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Aims: We aimed to provide a comprehensive understanding of the associations 
between Trimethylamine-N-oxide (TMAO), its precursor and gestational 
diabetes mellitus (GDM).

Methods: In this prospective study, 940 women were included in a Chinese single 
-center pregnant cohort. First trimester plasma concentrations of TMAO and its 
precursors (betaine, choline, L-carnitine, and trimethylamine) were measured 
using UPLC-ESI-MS/MS. GDM and specific abnormal glucose levels (fasting 
glucose; one-hour post-load glucose, 1-h PG; two-hour post load glucose, 2-h 
PG; and 1-h PG ≥ 8.6 mmol/L) were assessed through oral glucose tolerance 
tests. First-trimester plasma concentrations of TMAO and its precursors were 
divided into quartile groups (bottom, Q1; middle, Q2 and Q3; top, Q4).

Results: Among the subjects, 167 (17.8%) were found to have GDM. After adjusting 
for potential covariates, the lower groups (Q1) of L-carnitine were associated 
with a higher risk of GDM compared to the reference group (middle quartiles). 
The OR (95% CI, p) was1.56 (1.04, 2.35, p = 0.032) for L-carnitine. Specifically, 
the associations were mainly derived from L-carnitine and abnormal 1-h PG. 
The ORs (95% CI, p) were 2.00 (1.24, 3.24, p = 0.005).

Conclusion: Low plasma levels (bottom vs. middle quartiles) of L-carnitine 
the first-trimester pregnancy were associated with a higher risk of GDM and 
abnormal 1-h PG in Chinese pregnant women.
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Background

Globally, gestational diabetes mellitus (GDM) has become a major 
public health issue, leading to a higher risk of maternal and infant 
perinatal adverse events (1), as well as an increased long-term risk of 
type 2 diabetes and adverse outcomes for offspring (2, 3). In 2021, 
according to the International Association of Diabetes in Pregnancy 
Study Group (IADPSG)'s criteria, the prevalence of GDM is 
approximately 14% globally, with 27.6% in Middle East and North 
Africa (highest), 20.8% in South-East Asia, and 7.1% in North 
America and Caribbean (lowest) (4). A system review reported that 
the prevalence of GDM in mainland China from 2010 to 2017, based 
on 25 studies and 79,064 subjects, was 14.8% (15.7% in the north and 
20.3% in the south) (5). There is a need to develop more strategies for 
the early prevention of GDM and to curb the rapid growth of 
the condition.

Trimethylamine-N-oxide (TMAO) can be directly supplemented 
from dietary fish intake and also endogenously derived from its 
precursors, including betaine, choline, and L-carnitine. These 
precursors are converted into trimethylamine (TMA) by gut 
microbiota and further oxidized to form TMAO in the liver. Betaine 
and choline can be obtained from dietary egg intake, while L-carnitine 
is primarily sourced from red meat consumption (6–9).

Trimethylamine-N-oxide was reported to increase the risk of 
cardiovascular disease (CVD) and the occurrence of type 2 diabetes 
mellitus (T2DM) (10, 11), as well as their adverse consequences such 
as mortality (12). The influence of TMAO precursors on T2DM may 
vary, with higher choline levels increasing the risk of T2DM (13), 
while higher betaine and L-carnitine levels are associated with a 
reduced T2DM risk (13, 14). TMAO and its precursors have also been 
studied during pregnancy and are suggested to be related to several 
pregnancy complications, such as missed abortion and preeclampsia 
(15, 16). Regarding GDM, several studies have been conducted, 
revealing inconsistent relationships between TMAO and its precursors 
and GDM (16–25). A double-design study (comprising one case–
control study, with cases/controls set at 433/433, and one nested case–
control study, with cases/controls set at 276/552) reported higher 
plasma TMAO levels during 24–32 gestational weeks or <20 
gestational weeks to be associated with an increased risk of GDM (24). 
In contrast, a separate nested case–control study (cases/controls: 
243/243) revealed that early pregnancy TMA was associated with an 
elevated GDM risk, while TMAO was associated with a reduced GDM 
risk (23). Additionally, GDM patients in Greece were observed to have 
lower TMAO levels (20). Besides, a number of articles have reported 
no significant associations between TMAO and GDM (18, 21, 22). In 
a prospective study of 368 Canadian women, TMAO levels during 
pregnancy were not associated with GDM, while GDM was associated 
with increased plasma TMAO levels in cord blood (25). Furthermore, 
an association was identified between higher maternal blood levels of 
TMAO (1–3 days after delivery) and higher odds of GDM among 
1,496 US women (16). Similar inconsistent associations with GDM 
were also identified for TMAO precursors, such as choline, which has 
been found to have detrimental (17, 18), protective (16, 20, 23), and 
null associations (19, 21, 22); betaine [protective (18, 19, 22, 23, 25), 
and null associations (16, 17, 20, 21)]; and L-carnitine [detrimental 
(18), protective (17, 18, 23), and null associations (16, 21)].

The heterogeneity of these results may be attributable to the 
varying gestational weeks of TMAO testing during pregnancy, with 

many studies conducting tests during the second trimester, 
concurrently or shortly before the OGTT test. Previous studies 
indicated that the status of GDM may also influence TMAO levels 
(16, 25). An MR-based study also suggests that TMAO and 
carnitine do not increase the risk of T2DM, whereas T2DM 
increases TMAO levels, and possible causal inversion may exist in 
some studies (26). Therefore, in order to better investigate the 
relationships of TMAO and its precursors on the development of 
GDM, investigation in the first trimester can reduce the possibility 
of causal inversion. The extant research on TMAO and GDM in 
early pregnancy has yielded scant evidence and provided little 
information on specific glucose levels at different times of the 
OGTT. Further research should be conducted in order to provide 
more evidence of earlier pregnancy TMAO and its precursors in 
relation to GDM.

Recently, the IDF released a statement suggesting that 1-h post-
load plasma glucose (1-h PG) may have advantages over 2-h post-load 
plasma glucose (2-h PG) or fasting glucose for the diagnosis of 
intermediate hyperglycaemia (27). During the OGTT tests, glucose 
levels at 0, 1, or 2 h might reflect different degrees or types of 
glucometabolic impairment (28). Therefore, subdividing specific 
abnormal glucose levels from the OGTT may be more informative 
and insightful compared to a single outcome of GDM. The IDF also 
suggested 1-h PG ≥ 8.6 mmol/L as a diagnostic criterion for 
intermediate hyperglycemia (27). Whether imbalanced TMAO 
metabolism is associated with specific abnormal glucose outcomes 
(abnormal fasting glucose, 1-h PG, 2-h PG, and 1-h PG ≥ 8.6 mmol/L) 
during pregnancy is unclear and needs further investigation.

In this prospective study, we aimed to investigate the relationships 
between first trimester plasma concentrations of TMAO and several 
of its precursors (betaine, choline, L-carnitine, and trimethylamine, 
TMA) with the outcomes of GMD and specific abnormal glucose 
levels (abnormal fasting glucose, 1-h PG, 2-h PG, and 1-h 
PG ≥ 8.6 mmol/L) in 940 Chinese pregnant women.

Methods

Subjects

This study is based on a preliminary analysis of a prospective 
cohort conducted at Foshan Women and Children Hospital in Foshan 
City, Guangdong Province, China (29, 30). Subjects were recruited 
from August 14, 2019, to January 31, 2021. Inclusion criteria included 
women aged ≥ 18 years, diagnosed as pregnant in the first trimester 
(up to 14 weeks’ gestation), and willing to deliver their babies. Subjects 
with the following conditions were excluded: cardiovascular disease, 
diabetes, cancer, chronic kidney disease, and mental disorders. A total 
of 987 subjects donated blood samples, and their plasma 
concentrations of trimethylamine N-oxide (TMAO) and its precursor 
were measured. Subsequently, 47 subjects were excluded for the 
following reasons: (1) twins or multiple pregnancies; (2) blood 
samples collected after 14 weeks of gestation; (3) missing core data. 
The final study population comprised 940 pregnant women. The study 
was conducted in accordance with the Declaration of Helsinki and 
was approved by the Ethics Committee of Foshan Women and 
Children Hospital (FSFY-MEC-2019-025). Written informed consent 
was obtained from all subjects.
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Measurement of TMAO and its precursors

Baseline plasma samples in the first trimester were donated during 
the initial antenatal visit. The samples were kept at 4°C, separated 
within 6 h of collection, and stored at −80°C until analysis. 
Trimethylamine N-oxide (TMAO) and five of its precursors, including 
betaine, choline, L-carnitine, and TMA, were measured using UPLC-
ESI-MS/MS, which was performed by Shanghai Luming 
Biotechnology Co., Ltd. The coefficient of variation (CV) values of 
these indicators ranged from 4.75 to 9.46% among 7 mixed plasma 
quality control samples. Detailed information on the measurement of 
TMAO and its precursors is provided below.

Sample pre-processing: take 100 μL of the sample and add 300 μL 
of a methanol-acetonitrile (2:1, v/v) mixture (containing 0.01 mol/L 
BHT and the isotopic internal standard L-carnitine-D3); vortex for 
30 s, then perform ultrasonic extraction in an ice water bath for 5 min; 
leave at −20°C for 30 min. Centrifuge for 15 min (4°C, 13,000 rpm), 
take 200 μL of the supernatant, add 300 μL of a methanol–water (2:98, 
v/v) mixture, vortex for 30 s, and perform ultrasonic extraction in an 
ice-water bath for 3 min. Add 300 μL of chloroform, vortex for 30 s, 
and leave at 4°C for 10 min. Centrifuge for 5 min (4°C, 13,000 rpm), 
then transfer 150 μL of the supernatant to a brown LC injection bottle 
and store at −80°C until analysis. Quality control (QC) samples were 
prepared by mixing the extracts from all samples in equal volumes.

The UPLC-ESI-MS/MS analytical method was used to qualitatively 
and quantitatively detect the target metabolites, and the specific analytical 
conditions and methods were as follows: Chromatographic conditions: 
Injection volume: 5 μL; Mobile phase: A (0.1% formic acid-water 
solution), B (methanol); Gradient Elution Procedures (GEP): 0 min A/B 
(99:1, V/V), 1.6 min A/B (99:1, V/V), 2.2 min A/B (2:98, V/V), 5 min 
A/B (2:98, V/V), 5.01 min A/B (99:1, V/V), 6 min A/B (99:1, V/V). Mass 
spectrometry conditions: Curtain gas: 35 psi; Collision-activated 
dissociation (CAD) parameters: medium; Positive ion spray voltage: 
5500 V; Ion source temperature: 600°C; Gas 1: 60 psi; Gas 2: 50 psi.

Measurement of GDM

An oral glucose tolerance test (OGTT) during 24–28 gestational 
weeks was performed for pregnant women in this study. Specific 
abnormal blood glucose was defined if they met the following criteria 
of OGTT tests: fasting blood glucose ≥5.1 mmol/L; 1-h post-load 
glucose (1-h PG) ≥ 10.0 mmol/L; or 2-h post-load glucose (2-h 
PG) ≥ 8.5 mmol/L. Information on abnormal fasting glucose, 1-h PG, 
and 2-h PG was then collected. GDM was diagnosed in pregnant 
women who met any of the criteria for abnormal glucose mentioned 
above. We  further investigated another outcome of 1-h 
PG ≥ 8.6 mmol/L, which represents intermediate hyperglycemia as 
suggested in a recent article (27).

Potential covariates

Subjects participated in face-to-face interviews, during which a 
structured questionnaire was used to collect baseline demographic 
and socioeconomic data (29). Potential covariates in this study 
included age, education status (senior high school or below, junior 
college, bachelor’s degree or above), history of parity and gravidity, 

and family income (less than or equal to 5,000, 5,000–10,000, or 
greater than 10,000 yuan per month). Maternal pre-pregnancy weight 
3  months before pregnancy was self-reported. Baseline maternal 
height was measured with subjects wearing light clothing and no 
shoes, and the measurements were accurate to 0.1 cm. Pre-pregnancy 
body mass index (BMI) was calculated. Gestational weight gain was 
determined by subtracting pre-pregnancy weight from the weight 
measured at the OGTT appointment.

Statistical analysis

Continuous variables were represented by Mean ± Standard 
deviation or median (interquartile range), and tested by student-t tests 
or Mann–Whitney U test. Categorical variables were represented by 
frequency (percentage) and tested by Chi-square test. The plasma 
concentrations of TMAO and its precursors were divided into quartile 
groups, with the bottom quartile (Q1) representing the lowest 
concentration and the top quartile (Q4) representing the highest 
concentration. Middle quartiles (Q2 and Q3) were designated as the 
reference. Differences in TMAO and its precursor concentrations 
among the various quartile groups were tested using the Kruskal–
Wallis test. Logistic regression analyses were used to explore 
associations between TMAO and its precursors and the risk of GDM 
and specific abnormal glucose levels. Two adjustment models were 
used. Model 1 wan unadjusted (univariate analysis), and Model 2 was 
adjusted for age, pre-pregnancy BMI, parity, gravidity, education, 
family income, and gestational weight gain (GWG). Restricted cubic 
spline (RCS) regressions (with Model 2 adjustment) using three knots 
(at the 10th, 50th, and 90th quantiles) were employed to investigate 
the dose–response relationships between TMAO, its precursors, and 
the risk of GDM and specific abnormal glucose levels. Likelihood ratio 
tests were used for assessing non-linearity in these relationships. The 
statistical analyses were conducted using SPSS 21.0 for Windows 
(SPSS, Inc., Chicago, United States), and R statistics software version 
4.3.1. RCS and forest plots were created using R 4.3.1 software. A 
two-tailed p-value of 0.05 was considered statistically significant.

Results

In this study, a total of 940 pregnant women were included. The 
participants had a mean age of 30.1 ± 4.4 years, a mean pre-pregnancy 
BMI of 20.5 ± 2.7 kg/m2, and a mean GWG of 7.0 ± 3.3 kg. Among the 
subjects, 167 (17.8%) were found to have GDM, and the mean glucose 
levels were 4.4 ± 0.4 mmol/L for fasting glucose, 7.8 ± 1.8 mmol/L for 
1-h PG, and 6.8 ± 1.4 mmol/L for 2-h PG. The measurement of TMAO 
and its precursors was performed on blood samples collected in the first 
trimester (mean: 10.7 ± 1.8 gestational weeks). Detailed information 
can be found in Table 1. Subjects with GDM (vs. Non-GDM) tended to 
be older, have a higher pre-pregnancy BMI, more gravidity times, and 
elevated levels of fasting glucose, 1-h PG, 2-h PG, and TMA 
concentrations, along with lower betaine concentrations (p < 0.05).

The plasma concentrations of TMAO and its precursors were 
divided into quartile groups: bottom quartile (Q1, lowest), middle 
quartiles (Q2 and Q3), and top quartile (Q4). The distribution 
(median and interquartile range) of the concentrations of TMAO and 
its precursors among these groups is presented in Table 2. Significant 
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TABLE 2 Distribution of plasma concentrations of TMAO-related indicators.

TMAO 
precursors

Plasma concentrations of TMAO-related indicators p-value

Bottom quartile (Q1) Middle quartiles (Q2 and 
Q3)

Top quartile (Q4)

Median (IQR) Range Median (IQR) Range Median (IQR) Range

N = 235 N = 470 N = 235

Betaine, ng/mL 2,645 (2,383, 2,852) (1,337, 2,983) 3,642 (3,292, 3,989) (2,984, 4435.7) 5,088 (4,740, 5,806) (4,436, 10,287) <0.001

Choline, ng/mL 599 (444, 731) (57.1, 832.77) 1,157 (989, 1,311) (832.8, 1476.8) 1793 (1,592, 2085) (1476.9, 3,659) <0.001

L-Carnitine, ng/mL
10,068 (7,942, 

11,290)
(8,652, 11,841)

13,480 (12,736, 

14,126)
(11,851, 14,759)

15,654 (15,164, 

16,542)
(14,774, 19,347) <0.001

TMAO, ng/mL 4.3 (2.9, 5.4) (0, 6.53) 10.9 (8.7, 13.5) (6.54, 17.36) 24.2 (19.9, 33.5) (17.41, 523.6) <0.001

TMA, ng/mL 13.5 (12.0, 14.9) (7.3, 15.995) 19.9 (18.1, 21.9) (16.00, 25.26) 30.7 (27.5, 37.0) (25.27, 72.92) <0.001

ap-value was tested by Kruskal–Wallis test.
TMAO, trimethylamine-N-oxide; TMA, trimethylamine. Median (IQR) of the plasma concentrations of TMAO-related indicators.
Bold font represents p < 0.05.

differences in TMAO and its precursor concentrations were observed 
among the different quartile groups (all p < 0.001).

Logistic regression analyses were used to investigate the 
associations of TMAO and its precursors with the risk of GDM, 

with the middle quartile groups treated as the reference. As shown 
in Supplementary Table 1, in the univariate analysis (Model 1), the 
bottom quartile groups of L-carnitine were associated with a higher 
risk of GDM. After adjusting for several potential covariates 

TABLE 1 Characteristic of subjects.

Variables Total subjects Non-GDM GDM p-value

N, (%) 940 773 (82.2) 167 (17.8)

Age, years 30.1 ± 4.4 29.8 ± 4.3 31.9 ± 4.4 <0.001

Pre-pregnancy BMI, kg/m2 20.5 ± 2.7 20.3 ± 2.6 21.6 ± 3.2 <0.001

Gestational weight gain, kg 7.0 ± 3.3 6.9 ± 3.2 7.3 ± 3.7 0.152

Gravidity, times 2.1 ± 1.2 2.1 ± 1.2 2.3 ± 1.4 0.034

Parity, times 1.5 ± 0.6 1.5 ± 0.6 1.6 ± 0.7 0.054

Maternal education 0.426

  Senior high school or below, N (%) 375 (39.9) 301 (38.9) 74 (44.3)

  Junior college, N (%) 310 (33.0) 260 (33.6) 50 (29.9)

  Bachelor or above, N (%) 255 (27.1) 212 (27.4) 43 (25.7)

Family income, Yuan per month 0.516

  ≤5,000, N (%) 365 (38.8) 303 (39.2) 62 (37.1)

  5,000–10,000, N (%) 407 (43.3) 337 (43.6) 70 (41.9)

  >10,000, N (%) 168 (17.9) 133 (17.2) 35 (21.0)

  Fasting glucose, mmol/L 4.4 ± 0.4 4.4 ± 0.3 4.8 ± 0.5 <0.001

  One-hour post-load glucose, mmol/L 7.8 ± 1.8 7.3 ± 1.4 10.1 ± 1.4 <0.001

  Two-hour post-load glucose, mmol/L 6.8 ± 1.4 6.4 ± 1.0 8.6 ± 1.6 <0.001

Gestational weeks for measuring 

TMAO and its precursors, weeks
10.7 ± 1.8 10.6 ± 1.7 10.9 ± 2.3 0.061

Plasma concentrations of TMAO-related indicators

  Betaine, ng/mLa 3,642 (2,983, 4,436) 3,691 (2,993, 4,466) 3,423 (2,903, 4,223) 0.038

  Choline, ng/mLa 1,157 (833, 1,477) 1,146 (831, 1,459) 1,184 (848, 1,622) 0.111

  L-Carnitine, ng/mLa 13,480 (11,851, 14,774) 13,482 (11,934, 14,784) 13,468 (11,429, 14,640) 0.243

  TMAO, ng/mLa 10.9 (6.5, 17.4) 10.8 (6.6, 17.5) 11.2 (6.3, 16.8) 0.763

  TMA, ng/mLa 19.9 (16.0, 25.3) 19.7 (15.9, 24.9) 21.1 (16.8, 27.6) 0.047

aMedian (IQR) of the plasma concentrations of TMAO-related indicators.
BMI, body mass index; GDM, gestational diabetes mellitus; TMAO, trimethylamine-N-oxide; TMA, trimethylamine. Bold font represents p < 0.05.
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(Figure  1), compared with the reference (middle quartiles), the 
lower groups of L-carnitine remained associated with a higher risk 
of GDM. The OR (95% CI, p) was 1.56 (1.04, 2.35, p = 0.032) for 
L-carnitine. In sensitivity analyses (Supplementary Table 2), the 
results tended to be  more pronounced among subjects aged 
<30 years and those with a pre-pregnancy BMI < 20.13 kg/m2, but 
no significant interactions were found (P-interaction = 0.196 and 
0.442). For every standard deviation increase in L-carnitine 
concentration, the risk of abnormal 1-h PG decrease is reduced 
(OR: 0.78, 95% CI: 0.63, 0.95, p = 0.013). No significant associations 
were observed between other TMAO-related indicators (per 
standard deviation increase) and GDM or specific abnormal glucose 
levels (Supplementary Table 3).

The associations of TMAO and its precursors with the risk of 
specific abnormal glucose levels (abnormal fasting glucose, 1-h PG, 
2-h PG, and 1-h PG ≥ 8.6 mmol/L), adjusted for covariates in Model 
2, are presented in Supplementary Figures  1–4. Compared to the 
reference, low levels (bottom quartile group) of L-carnitine were 
associated with a higher risk of abnormal 1-h PG. The OR (95% CI, p) 
was 2.00 (1.24, 3.24, p = 0.005) for L-carnitine. Both low (bottom 
quartile) and high (top quartile) levels of choline were marginally (but 
did not reach significance) associated with the risk of abnormal 2-h 
PG. The ORs (95% CI, p) were 1.67 (0.99, 2.97, p = 0.055) and 1.64 
(1.00, 2.70, p = 0.052), respectively. No significant associations were 
found between the bottom or top quartile of the exposure and the 
outcomes of abnormal fasting glucose and 1-h PG ≥ 8.6 mmol/L.

Restricted cubic spline regressions were performed to investigate 
dose–response associations between TMAO and its precursors and 
the risk of GDM (Figure  2) and abnormal glucose levels 
(Supplementary Figure 5). Although we found that the associations in 

many RCS images tended to be L-shaped or U-shaped, no significant 
non-linear associations were identified in these images.

Discussion

In this prospective study of 940 Chinese pregnant women, 
compared to the reference group (middle quartile, Q2 and Q3), 
we found that low plasma levels (bottom quartile, Q1) of L-carnitine 
were associated with a higher risk of GDM and abnormal 1-h PG in 
Chinese pregnant women.

Main findings on TMAO and GDM 
associations

Our study revealed no significant association between first-
trimester TMAO levels and GDM risk. These findings align with 
previous studies reporting neutral roles of TMAO across 
investigations (16–18, 21, 22, 25), while it has also been variably 
characterized as detrimental (24) or protective (20, 23) in other 
studies. The heterogeneity in reported outcomes may stem from 
differences in gestational timing of TMAO measurement. Existing 
evidence suggests potential bidirectional causality, as GDM may 
elevate TMAO levels during mid-to-late pregnancy (18, 21, 22, 24, 
25) and postpartum periods (16, 25). Notably, first-trimester TMAO 
investigations remain scarce. While Huo et  al. (23) reported a 
protective association between early-pregnancy TMAO and GDM, 
this finding lacks robust replication. In this study, we prospectively 
investigated the associations between first-trimester TMAO levels 

FIGURE 1

Associations between TMAO and its precursors and the risk of Gestational diabetes mellitus (GDM). The associations were adjusted for covariates in 
Model 2, which included age, pre-pregnancy BMI, parity, gravidity, education, family income, and gestational weight gain.
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and GDM as well as specific abnormal glucose levels in a relatively 
large sample, which avoids possible causal inversions. Although no 
significant results were found for TMAO and GDM, our 
contribution adds to the limited evidence base in this domain; 
however, though definitive conclusions require further large-scale 
prospective studies.

TMAO precursors and GDM risk

We identified an inverse relationship between low L-carnitine 
levels and increased GDM risk, consistent with select prior 
investigations (17, 23). Higher (vs. lower) levels of L-carnitine were 
associated with a 70.7% lower GDM risk (OR: 0.293, 95CI: 0.134, 
0.638) in a case–control study (cases/controls:201/201) (17). Lower 
L-carnitine levels (≤112 vs. >112 nmol/mL) in early pregnancy were 
associated with a higher risk of GDM (OR: 13.5, 95CI: 5.50, 33.2) in a 
nested case–control study (cases/controls:243/243) (23). However, two 
null-association studies warrant consideration: one employed a 

cross-sectional design with limited sample size (22), while the other 
measured TMAO postpartum (16). A contradictory study reported 
reduced GDM risk with low L-carnitine, but this analysis utilized 
blood samples collected during oral glucose tolerance test (OGTT) 
administration (18)—a methodological limitation given potential 
confounding by acute metabolic changes. The heterogeneity of these 
results may partly stem from the fact that TMAO precursors are 
measured at different gestational stages. The prospective design and 
the use of first-trimester data in our study can both avoid causal 
inversion and provide research evidence for early prevention and 
intervention of GDM during the first trimester.

Neither betaine nor choline demonstrated statistically significant 
associations with GDM in our cohort. Null associations of betaine 
(16, 17, 20, 21) or choline (19, 21, 22) with GDM were also found in 
several previous studies, which were inconsistent with several other 
studies. For instance, choline has been paradoxically linked to both 
increased (17, 18) and decreased (16, 20, 23) GDM risk across studies, 
while betaine generally shows protective trends (18, 19, 22, 23, 25). 
These discrepancies may reflect gestational timing variations in 

FIGURE 2

Dose-response associations between TMAO and its precursors and gestational diabetes mellitus (GDM). Analyses were performed by restricted cubic 
spine regressions (3 knots). Parts (Ai–iii,Bi,ii) represent the dose-response associations of betaine, choline, L-carnitine, trimethylamine N-oxide (TMAO) 
and trimethylamine (TMA), respectively.
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metabolite measurement or reference group selection biases. 
Nevertheless, our study provides a comprehensive picture of the 
association between a range of TMAO precursors and GDM, as well 
as specific abnormal glucose levels in the first trimester, in a 
prospective study with a large sample size. In particular, the 
association of TMAO precursors with 1-h PG ≥ 8.6 mmol/L (as 
suggested by IDF) has not been reported before. These results will 
provide reference evidence for subsequent studies. Concentrations of 
TMAO and its precursors may vary as pregnancy advances. From 12 
to 16 weeks of gestation to the time of delivery, plasma free choline 
and TMAO levels rose by 49 and 13%, while betaine levels decreased 
by 21% (31). It was suggested that L-carnitine levels also decrease 
during pregnancy (32, 33). Although there was no statistical 
association of choline, TMAO, and betaine with GDM in our study, 
the fluctuating levels of these biomarkers during pregnancy may 
weaken the association of the bottom quartile group of choline and 
TMAO with GDM and strengthen the association of the top quartile 
group as pregnancy progresses. In contrast, for betaine and 
L-carnitine, decreasing levels during pregnancy may have 
strengthened the association of the bottom quartile group with GDM 
while weakening the association of the top quartile group as 
pregnancy advances. More studies, especially with TMAO precursors 
measured in different trimesters, are still needed to further illustrate 
the problems.

Mechanistic considerations for L-carnitine

The observed association between low L-carnitine and 
elevated GDM/abnormal 1-h plasma glucose (1-h PG) risk finds 
mechanistic support in clinical trials. A meta-analysis of 21 RCTs 
(2,041 T2DM patients) demonstrated that 1 g/day L-carnitine 
supplementation improves fasting glucose, HbA1c, BMI, and 
triglyceride levels (34). Pooled analysis of 41 RCTs (2,900 adults) 
revealed 12-week L-carnitine intervention significantly enhances 
insulin sensitivity and reduces HOMA-IR/HbA1c (35). An RCT 
reported that a 12-week L-carnitine supplement (2,970 mg/d) was 
associated with improved insulin sensitivity and lower fasting 
plasma glucose levels in T2DM patients (36). These evidences may 
suggest that moderate L-carnitine may reduce the risk of GDM by 
regulating glucose levels and lipid metabolism in the body. Several 
other potential mechanisms may help further explain these 
results. L-carnitine may improve insulin resistance by inducing 
autophagy through PPARγ and removing dysfunctional 
mitochondria in the skeletal muscle of a high-fat-diet-induced 
rodent model of obesity (37). L-carnitine transports long-chain 
fatty acids across the inner mitochondrial membrane and 
improves the beta-oxidation of long-chain fatty acyl Coenzyme A 
(CoA), the accumulation of which leads to insulin resistance (38, 
39). Additionally, L-carnitine may enhance fatty acid oxidation 
through the activation of AMPK/PGC1α signaling both in vivo 
and in vitro, helping to alleviate obesity-related adverse symptoms 
(40). Finally, L-carnitine is involved in forming an effective 
transport system for acetyl or acyl groups out of the mitochondria, 
improving metabolic inflexibility and insulin sensitivity by 
regulating the mitochondrial acetyl-CoA/CoA ratio and 
acyl-CoA/CoA ratio (38, 41).

Clinical implications

Red meat—a primary L-carnitine source—is associated with 
elevated T2DM and CVD risks (42). Additionally, the clinical 
implications of L-carnitine related to GDM risk are still limited. 
Therefore, our findings caution against increasing L-carnitine levels 
through supplementation or increased red meat consumption. Dietary 
L-carnitine derives from multiple sources including poultry, fish, eggs, 
and dairy products. Our results suggest maintaining adequate (but not 
excessive) L-carnitine levels may mitigate GDM risk, whereas 
deficiency potentiates risk. This aligns with our previous work linking 
low iron status (another red meat-associated nutrient) to GDM 
susceptibility (29). We observed no GDM risk reduction with elevated 
L-carnitine levels, emphasizing the need for balanced and healthy 
nutritional approaches to keep L-carnitine within a suitable range 
rather than in an extreme state through an unhealthy diet or 
unguided supplementation.

Strength and limitations

This study has strengths in its prospective design, with exposure 
(TMAO and its precursors) measured in the first trimester and 
outcomes measured by OGTT during 24 to 28 gestational weeks, 
which avoids possible causal inversions. Additionally, a series of 
TMAO and its precursors (betaine, choline, L-carnitine, and 
trimethylamine) and the outcomes of specific abnormal blood glucose 
levels (fasting glucose; 1-h PG; 2-h PG; and 1-h PG ≥ 8.6 mmol/L) 
were investigated, which may provide a more comprehensive 
understanding of the associations between exposure and outcomes.

Our study had the following limitations: Firstly, although it was 
conducted in the largest obstetric center in Foshan City, which serves 
a large population, subjects from a single center may introduce 
geographical and demographic biases. Thus, the sample’s homogeneity 
and generalizability are limited, and future multi-center cohorts are 
needed to validate our results. Secondly, although we measured a 
series of plasma concentrations of TMAO and its precursors, the 
measurements were performed only once in the first trimester, making 
it impossible to assess their dynamic changes throughout the entire 
pregnancy. Therefore, the temporal trends and time-dependent 
associations between TMAO and its precursors with GDM could not 
be investigated in this study. Multiple assessments over the course of 
pregnancy would likely provide more comprehensive data, which 
should be explored in the future. Thirdly, with the absence of dietary 
data and fecal samples for the detection of gut microbiota composition, 
we are unable to adjust for these potential covariates or explore the 
interactions of these factors in our study. More studies are encouraged 
to include these factors to provide more comprehensive results in this 
field. Finally, insulin levels were not assessed in this study; therefore, 
we could not investigate whether the associations of L-carnitine and 
GDM were due to an improvement in insulin sensitivity, which 
remains to be addressed by further high-quality studies.

Conclusion

In this prospective study, we found that low plasma levels (bottom 
vs. middle quartiles) of L-carnitine were associated with a higher risk 
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of GDM and abnormal 1-h PG in Chinese pregnant women. Although 
several marginally significant relationships were observed, no 
significant associations were found for TMAO or its other precursors 
with GDM and specific abnormal blood glucose. More high-quality 
studies with larger sample sizes are needed for further examination of 
our results. Our study further emphasizes the importance of 
maintaining balanced blood concentrations of L-carnitine during 
early pregnancy for the prevention of GDM and specific abnormal 
blood glucose levels.
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