34%) 
and 1,893 females (46.66%), with a median age of 48.98 years. 
Participants were stratified into three groups based on CCR tertiles: T1 
(4.053–9.821), T2 (9.827–11.887), T3 (11.887–61.35). Compared to the 
lowest CCR tertile (T1), participants in higher CCR tertiles were more 
likely to be male, younger, have higher education levels, better PIR, 
higher moderate physical activity levels and no history of smoking. 
Additionally, they exhibited a lower prevalence of hypertension, diabetes, 
coronary heart disease, and cancer, along with better metabolic profiles, 
including lower BMI, higher eGFR, lower HbA1c, and higher HDL levels 
(all p < 0.05). Notably, the highest CCR tertile (T3) was predominantly 
male (82.16%), with significant socioeconomic advantages, including 
higher education levels (T3: 60.46% vs. T1: 41.16%) and better income 
status (T3: 52.59% vs. T1: 31.74%) (all p < 0.001).

3.2 Associations of the CCR with all-cause 
mortality

During a median follow-up of 206 months (IQR: 187–225), 1,174 
all-cause deaths were recorded. Multivariable Cox regression analyses 
revealed a significant inverse association between CCR and all-cause 
mortality. In the unadjusted model (Model 1), each unit increase in 
CCR was associated with a 21% reduction in all-cause mortality risk 
(HR: 0.79, 95% CI: 0.76–0.83, p < 0.001) (Table 2). This protective 
association remained robust after adjusting for demographic factors 
(Model 2: HR: 0.85, 95% CI: 0.80–0.89, p < 0.001) and further 
adjustment for socioeconomic, lifestyle, and clinical variables (Model 
3: HR: 0.83, 95% CI: 0.78–0.88, p < 0.001) (Table 2).
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TABLE 1 Characteristics of the study population based on CCR.

Variables Overall (4.053–
61.35, n = 3,897)

Tertile of CCR P value

T1 (4.053–9.821, 
n = 1,297)

T2 (9.827–11.887, 
n = 1,299)

T3 (11.887–
61.350, n = 1,301)

Gender, n (%) <0.001

  Male 2,004 (53.34%) 257 (18.83%) 683 (51.96%) 1,064 (82.16%)

  Female 1,893 (46.66%) 1,040 (81.17%) 616 (48.04%) 237 (17.84%)

Age (years) 48.98 (0.35) 55.01 (0.58) 48.64 (0.60) 44.49 (0.37) <0.001

Race, n (%) <0.001

  Non-Hispanic White 1,956 (72.39%) 678 (76.57%) 669 (72.40%) 609 (69.03%)

  Non-Hispanic Black 694 (10.85%) 121 (6.21%) 217 (10.12%) 356 (15.22%)

  Mexican American 992 (7.92%) 415 (8.40%) 328 (8.06%) 249 (7.40%)

  Other 255 (8.85%) 83 (8.82%) 85 (9.42%) 87 (8.35%)

Education level, n (%) <0.001

  Less than high school 639 (6.82%) 313 (10.05%) 204 (6.84%) 122 (4.21%)

  High school 1,627 (41.96%) 566 (48.79%) 563 (43.25%) 498 (35.33%)

  University and above 1,631 (51.22%) 418 (41.16%) 532 (49.91%) 681 (60.46%)

Marital status, n (%) <0.001

  Married/Living with 

Partner

2,541 (67.45%) 759 (60.81%) 860 (67.26%) 922 (72.93%)

  Never married/other 1,356 (32.55%) 538 (39.19%) 439 (32.74%) 379 (27.07%)

PIR, n (%) <0.001

  Low income 1,079 (20.86%) 463 (28.24%) 355 (21.04%) 261 (14.81%)

  Medium income 1,526 (36.46%) 519 (40.01%) 516 (37.57%) 491 (32.60%)

  High income 1,292 (42.68%) 315 (31.74%) 428 (41.40%) 549 (52.59%)

Moderate activity, n (%) <0.001

  Yes 1,675 (48.82%) 438 (39.26%) 567 (48.98%) 670 (56.30%)

  No 2,222 (51.18%) 859 (60.74%) 732 (51.02%) 631 (43.70%)

Smoke status, n (%) 0.007

  Yes 1,875 (48.56%) 613 (51.66%) 652 (50.54%) 610 (44.25%)

  No 2,022 (51.44%) 684 (48.34%) 647 (49.46%) 691 (55.75%)

Hypertension, n (%) <0.001

  Yes 1,679 (39.70%) 661 (49.66%) 535 (37.34%) 483 (33.93%)

  No 2,218 (60.30%) 636 (50.34%) 764 (62.66%) 818 (66.07%)

Diabetes, n (%) <0.001

  Yes 579 (11.14%) 236 (14.12%) 211 (12.53%) 132 (7.47%)

  No 3,318 (88.86%) 1,061 (85.88%) 1,088 (87.47%) 1,169 (92.53%)

Coronary heart disease, n 

(%)

0.012

  Yes 206 (4.51%) 78 (5.53%) 72 (5.27%) 56 (2.99%)

  No 3,691 (95.49%) 1,219 (94.47%) 1,227 (94.73%) 1,245 (97.01%)

Cancer, n (%) <0.001

  Yes 340 (8.25%) 146 (12.07%) 123 (8.24%) 71 (5.20%)

  No 3,557 (91.75%) 1,151 (87.93%) 1,176 (91.76%) 1,230 (94.80%)

BMI (kg/m2) 33.43 (0.17) 35.11 (0.32) 33.57 (0.19) 31.95 (0.19) <0.001

eGFR(mL/min/1.73 m2) 91.15 (0.45) 90.76 (0.82) 93.66 (0.69) 89.15 (0.61) <0.001

HbA1c (%) 5.73 (0.02) 5.86 (0.03) 5.76 (0.04) 5.61 (0.03) <0.001

(Continued)
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When CCR was analyzed by tertiles, participants in higher tertiles 
exhibited progressively lower risks of all-cause mortality compared to 
those in the lowest tertile (T1). In the fully adjusted model (Model 3), 
as compared to the T1 group, the hazard ratios (HRs) for T2, and T3 
were 0.65 (0.53, 0.79) and 0.43 (0.32, 0.60), respectively (P for trend < 
0.001) (Table 2). These results suggest a dose–response relationship, 
with the highest CCR tertile (T3) associated with a 57% reduction in 
all-cause mortality risk compared to T1.

RCS analysis further elucidated the relationship between CCR and 
all-cause mortality, revealing a nonlinear, L-shaped association (P for 
non-linearity = 0.043) (Figure  2A). The risk of all-cause mortality 
decreased sharply with increasing CCR levels up to a threshold of 11.06, 
after which the association plateaued. Threshold analysis confirmed 
this critical turning point, with participants below the threshold 
(CCR < 11.06) experiencing a 36% reduction in mortality risk per unit 
increase in CCR (HR: 0.64, 95% CI: 0.53–0.77, p < 0.001) (Table 3). In 
contrast, no significant association was observed above the threshold 
(CCR ≥ 11.06; HR: 0.87, 95% CI: 0.71–1.06, p = 0.15) (Table 3).

3.3 Associations of the CCR with 
cardiovascular mortality

During the same follow-up period, 333 cardiovascular deaths 
were recorded. Similar to all-cause mortality, higher CCR levels were 
associated with a reduced risk of cardiovascular mortality. In the 
unadjusted model (Model 1), each unit increase in CCR was associated 
with a 22% reduction in cardiovascular mortality risk (HR: 0.78, 95% 
CI: 0.73–0.83, p < 0.001) (Table 2). This association persisted after 
adjusting for confounders (Model 2: HR: 0.80, 95% CI: 0.73–0.88, 
p < 0.001; Model 3: HR: 0.80, 95% CI: 0.73–0.87, p < 0.001) (Table 2). 
These results suggest a significant negative correlation between higher 
CCR levels and lower cardiovascular mortality risk.

Based on the CCR tertile groups, we found that as the CCR by 
tertiles increased, the risk of cardiovascular mortality significantly 
decreased (P for trend < 0.001). After adjusting for confounding 
factors in Model 3, as compared to the T1 group, the HRs for T2 and 
T3 groups compared with T1 were 0.67 (0.50, 0.89) and 0.34 (0.21, 

TABLE 1 (Continued)

Variables Overall (4.053–
61.35, n = 3,897)

Tertile of CCR P value

T1 (4.053–9.821, 
n = 1,297)

T2 (9.827–11.887, 
n = 1,299)

T3 (11.887–
61.350, n = 1,301)

UA (mg/dl) 5.94 (0.04) 5.71 (0.06) 5.81 (0.06) 6.26 (0.05) <0.001

TC(mg/dl) 211.98 (1.00) 212.80 (1.97) 208.82 (1.55) 214.24 (1.54) 0.037

HDL (mg/dl) 45.46 (0.29) 47.02 (0.42) 45.38 (0.41) 44.29 (0.41) <0.001

TG (mg/dl) 197.02 (4.15) 199.77 (7.18) 191.56 (4.86) 199.87 (7.09) 0.60

CCR, creatinine to cystatin C ratio; T, tertile; BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycosylated hemoglobin type A1C; UA, uric acid; TC, total 
cholesterol; HDL, hdl-cholesterol; TG, triglycerides; Note: The sample sizes presented in Table are unweighted counts reflecting the actual number of observations. All other results reported in 
this table are based on weighted data to account for the complex survey design and to ensure representativeness of the study population. The weighting procedure adjusts for potential sampling 
biases and non-response, allowing for more accurate estimates that are generalizable to the target population.

TABLE 2 The relationships between CCR and mortality with NAFLD.

Variable Total Events Model 1 Model 2 Model 3

HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value

All-cause mortality

CCR 3,897 1,174 0.79 (0.76, 0.83) <0.001 0.85 (0.80, 0.89) <0.001 0.83 (0.78, 0.88) <0.001

CCR tertile

 T1 1,297 545 1(Ref) 1(Ref) 1(Ref)

 T2 1,299 379 0.58 (0.49, 0.68) <0.001 0.69 (0.57, 0.84) <0.001 0.65 (0.53, 0.79) <0.001

 T3 1,301 250 0.32 (0.25, 0.40) <0.001 0.47 (0.35, 0.64) <0.001 0.43 (0.32, 0.60) <0.001

P for trend <0.001 <0.001 <0.001

Cardiovascular mortality

CCR 3,897 333 0.78 (0.73, 0.83) <0.001 0.80 (0.73, 0.88) <0.001 0.80 (0.73, 0.87) <0.001

CCR tertile

 T1 1,297 155 1(Ref) 1(Ref) 1(Ref)

 T2 1,299 106 0.64 (0.51, 0.80) <0.001 0.71 (0.54, 0.93) 0.012 0.67 (0.50, 0.89) 0.006

 T3 1,301 72 0.28 (0.20, 0.38) <0.001 0.36 (0.24, 0.56) <0.001 0.34 (0.21, 0.53) <0.001

P for trend <0.001 <0.001 <0.001

Model 1 unadjusted. Model 2 adjusted for gender, age and race. Model 3 further adjusted for education level, marital status, PIR, moderate activity, smoke status, hypertension, diabetes, 
coronary heart disease, cancer, BMI, eGFR, HbA1c, UA, HDL, TG and TC based on Model 2. CCR, creatinine to cystatin C ratio; NAFLD, nonalcoholic fatty liver disease; T, tertile; HR, hazard 
ratio; CI, confidence interval; Ref, reference; PIR, income to poverty ratio; BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycosylated hemoglobin type A1C; UA, 
uric acid; HDL, hdl-cholesterol; TG, triglycerides; TC, total cholesterol.
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0.53), respectively (Table  2). This indicates that individuals with 
higher CCR levels have significantly lower cardiovascular mortality 
risks compared to those with lower CCR levels.

RCS analysis revealed a linear, inverse relationship between CCR 
and cardiovascular mortality (P for nonlinearity = 0.972) (Figure 2B). 
This indicates that increasing CCR is directly associated with a 
reduced risk of cardiovascular mortality, without a clear turning point.

3.4 Survival analysis

Kaplan–Meier survival curves indicated a significant link between 
elevated CCR levels and enhanced survival outcomes. Participants in 
the highest CCR tertile (T3) demonstrated significantly improved 

survival rates for both all-cause and cardiovascular mortality 
compared to those in lower tertiles (log-rank p < 0.001) as shown in 
Figures 3A,B.

3.5 Subgroup and sensitivity analyses

Stratified analyses were conducted across various subgroups to 
evaluate potential effect modifications in the association between CCR 
and mortality. After adjusting for confounders, no significant 
interactions were observed across subgroups stratified by gender, age, 
diabetes, coronary heart disease, hypertension, cancer, or eGFR 
(Figure  4). To further validate the robustness of our findings, 
we  conducted sensitivity analyses (Supplementary Table  1). After 
excluding participants with missing covariates, the analysis of the 
remaining 3,480 individuals consistently demonstrated significant 
inverse associations between CCR and both all-cause and 
cardiovascular mortality (all P for trend <0.001). These findings, 
supported by comprehensive subgroup and sensitivity analyses, 
further confirm the reliability of our results, demonstrating consistent 
inverse associations between CCR and mortality.

4 Discussion

This nationwide study of U.S. adults examined the link between 
CCR and both all-cause and cardiovascular mortality during long-
term follow-up in individuals with NAFLD. Our study identified a 
notable inverse relationship between CCR and both all-cause and 

FIGURE 2

The association of CCR with all-cause (A) and cardiovascular mortality (B) among NAFLD visualized by restricted cubic spline. HRs were adjusted for 
gender, age, race, education level, marital status, PIR, moderate activity, smoke status, hypertension, diabetes, coronary heart disease, cancer, BMI, 
eGFR, HbA1c, UA, HDL, TG and TC. Only 99.9% of the data is shown. CCR, creatinine to cystatin C ratio; NAFLD, nonalcoholic fatty liver disease; HR, 
hazard ratio; CI, confidence interval; PIR, income to poverty ratio; BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, 
glycosylated hemoglobin type A1C; UA, uric acid; HDL, hdl-cholesterol; TG, triglycerides; TC, total cholesterol.

TABLE 3 Threshold effect analysis of the relationship of CCR with all-
cause mortality among NAFLD.

CCR Adjusted Model

HR (95% CI) P value

< 11.06 0.64 (0.53, 0.77) <0.001

≥ 11.06 0.87 (0.71, 1.06) 0.150

P for log-likelihood ratio <0.001

Adjusted for gender, age, race, education level, marital status, PIR, moderate activity, smoke 
status, hypertension, diabetes, coronary heart disease, cancer, BMI, eGFR, HbA1c, UA, HDL, 
TG and TC. Only 99.9% of the data is shown. CCR, creatinine to cystatin C ratio; NAFLD, 
nonalcoholic fatty liver disease; HR, hazard ratio; CI, confidence interval; PIR, income to 
poverty ratio; BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, 
glycosylated hemoglobin type A1C; UA, uric acid; HDL, hdl-cholesterol; TG, triglycerides; 
TC, total cholesterol.
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FIGURE 3

Kaplan–Meier curves of the survival rate and the number of at-risk NAFLD patients with CCR tertiles. (A) All-cause mortality. (B) Cardiovascular 
mortality. CCR, creatinine to cystatin C ratio; NAFLD, nonalcoholic fatty liver disease; T, tertile.

FIGURE 4

Subgroup analysis of the associations between CCR with all-cause (A) and cardiovascular mortality (B) among NAFLD. Covariates to be adjusted 
included gender, age, race, education level, marital status, PIR, moderate activity, smoke status, hypertension, diabetes, coronary heart disease, cancer, 
BMI, eGFR, HbA1c, UA, HDL, TG, TC, and covariates related to stratification factors were not adjusted. CCR, creatinine to cystatin C ratio; NAFLD, 
nonalcoholic fatty liver disease; PIR, income to poverty ratio; BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycosylated 
hemoglobin type A1C; UA, uric acid; HDL, hdl-cholesterol; TG, triglycerides; TC, total cholesterol.
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cardiovascular mortality. RCS analysis demonstrated an L-shaped 
relationship between CCR and all-cause mortality, while the 
relationship with cardiovascular mortality showed a monotonic 
decline. The robustness of these findings was further validated 
through subgroup and sensitivity analyses.

Low muscle mass has detrimental effects on quality of life, 
economic burden, and healthcare costs (36). A few previous studies 
have explored the relationship between muscle mass and cardiovascular 
disease risk and mortality (37, 38). Additionally, several cohort studies 
have analyzed the association between Cardio-Cerebrovascular Risk 
and mortality. CCR has been identified as a useful prognostic factor for 
sarcopenia in esophageal cancer patients, as well as for postoperative 
complications and long-term survival (39). A retrospective cohort 
study also found that elevated CCR correlated with improved survival 
rates in patients undergoing intensive care and continuous kidney 
replacement therapy (25). Furthermore, liver fat infiltration assessed 
by the FLI score was significantly associated with cardiovascular 
disease risk and mortality in patients with newly diagnosed type 2 
diabetes (40). Our results align with these findings, showing a 
significant association between CCR and improved prognosis. 
However, Our study features a larger sample size, an extended 
follow-up period, and broadens the association to include all-cause and 
cardiovascular mortality within the U.S. NAFLD population.

While the exact biological mechanisms linking CCR to mortality 
with NAFLD remain unclear, various potential mechanisms could 
be  involved. Higher CCR values might protect against NAFLD by 
improving insulin sensitivity, reducing systemic inflammation, and 
enhancing glucose metabolism through increased muscle mass. CCR is 
acknowledged as a proxy biomarker for muscle mass and sarcopenia (19, 
41). The rise in CCR indicates enhanced muscle mass, contributing to 
glucose homeostasis since skeletal muscle is crucial for about 80% of 
glucose clearance under euglycemic and hyperinsulinemic conditions 
(42). Additionally, a cohort study found a negative correlation between 
changes in CCR and blood pressure, hemoglobin A1c, and lipid levels 
(43). Furthermore, research involving 6,558 participants showed a 
positive correlation between inflammation markers like hs-CRP and 
NAFLD (44). A study indicated that as CCR increased across, CRP levels 
decreased, suggesting that a higher CCR may reflect a lower 
inflammatory status (26). Therefore, as a straightforward sarcopenia 
index (18), the connection between CCR and mortality with NAFLD 
might also encompass these changes, necessitating additional 
experimental research.

This study also discovered the following points: In our study 
population, there was a significant gender difference in CCR, which 
may be related to the normal physiological structural difference, with 
male muscle content being significantly higher than that of females 
(45). We  further conducted subgroup analysis by gender and 
performed interaction tests, and the results remained stable. There was 
a large difference in education levels. Individuals with higher education 
had higher CCR, while those with a high school education or lower 
had lower CCR. Income levels showed a similar trend, suggesting that 
individuals with higher education and higher income tend to have 
higher muscle content. This may be  related to better nutrition, as 
individuals with higher education and income levels typically have 
better nutrition, as well as enhanced personal health awareness (46).

This study had several limitations. First, as a cohort study, which 
is inherently an observational study, it cannot establish causality. 
Second, despite adjustment for multiple confounders, residual 
confounding or measurement errors may still affect the results. 

Additionally, inherent limitations of the FLI, the constraints of single 
measurements, and the lack of consideration for the impact of 
medications or other treatments also necessitate a cautious 
interpretation of the findings.

5 Conclusion

In conclusion, our study demonstrates that higher CCR is 
associated with reduced all-cause and cardiovascular mortality. The 
calculation of CCR is simple, convenient, and cost-effective, making 
it a promising indicator of muscle mass. In clinical practice, regular 
monitoring of CCR can help detect changes in muscle mass early and 
assist in identifying high-risk patients, optimizing monitoring 
protocols, and guiding targeted interventions to improve patient 
outcomes. These applications of CCR can contribute to improved 
outcomes in patients with NAFLD.
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Glossary

NAFLD - Non-alcoholic Fatty Liver Disease

CCR - Creatinine-to-cystatin C ratio

NHANES - National Health and Nutrition Examination Survey

NDI - National Death Index

FLI - Fatty liver index

STROBE - guidelines Strengthening the Reporting of Observational 
Studies in Epidemiology

RCS - Restricted cubic spline

IQR - Interquartile range

PIR - Income to poverty ratio

BMI - Body mass index

eGFR - Estimated glomerular filtration rate

TC - Total cholesterol

HDL - HDL-Cholesterol

TG - Triglycerides

HbA1c - Glycosylated hemoglobin A1C

UA - Uric acid

T - Tertile

SD - Standard deviation

HR - Hazard ratio

CI - Confidence interval

Ref - Reference
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