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Introduction: Iron is an essential nutrient during pregnancy and may influence

the early development of the neonatal gut microbiota. This study aimed

to investigate the association between maternal dietary iron intake during

pregnancy and the gut microbiota (GM) characteristics of both the mother and

neonate in a well-characterized cohort.

Methods: Ninety-five mother-neonate dyads were included in this study.

Mothers completed a food frequency questionnaire (FFQ) providing estimates

of dietary iron intake during pregnancy, and participants were categorized into

higher (≥ median) or lower (< median) groups of maternal dietary iron intake.

Fecal samples were collected from mothers (third trimester) and from neonates,

and assessed via 16S rRNA amplicon sequencing. Differences in diversity and

abundance of GM were compared between groups.

Results: There was no difference in profile or diversity in maternal samples

however, neonatal samples indicated greater diversity of GM in infants of

mothers with higher intakes of iron (Shannon p = 0.04; Simpson p = 0.01).

After stratification by delivery mode, in the stratum of normal vaginal delivery

(NVD), Simpson diversity remained higher in the infants’ GM of mothers with

higher intakes of iron (p = 0.04). The relative abundance of the core genus

Bifidobacterium in NVD and cesarean section (CS) neonates showed higher

in the higher group than that in the lower group, as the difference was not

statistically significant. Maternal dietary iron intake was significantly associated

with the neonate GM composition with variation explained 10.24% (p = 0.007).

Conclusion: Adequate dietary iron intake during pregnancy may promote

beneficial bacterial colonization and increase the biodiversity of the neonate GM.
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1 Introduction

Iron stands as an essential regulator in shaping the gut
microbiota, influencing both its composition and function in
multifaceted ways (1–3). At the cellular level, iron serves as a critical
cofactor involved in catalyzing several microbial enzymes pivotal
for cellular processes and metabolic pathways (4, 5). Thus, the
interaction between iron and the gut microbiota reveals a potential
association that significantly influences the delicate balance of the
microbial ecosystem.

Recent evidence suggests that maternal dietary iron intake
during pregnancy may impact the development of the maternal
and infant GM (6, 7). Consuming excess dietary iron or iron
supplements has the potential to increase pathogenic bacteria at
the expense of beneficial bacteria, and modify the composition
and structure of the GM, especially in infants (8, 9). However,
the relationship between maternal dietary iron intake and
the characteristics of the mother and neonate GM remains
poorly understood.

This study aims to investigate the association between maternal
dietary iron intake and characteristics of the GM in mother-neonate
dyads in a well characterized cohort.

2 Materials and methods

2.1 Study design and participant
enrolment

The study collected stools samples and food frequency
questionnaires during pregnancy from 95 mother-neonate dyads
between January 2018 and June 2019 (10, 11). Inclusion criteria
were: (1) Full-term singleton pregnancies; (2) detailed dietary
records for the period of gestation and; (3) matched information
and fecal samples from mother-neonate dyads. Participants were
excluded if there were (1) gestational complications; (2) incomplete
or poor-quality stool samples and diet histories; (3) the mother
that received antibiotics within 7 days before FFQ. Supplementary
Figure 1 describes the process of enrolment.

2.2 Sociodemographic information

A face-to-face questionnaire was used to collect information
from the mothers during their antenatal care (ANC) visits. In
the initial and following ANC visits, data about the maternal
socio-demographic characteristics, reproductive history and details
regarding the pregnancy were documented. Birth outcomes were
retrieved from the hospital information system.

2.3 Maternal dietary iron intake

A 107-item semi-quantitative food frequency questionnaire
(FFQ) with good reliability and validity for pregnant women was
used in this study (12). The FFQ was developed based on a
previously validated FFQ utilized for pregnant women in Shaanxi

(13, 14). A 24-h dietary recall (an interviewer-administered method
in which participants report all foods and beverages consumed in
the previous 24 h) was collected from mothers and iron intakes
from these compared to those of the FFQ. A correlation coefficient
of 0.65 was calculated, based on the Chinese Food Composition
Tables (15).

Previous research indicates that maternal dietary intake pattern
in Shaanxi is relatively stable during pregnancy (16–18), therefore,
a FFQ taken upon admission just prior to delivery or within
three days post-delivery was considered a reliable indicator of
average iron intake per day for the duration of the pregnancy.
Average macro and micronutrient intake was calculated using the
Chinese Food Composition Table (19), adjusted for differences in
energy intake and analyzed using the regression residual analysis
(20). Pregnant women in the investigation region generally have
a lower daily iron intake than intake recommended by WHO
(30–60 mg/during pregnancy) (21), and by Chinese Nutrition
Association (24 mg/d during mid-pregnancy) (22). In order to
better illustrate the effect, participants were divided into two groups
as Higher iron (≥ median) and Lower iron (< median) based on
intakes either higher or lower than the group median rather than
using the recommended values as a cut-off.

2.4 Fecal sample collection, DNA
extraction and high-throughput 16S
rRNA gene amplicon sequencing

Fecal samples were collected from mothers in hospital prior
to delivery, while fecal samples from neonates were collected
from diapers within three days of delivery. All the samples were
stored temporarily in a −20◦C refrigerator and then stored in
a −80◦C refrigerator for later experiments. Bacterial DNA was
extracted using the QIAamp Fast DNA stool Mini Kit (Qiagen).
PCR amplification targeted the variable regions V3–V4 of the 16S
rRNA gene. Extracted DNA was sequenced using the Hiseq 2500
platform (Biomarker Technologies Co., Ltd, Beijing, China). Data
were stored in FASTQ format files and annotation files for taxa of
interest were applied using the reference database Silva 16S rRNA
version 115 (23), batch analysis were conducted with satisfaction
and then, amplicon sequence variants (ASVs) were inferred after
quality control.

2.5 Bioinformatic and statistical analysis

The Phyloseq package (24) was used to create objects for the
measurement of diversity indices and microbiota analysis in R. In
order to maximally retain the diversity of fecal samples, we kept
the sequencing depth of each sample without rarefaction (25). In
addition, considering the low biomass in neonate fecal samples and
potentially spurious taxa due to sequencing errors, we filtered the
ASV data using the filter_taxa function, and only ASVs present
at least 2 counts in at least 10% of fecal samples (e.g., based
on our sample size, ASVs present in at least 15 fecal samples)
were retained. The microbiota characteristics of fecal samples were
compared between the maternal dietary iron intake groups, then
further stratified by delivery mode for analyses to reduce differences
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TABLE 1 Baseline characteristics of mother and neonate grouped by maternal dietary iron intake (mg/d) during pregnancy.

Variables General NVD (n = 70) CS (n = 25)

Higher iron Lower iron Higher iron Lower iron

N 95 34 36 12 13

Mother

Maternal age, n (%)

< 25 36 (37.9) 13 (36.1) 14 (38.9) 4 (11.1) 5 (13.9)

≥ 25 59 (62.1) 21 (35.6) 22 (37.3) 8 (13.6) 8 (13.6)

Education years, n (%)

< 9 56 (59.0) 20 (35.7) 21 (37.5) 9 (16.1) 6 (10.7)

≥ 9 39 (41.1) 14 (35.9) 15 (38.5) 3 (7.7) 7 (18.0)

Occupation, n (%)

Farmer 77 (81.1) 24 (31.2) 32 (41.6) 10 (13.0) 11 (14.3)

Non-farmer 18 (18.9) 10 (55.6) 4 (22.2) 2 (11.1) 2 (11.1)

Maternal height (cm),mean ± SD 160 ± 5 160 ± 5 160 ± 5 160 ± 4 160 ± 3

Maternal weight (kg),mean ± SD 54.2 ± 7.7 53.8 ± 6.4 53.7 ± 8.2 54.8 ± 7.4 56.3 ± 9.9

Pre-pregnancy BMI (kg/m2),mean ± SD 21.3 ± 2.6 21.2 ± 2.6 20.9 ± 3.1 21.6 ± 2.8 22.1 ± 3.3

Neonate

Sex, n (%)

Male 47 (49.5) 14 (29.8) 18 (38.3) 6 (12.8) 9 (19.2)

Female 48 (50.5) 20 (41.7) 18 (37.5) 6 (12.5) 4 (8.3)

Gestational age (week)a , median (P25–P75) 39.2 (39.1–40.1) 39.2 (39–40.2) 39.2 (39.1–40.1) 39.2 (39.1–40.6) 40.1 (39.2–40.1)

Birth weight (g)a , mean ± SD 3,247 ± 406 3,233.5 ± 466.3 3,188 ± 279.9 3,345.8 ± 439.8 3,350 ± 498.3

Maternal dietary iron intake (mg/d)

Median (P25–P75) 19.4 (16.9–21.0) 20.8 (20.0–22.3) 17.6 (15.9–18.7) 21.6 (20.6–22.7) 16.9 (16.6–18.7)

Min–Max 10.1–30.6 19.5–30.6 10.1–19.4 19.7–29.3 13.7–19.5

adata missing (n = 1). Maternal dietary iron intake was significantly higher in the higher group than that in the lower group in both NVD and CS delivery mode (p < 0.001, respectively). NVD,
normal vaginal delivery; CS, cesarean section.

in colonization patterns due to delivery mode (26). Alpha diversity
indices including Chao1, Shannon, and Simpson diversity were
calculated via filtered ASV table using the microbiota package
(27), then group differences were compared by Mann–Whitney
U test. To identify the effect of maternal dietary iron intake on
the maternal/neonatal GM community, permutation multivariate
analysis of variance (PERMANOVA) with 9999 permutations was
conducted using (1) the adonis2 function in the vegan package
and visualized via Principal Coordinate Analysis (PCoA) using the
vegan (28) and ggplot2 (29) packages; and then (2) stratified by
delivery mode and adjusting for the effect of potential confounding
variables such as pre-pregnancy BMI, and iron supplementation
during pregnancy. Moreover, GM composition was compared at
phylum level, with top phyla visualized using the plot_composition
function. Neonate fecal samples were then stratified by delivery
mode compared at genus level with top genera.

The shared core ASVs among groups in maternal and neonate
fecal samples were illustrated using Venn diagrams. Additionally,
Canonical correspondence analysis (CCA) was employed to assess
the correspondence between maternal dietary iron intake as
independent variables of host environmental factors and the
composition of the neonate microbiota at the genus level. Finally,

differences in taxonomic abundance were assessed between two
groups stratified by delivery mode, performed using Analysis of
Compositions of Microbiomes with Bias Correction (ANCOM-
BC) (v1.2.2) (30), with adjustments made for neonate feeding,
maternal use of Intrapartum Antimicrobial Prophylaxis (IAP), iron
supplementation during pregnancy, and batch effect. Correction
values obtained from the models were adjusted via the Bonferroni
method (q < 0.05). Taxa with a proportion of zeroes greater than
90% were excluded.

3 Result

3.1 Demographic characteristics and
maternal dietary iron intake

Among the 95 mother-neonate dyads, 73.7% of neonates were
delivered vaginally. The demographic characteristics of the mothers
and neonates are summarized in Table 1. The maternal dietary
iron intake was determined with a median (P25, P75) of 19.4
(16.9, 21) mg/d. There were no statistically significant differences
in socio-demographic characteristics between the groups, except
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FIGURE 1

Alpha and beta diversities of neonate gut microbiota grouped by maternal dietary iron intake into Higher iron and Lower iron groups (A–D), then
stratified by delivery mode and grouped by Higher iron and Lower iron (E–H). (A) Chao1 index regarding the microbial community richness of the
neonate gut microbiota; Shannon (B) (Higher iron vs. Lower iron, p = 0.044) and Simpson (C) (Higher iron vs. Lower iron, p = 0.01) index regarding
the microbial community diversity of the neonate gut microbiota; (D) PCoA analysis of bray_curtis distance regarding the difference in the microbial
community composition (PERMANOVA with 9999 permutations, p > 0.05). (E) Chao1 index regarding the microbial community richness of the
neonate gut microbiota; Shannon (F) and Simpson (G) (Higher iron vs. Lower iron in VD, p = 0.041) index regarding the microbial community
diversity of the neonate gut microbiota; Each box plot represents the median, interquartile range, minimum, and maximum values. (H) PCoA analysis
of bray_curtis distance regarding the difference in the microbial community composition (PERMANOVA with 9999 permutations, p > 0.05).

for maternal dietary iron intake, which was significantly different
in both the NVD and CS groups (p < 0.001, respectively).

3.2 Overview of maternal and neonate
GM composition

The microbiota distribution in groups is shown in
Supplementary Figures 2, 3. Maternal GM were dominated

by Firmicutes [mean (%) ± SD (%), 0.61 ± 0.2], and there was
no significant difference between maternal higher iron group
and lower iron group. While in neonates of NVD, Proteobacteria
was the dominant phylum [mean (%) ± SD (%), 0.41 ± 0.32],
followed by Firmicutes [mean (%) ± SD (%), 0.3 ± 0.25] in the
neonate GM, and in CS neonates, Firmicutes [mean (%) ± SD
(%), 0.44 ± 0.28] followed by Proteobacteria [mean (%) ± SD
(%), 0.33 ± 0.31] dominated. No significant difference was
found at phylum and genus level in the microbiota relative
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FIGURE 2

Core genus of the mother (A), NVD neonate (B) and CS neonate (C) samples grouped by maternal dietary iron intake during pregnancy.
(D) Canonical correspondence analysis (CCA) conducted between maternal dietary iron intake and the composition of the neonate gut microbiota
at the genus level. Neonate gut microbiota genera were assessed as response data and maternal dietary iron intake was explanatory data. Samples
with purple, green, blue, and red were denoted by “VD_Higher iron,” “VD_Lower iron,” “CS_Higher iron,” “CS_Lower iron,” groups, respectively.
(E) Variation explained by maternal dietary iron intake was 10.24%, p = 0.007. *Means p < 0.05.

abundance between maternal higher and lower iron group
(p > 0.05, respectively).

3.3 Maternal dietary iron intake and
diversity of the GM

The alpha and beta diversity of mother fecal samples showed
no significant difference between lower and higher dietary iron
intake groups (Supplementary Figure 4). However, the Shannon
and Simpson indices in the higher iron group were significantly
higher than that in the lower iron group for neonate fecal
samples (Shannon index, p = 0.044; Simpson index, p = 0.010;
Figures 1B, C), with no significant difference in Chao1 index
(Figure 1A). Meanwhile, after stratification, the results showed
the same tendency regarding Simpson diversity between the
higher and lower maternal dietary iron intake groups in NVD
neonates (p = 0.041; Figure 1G), and no significant difference
was observed for Chao1 and Shannon diversity (Figures 1E, F).
Furthermore, beta diversity presented no significant difference in
neonate microbial community structure among two and the four
groups (Figures 1D, H, p > 0.05).

3.4 Core genera and shared ASVs in
mother-neonate dyads

The core genera were identified with a threshold of 0.01% in
95% of maternal fecal samples, and a threshold of 0.01% in 75% of
neonate fecal samples. In maternal fecal samples, there were seven
core genera dominated by Bifidobacterium, then Escherichia and
Blautia (Figure 2A and Table 2), with no significant differences
between the maternal higher iron and lower iron groups. While
in neonate fecal samples stratified by delivery mode, there were
eight core genera in NVD dominated by the top three Escherichia,
Bifidobacterium, and Streptococcus (Figure 2B and Table 2), and
seven core genera in CS dominated by the top three Enterococcus,
Escherichia, and Staphylococcus (Figure 2C and Table 2). We
identified a higher relative abundance of Bifidobacterium in NVD
and CS in the higher group of maternal dietary iron intake than
that in the lower group, but the differences were not statistically
different (p = 0.177; p = 0.157, respectively). No significant
difference was observed in the remaining core genera in groups.

There were five shared ASVs between mothers and NVD
neonates and eight shared ASVs between mothers and CS neonates
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in the higher iron group. While there were four shared ASVs
between mothers and NVD neonates and two shared ASVs between
mothers and CS neonates in the lower iron group, as described
in Supplementary Table 1. The dominant shared species between
mother and NVD neonate in higher group were E. coli (ASV1),
B. pseudocatenulatum (ASV2), B. longum (ASV3), S. salivarius
(ASV7) and R. faecis (ASV10), while between mother and CS
neonate in higher group were E. coli (ASV1), B. pseudocatenulatum
(ASV2), S. salivarius (ASV7), B. adolescentis (ASV8), B. obeum
(ASV9), R. faecis (ASV10), F. prausnitzii (ASV17) and F.
prausnitzii (ASV21). Meanwhile, the shared species between
mother and NVD neonates in lower group were E. coli (ASV1), B.
pseudocatenulatum (ASV2), B. longum (ASV3) and B. adolescentis
(ASV8), while between mother and CS neonates in lower group
were E. coli (ASV1) and B. pseudocatenulatum (ASV2).

3.5 General attributes of maternal dietary
iron intake during pregnancy with
respect to neonate fecal microbiota

CCA was conducted at the genus level, as shown in
Figure 2D. Genera including Staphylococcus, Faecalibacterium,
Lactobacillus, and Bifidobacterium were positively correlated
with maternal dietary iron intake. Among them, Staphylococcus
displayed the strongest correlation, while Lactobacillus and
Bifidobacterium showed comparatively weaker correlations.
Klebsiella demonstrated a negative correlation with maternal
dietary iron intake and was more prevalent in the lower iron
group in CS neonates. Furthermore, maternal dietary iron intake
was significantly associated with the neonate GM composition;
variation explained 10.24% with statistical evidence (p = 0.007,
Figure 2E).

3.6 Effects of maternal dietary iron intake
on neonate GM composition and
structure

In the NVD group there were 35 genera shown to be
significantly different between the lower and higher maternal
dietary iron intake group, after adjustment for covariates. There
were 21 differential genera in the lower group with the most
dominant Alistipes (beta = −4.91, w = −10.8, q < 0.001),
Parasutterella (beta = −4.59, w = −10.27, q < 0.001), and
Faecalibacterium (beta = −4.38, w = −9.4, q < 0.001), respectively.
There were 14 differential genera in the higher iron group, where
Enterobacter (beta = 6.37, w = 10.01, q < 0.001) dominated. In
the CS group there were 45 genera shown to be significantly
different between lower and higher groups, after adjustment for
covariates. There were 18 differential genera in the lower group
and 27 differential genera in the higher group (Supplementary
Table 2). Genera with a coefficient greater than 2 were selected
for visualization to enhance clarity in Figure 3. The abundance
of Lactobacillus was differential in the higher group for both
NVD and CS (beta = 2.9, w = 4.13; beta = 2.8, w = 3.8),
respectively.

TABLE 2 Relative abundance of core genus of mother and neonate
samples grouped by maternal dietary iron intake during pregnancy,
median (P25–P75).

Core genus General Higher iron Lower iron

Mother

Bifidobacterium 31.1 (15.6–52.3) 25.8 (15.5–53.2) 33.2 (19–50.9)

Escherichia 14 (4.1–35.7) 13.4 (4.6–33.8) 14 (4.1–38.7)

Blautia 13.4 (6.6–21.6) 13.6 (6.4–20) 13.1 (8.2–25.5)

Subdoligranulum 7.6 (2.5–17.2) 7.1 (4.7–22.7) 9.3 (2.2–13.6)

Fusicatenibacter 3.5 (1.3–7.6) 3.8 (2.2–7.6) 3.5 (1–7.3)

Clostridium 2.2 (0.7–4.7) 2.3 (1–5.6) 2 (0.4–3.7)

Dorea 2 (1–4.2) 1.8 (1.1–3.6) 2.5 (1–4.6)

Neonate

NVD

Escherichia 34.2 (14.7, 82.3) 27.4 (11.7, 57.7) 37.7 (18.9, 89.3)

Bifidobacterium 12.3 (3.5, 28.2) 17.2 (3.6, 37.7) 10.3 (1.8, 26.7)

Streptococcus 2.3 (0.4, 10.9) 2.8 (0.5, 13) 2.3 (0.3, 7.4)

Enterococcus 1.3 (0, 7.7) 1.6 (0, 6.8) 1 (0, 7.9)

Staphylococcus 0.2 (0, 3.4) 0.2 (0, 3.3) 0.2 (0, 3.6)

Roseburia 1.2 (0, 5.8) 1.3 (0.1, 5) 0.9 (0, 6.4)

Romboutsia 0.3 (0, 2.5) 0.2 (0, 2.1) 0.5 (0, 2.6)

Blautia 0.5 (0.1, 4.2) 0.6 (0.1, 4.1) 0.4 (0.1, 4.3)

CS

Enterococcus 12.6 (3.8, 63.5) 13.4 (4.2, 46.4) 10.7 (3.8, 76.5)

Escherichia 11.6 (1.6, 37) 26.7 (5.1, 41.5) 5.3 (1.6, 21.1)

Staphylococcus 0.9 (0, 5.7) 1.4 (0, 18.3) 0.8 (0.5, 1.5)

Streptococcus 6.3 (1, 13.1) 10.3 (3.1, 14.7) 3.3 (0.8, 10.8)

Klebsiella 1.8 (0.2, 4.9) 2.6 (0.4, 5.5) 0.3 (0, 4.8)

Bifidobacterium 0.8 (0.3, 6.5) 4.4 (0.4, 21.9) 0.5 (0.2, 5.3)

Blautia 0.4 (0.1, 7.1) 2.6 (0.2, 9) 0.2 (0, 0.5)

4 Discussion

Our results revealed that in rural areas, maternal dietary
iron intake during pregnancy is associated with neonate GM
alpha diversity, especially for Simpson index before and after
stratification by delivery mode. It also positively influences the
relative abundance of core genera such as Bifidobacterium in
the neonatal GM, and was demonstrated association with the
neonate GM composition.

The study found that neonates of mothers with relatively
higher iron intake within the observed interquartile range
(16.9–21.0 mg/day) had greater gut microbiome alpha diversity,
particularly in Simpson diversity. Theoretically, higher iron
can provide essential nutrients for microbial growth and
colonization, and potentially lead to higher alpha diversity of
neonatal GM, the presence of other microbial species except
Lactobacillus and Bifidobacterium, albeit in lower abundance, can
contribute to the overall ecosystem stability and functionality
with complementary benefits (31). Promoting greater diversity
and stability within the neonatal gut microbiota is a critical area
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FIGURE 3

Waterfall plot of differentially abundant genus in the neonate microbiota derived from the ANCOM-BC model, representing beta values (log fold
change) by (A) normal vaginal delivery (NVD) and (B) cesarean section (CS) after birth. X-axis represents log fold change of beta values in differential
abundance of taxa in Lower iron group versus Higher iron group, while Y-axis represents differentially abundant taxa at genus level. All effect sizes
were adjusted by Bonferroni method (q < 0.05). Taxa with proportion of zeroes greater than 90% was excluded. Taxa represented by blue bars are
abundant in Lower iron group, while those represented by red bars are abundant in Higher iron group. Genera with a coefficient greater than 2 were
selected for visualization to enhance clarity (the complete list is available in Supplementary Table 2).

needing further exploration. Increased microbial heterogeneity has
been consistently associated with enhanced metabolic function,
immune system development, and resistance to pathogenic
colonization during this vulnerable stage of life. However, the
specific relationship between the diversity of the early-life gut
microbiota and its downstream effects on colonization patterns
and functional capacities requires further investigation.

In neonatal GM, the “core genus” represents microbial taxa
essential for early colonization and immune development (32, 33).
VanOrmer et al. (34) found that in breastfed preterm neonates
whose mother received iron supplementation, no significant
differences were found in either phyla or key genera relative
abundance between pre- and post-iron timepoints. We observed
similar results in full-term infants, where maternal dietary iron
intake within appropriate limits, whether high or low, did not
affect the abundance of core genera, the underlying reasons and
mechanisms require further study. Bifidobacterium plays a critical
role in immune system maturation and gut microecological balance
(35, 36), but the association between iron and Bifidobacterium
in the neonatal gut remains inconsistent. While moderate dietary
iron may promote the colonization of beneficial microbiota (37),

iron-fortified diets have been shown to decrease Bifidobacterium
and Lactobacillus levels while increasing pathogenic Escherichia
coli, which is linked to enteritis (38–40). This underscores
the importance of rational dietary iron intake for microbiota
health. Additionally, we observed that Lactobacillus species were
enriched in higher iron groups across both delivery modes,
suggesting a potential connection between adequate iron intake
and Lactobacillus presence (41). Previous studies have reported
mixed outcomes regarding the impact of probiotics on iron levels.
For instance, one study indicated that children receiving iron
plus Lactobacillus reuteri had higher hemoglobin levels compared
to those receiving iron alone. Conversely, another trial found
no significant correlation between Lactobacillus plantarum and
increased ferritin levels. These discrepancies may stem from
differences in specific gut strains, yet it is evident that excessive iron
intake can reduce beneficial bacteria, including Lactobacillus and
Bifidobacterium (42, 43). Thus, our findings suggest that maternal
dietary iron intake within recommended limits may enhance the
relative abundance of core genera in neonates, particularly in iron-
deficient regions.
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Based on the FFQ, the main dietary sources of iron were red
meat (mainly pork), dark green leafy vegetables, and legumes,
which are common in rural maternal diets. Iron supplements
were also recorded but contributed less to total intake. Our study
preliminarily evidenced an association between maternal dietary
iron intake during pregnancy and neonate GM. While there are
recommended dietary iron intake standards for pregnant women,
there remain populations who are unable to meet these targets due
to economic or social constraints. This study further emphasizes
the need to prioritize and support these vulnerable groups. We
employed a locally validated FFQ to accurately assess the average
dietary intake throughout the entire pregnancy. This approach
offers convenience and cost-effectiveness for both investigators
and participants. The high-throughput sequencing analysis of fecal
samples reflected the impact on the composition of neonatal
gut from the perspective of microbiome. However, there are
still some limitations. First, to ensure the accuracy of the study,
we screened the FFQ and fecal samples, and considering the
potential impact on the composition of GM, we then stratified
the groups by delivery mode, causing the limited sample size
especially in CS stratification, and making it difficult to accurately
reflect the more subtle differences. Additionally, we were not
able to analyze the dose-response relationship between iron and
gut microbiota characteristics due to limited sample size. As an
exploratory study, we plan to expand our study by including a larger
number of participants to strengthen the statistical results and
improve the generalizability of our findings in the future research.
Second, unfortunately, we did not collect indicators related to iron
metabolism, so we cannot clarify how dietary iron intake affects
iron metabolism and, consequently, the function of the infant
gut microbiota. We plan to include iron metabolism indicators as
important variables in the future study. Third, rarefaction is still a
topic of debate in academia, we concerned about the low biomass
of neonate gut microbiota, so we filtered the ASV rather than
rarefaction. We will follow this progress in future studies in order to
adopt the best way to analyze microbiota data. Additionally, there
may still be unmeasured or unknown variables that may influence
the neonatal GM, such as maternal enterotypes, which were not
assessed in this study but could potentially affect the vertical
transmission of microbiota. The inclusion of specific confounding
factors may be relevant to the specific population and study settings.
Thus, future studies could consider combining multiple type of
biological samples to assess iron influence and metabolism in vivo
within the framework of a larger sample size and generalizing the
results to more regions.

5 Conclusion

Adequate and within appropriate limits iron intake during
pregnancy may promote the colonization of beneficial bacteria
in the neonate GM and increase its biodiversity, indicating that
maternal dietary iron intake plays a role in shaping the GM of the
neonate, especially in developing areas with low dietary iron intake.
Different dietary intervention policies should be adopted to ensure
adequate intake of iron during pregnancy to promote healthy GM
development in neonates.
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SUPPLEMENTARY FIGURE 1

The flowchart of participant enrolment.

SUPPLEMENTARY FIGURE 2

The dominant phylum composition and top phyla of mother and
neonate samples. Mother and neonate samples were
grouped by maternal dietary iron intake into higher iron and
lower iron groups. (A) The dominant phyla of maternal
gut microbiota. (B,C) are the top phyla and genera of mother
samples. (D) The dominant phyla of neonate gut microbiota. (E,F) are the
top phyla and genera of neonate samples. The comparison between
groups was analyzed by non-parametric test, and there was no significant
difference between two groups (p > 0.05).

SUPPLEMENTARY FIGURE 3

The dominant phylum composition, top phyla, and top genera of neonate
samples. The neonate samples were stratified by delivery mode and
grouped by maternal dietary iron intake. (A) The dominant phyla of vaginal
delivered neonate gut microbiota. (B) The top phyla of neonate samples.
(C) The dominant phyla of caesarean section delivered neonate gut
microbiota. (D) The top genera of neonate samples. The comparison
between groups was analyzed by non-parametric test, and there was no
significant difference between higher iron and lower iron
groups (p > 0.05).

SUPPLEMENTARY FIGURE 4

Alpha, beta diversity indexes of the maternal gut microbiota grouped by
maternal dietary iron intake into higher iron and lower iron groups. (A)
Chao1 index regarding the microbial community richness of the maternal
gut microbiota; Shannon (B) and Simpson (C) index regarding the microbial
community diversity of the maternal gut microbiota; Each box plot
represents the median, interquartile range, minimum, and maximum values.
(D) PCoA analysis of bray_curtis distance regarding the difference in the
microbial community composition (PERMANOVA with 9999 permutations,
p > 0.05).
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