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Objective: This study aimed to examine the association between zinc deficiency 
(ZD) and the clinical outcomes in patients with heart failure (HF).

Methods: This multicenter retrospective cohort study used the TriNetX network 
to identify adult patients with HF between January 1, 2010, and January 31, 2025. 
Patients with serum zinc levels below 70 μg/dL (ZD group) were propensity 
score-matched to those with levels between 70 and 120 μg/dL (control group) 
to minimize confounding. Primary outcomes included all-cause mortality, 
major adverse cardiovascular events (MACEs), and major adverse kidney events 
(MAKEs). Secondary outcome was all-cause hospitalization.

Results: After matching, each group comprised 4,145 patients with well-
balanced baseline characteristics. During the 1-year follow-up, the ZD group 
was associated with higher risks of all-cause mortality (hazard ratio [HR]: 1.46, 
95% confidence interval [CI]: 1.29–1.66), MACEs (HR: 1.46, 95% CI: 1.30–1.64), 
and MAKEs (HR: 1.51, 95% CI: 1.34–1.70), as well as an higher risk of all-cause 
hospitalization (HR: 1.24, 95% CI: 1.16–1.32).

Conclusion: Zinc deficiency in patients with HF is associated with increased 
risks of mortality, cardiovascular and kidney-related adverse events, and 
hospitalization. These findings highlight the potential clinical importance of zinc 
assessment and management in HF care.
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Introduction

Heart failure (HF) remains a leading cause of morbidity and mortality worldwide, exerting 
a substantial clinical and economic burden (1, 2). The prevalence in the general adult 
population is estimated to be 1–3%, with an incidence rate of approximately 1–20 cases per 
1,000 individuals each year (3, 4). Moreover, HF-associated mortality has been rising annually, 
with a 5-year mortality rate ranging from 50 to 75% (3). The economic impact is similarly 
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profound, with annual healthcare costs per person estimated at 
$11,000–$18,000 (3, 5).

Zinc is an essential trace element that plays a crucial role in 
immune function, oxidative stress regulation, and cardiovascular 
homeostasis (6–12). Previous reviews demonstrated that zinc 
deficiency (ZD) is highly prevalent among patients with HF, with 
serum zinc levels significantly lower compared to healthy controls (13, 
14). Patients with HF often exhibit hyperzincuria due to the use of 
diuretics and renin-angiotensin-aldosterone system inhibitors, further 
exacerbating zinc depletion (15–19). Mechanistically, ZD may 
contribute to HF progression through multiple pathways, including 
increased oxidative stress, systemic inflammation, and endothelial 
dysfunction (20–23). An observational study found that ZD was 
associated with a worse prognosis in patients with HF (24). 
Additionally, preliminary results suggested that zinc supplementation 
may improve left ventricular ejection fraction (LVEF), highlighting its 
potential therapeutic role (25).

Despite these findings, large-scale studies investigating the impact 
of ZD on HF outcomes remain limited. In this multicenter study, 
we aimed to explore the association between ZD and HF outcomes, 
including all-cause mortality, major adverse cardiac events (MACEs), 
and major adverse kidney events (MAKEs).

Methods

Study design and database

The study used data from the TriNetX Analytics Network 
Platform, a comprehensive federated health research network 
encompassing electronic medical records (EMRs) from approximately 
160 million patients across 140 healthcare organizations (HCOs) 
worldwide (26). This expansive dataset incorporates diverse variables, 
including demographic information, diagnoses, procedures, 
medications, laboratory results, genomic data, and HCO visit 
classifications. TriNetX facilitates secure, real-time access to 
de-identified, aggregated data derived from a geographically and 
ethnically diverse patient population, spanning hospitals, primary care 
facilities, and specialty treatment centers. The platform operates under 
a waiver from the Western Institutional Review Board, as it exclusively 
processes statistical summaries without accessing individual-level 
patient data. This investigation was conducted in adherence to the 
Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) guidelines (27).

Study population and definition of eligible 
patients

The study population consisted of adult patients with HF who 
underwent zinc testing within 1 year prior to their HF diagnosis 
between January 01, 2010, and January 31, 2025. The date of zinc 
testing was designated as the index date.

Study eligibility required participants to be 18 years or older with 
an HF diagnosis, identified using the International Classification of 
Diseases, Tenth Edition, Clinical Modification (ICD-10-CM) code 
I50. Participants were stratified into two groups based on their serum 
zinc levels: the zinc deficiency (ZD) group (serum zinc <70 μg/dL) 

and the control group (serum zinc 70–120 μg/dL) (28, 29). Serum zinc 
measurements were identified using Logical Observation Identifiers 
Names and Codes (LOINC) 5768-8 or 8245-3. To ensure sufficient 
clinical documentation, we included only patients with at least two 
EMRs within the observation window. To minimize protopathic and 
ascertainment bias, patients with any prior history of MACE or 
MAKE were excluded based on all available EMRs preceding the 
index date (Supplementary Table S1).

Covariates

The selection of covariates was determined by their clinical 
significance, with particular focus on key comorbidities and risk factors 
that have established associations with mortality rates and cardio-renal 
outcomes. We evaluated baseline health parameters in accordance with 
contemporary medical understanding. For both study groups, 
we extracted data on baseline characteristics and covariates from the 
year preceding the index date, including demographic factors (age, sex, 
race), clinical parameters (estimated glomerular filtration rate [eGFR], 
albumin, Hemoglobin A1c [HbA1c], left ventricular ejection fraction 
[LVEF]), existing comorbidites, and prescribed medications.

The spectrum of evaluated comorbidities extended to 
cardiometabolic conditions (hypertension, hyperlipidemia, obesity), 
nutritional status (malnutrition), metabolic disorders (type 2 diabetes 
mellitus), substance use patterns (nicotine dependence, alcohol-
related disorders), respiratory conditions (chronic lower respiratory 
diseases), hepatic function (liver diseases), renal status (chronic 
kidney disease), cardiovascular conditions (cerebrovascular diseases, 
atrial fibrillation and flutter, ischemic heart disease), autoimmune 
disorders (systemic lupus erythematosus), and malignancies 
(neoplasms). The medication profile analysis encompassed therapeutic 
agents for heart failure management (including angiotensin-
converting enzyme inhibitors [ACEis], angiotensin receptor blockers 
[ARBs], beta-blockers, calcium-channel blockers, various classes of 
diuretics, and sodium-glucose cotransporter-2 inhibitors [SGLT2is]) 
and cholesterol management (statins) (Supplementary Table S2).

Outcomes

The study evaluated both primary and secondary outcomes. 
Primary outcomes comprised all-cause mortality, MACEs, and 
MAKEs. The secondary outcome focused on all-cause hospitalization 
risk. MACEs encompassed acute myocardial infarction, stroke 
(including cerebral infarction and hemorrhage), ventricular 
arrhythmias (e.g., ventricular tachycardia, ventricular fibrillation), and 
cardiac arrest (30). MAKEs were characterized by end-stage kidney 
disease (ESKD), urgent dialysis initiation, or dialysis dependence (30). 
Patient follow-up commenced the day after the index date and 
continued until their final clinical visit, death, or one-year post-index 
date, whichever occurred first (Supplementary Table S3).

Statistical analysis

For baseline characteristics, continuous variables were presented 
as means with standard deviations (SDs), while categorical variables 
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were expressed as frequencies and percentages. To minimize selection 
bias and balance covariates between groups, we  implemented 
propensity score matching (PSM) using a greedy nearest-neighbor 
algorithm, with a caliper width set at 0.1 pooled SDs. The effectiveness 
of matching was evaluated through standardized differences, where 
values less than 0.1 indicated adequate covariate balance (31).

After matching, we conducted survival analyses using the Kaplan–
Meier method, with between-group differences assessed via the 
log-rank test. The association between zinc status and outcomes was 
quantified using Cox proportional hazards regression models to 
calculate hazard ratios (HRs). To evaluate the statistical significance 
of the differences between subgroups, we  used a method that 
examined the CI overlap (32). Additionally, we calculated E-values to 
further gage the impact of potential unmeasured confounders on the 
primary and secondary outcomes (33). Statistical significance was 
defined as a two-sided p value below 0.05.

Stratified analysis

We conducted stratified analyses to examine the heterogeneity of 
primary outcomes associations across multiple subgroups. These 
analyses included age stratification (18–64 versus ≥ 65 years), 
sex-specific differences (female versus male), and heart failure 
classification based on ejection fraction (heart failure with preserved 
ejection fraction [HFpEF], heart failure with mildly reduced ejection 
fraction [HFmrEF], and heart failure with reduced ejection fraction 
[HFrEF]). Additional stratification was performed according to 
clinical parameters, including the presence of malnutrition, 
overweight and obesity, renal function (eGFR < 45 versus ≥ 45 mL/
min/1.73 m2), and glycemic control (HbA1c < 9% versus ≥ 9%).

Sensitivity analysis

To evaluate the robustness of our findings, we  conducted 
additional sensitivity analyses by modifying the definition of MACEs. 
In the first analysis, ventricular arrhythmias were excluded to reflect 
a more conventional MACE definition comprising only acute 
myocardial infarction, stroke, and cardiac arrest. In a second analysis, 
we  expanded the MACE definition to include cardiomyopathy 
(ICD-10-CM: I42) to examine its impact as a clinically relevant 
cardiovascular complication in patients with HF. Additionally, 
we  performed a new round of PSM that included the following 
variables: C-reactive protein (CRP), copper, selenium, prealbumin, 
transferrin, and urine albumin-to-creatinine ratio (UACR). These 
variables were selected to account for systemic inflammation, trace 
element status, and nutritional reserve. Outcomes were re-evaluated 
using Cox proportional hazards models.

Results

Study flow diagram

From a total population of 160,562,143 patients across 142 HCOs 
in the TriNetX network, we identified 119,071,309 individuals with 
visits between January 01, 2010, and January 31, 2025. We excluded 

119,059,524 patients who met one or more of the following criteria: 
age below 18 years, occurrence of prespecified outcomes before the 
index date, lack of zinc level measurements prior to the index date, or 
absence of HF diagnosis. Of the remaining 11,785 eligible patients 
with both HF and zinc measurements, 7,280 were categorized into the 
ZD group, while 4,505 comprised the control group with normal zinc 
levels. Following PSM, the final analysis included 4,145 patients in 
each group (Figure 1).

Study population characteristics

Before PSM, there were significant differences in baseline 
characteristics between the ZD group (n = 7,280) and the control 
group (n = 4,505). Participants in the ZD group were older (66.2 ± 15.9 
vs. 62.7 ± 14.4 years) and had a slightly lower proportion of female 
(54.5% vs. 56.9%). The ZD group had a higher prevalence of chronic 
conditions, including chronic kidney disease (32.1% vs. 23.6%), 
malnutrition (23.6% vs. 13.4%), and nicotine dependence (13.0% vs. 
9.6%). Additionally, they had lower albumin levels (3.2 ± 0.7 vs. 
3.7 ± 0.7 g/dL) and a higher proportion of patients with albumin ≤ 
3.5 g/dL (67.8% vs. 46.6%). Use of medications such as diuretics 
(67.0% vs. 61.1%) and beta blockers (58.0% vs. 56.4%) was also more 
frequent in the ZD group (Table 1).

After PSM, the ZD (n = 4,145) and control (n = 4,145) groups 
were well balanced in baseline characteristics, as shown by 
standardized differences <0.1. Their mean ages were comparable 
(63.5 ± 16.5 vs. 63.7 ± 16.2 years), as were sex distributions (56.5% vs. 
56.6% female). Comorbidities such as type 2 diabetes, hypertension, 
overweight/obesity, and chronic kidney disease were also well 
matched between groups. Similarly, albumin levels, HbA1c, and eGFR 
showed satisfactory balance, ensuring comparability in clinical 
characteristics (standardized differences <0.1; Table 1).

Primary and secondary outcomes

For the primary outcome (all-cause mortality), the ZD group was 
associated with a significantly higher cumulative incidence compared 
with the control group (HR, 1.46; 95% CI, 1.29–1.66; p < 0.001), 
reflecting incidence rates of 13.47 and 9.78 per 100 person-years, 
respectively (Table 2). The E-value for this association was 2.28 (95% 
lower confidence limit [LCL], 1.90), suggesting that only a relatively 
strong unmeasured confounder could fully explain this 
observed association.

Similarly, for MACEs, the ZD group was linked to an elevated risk 
(HR, 1.46; 95% CI, 1.30–1.64; p < 0.001), with incidence rates of 15.89 
and 11.61 per 100 person-years in the ZD and control groups, 
respectively. The E-value for this association was 2.28 (95% LCL, 1.92), 
reinforcing the robustness of this finding. For MAKEs, a higher risk 
was also observed in the ZD group (HR, 1.51; 95% CI, 1.34–1.70; 
p < 0.001), with incidence rates of 15.74 and 11.11 per 100 person-
years, respectively. The E-value of 2.39 (95% LCL, 2.01) further 
indicates that substantial unmeasured confounding would be required 
to nullify this result.

Regarding the secondary outcome of all-cause hospitalization, the 
ZD group was associated with a greater risk compared with the control 
group (HR, 1.24; 95% CI, 1.16–1.32; p < 0.001), with incidence rates 
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of 50.75 and 45.72 per 100 person-years, respectively. The E-value of 
1.59 (95% LCL, 1.45) suggests that moderate unmeasured confounding 
could potentially explain this association. Consistently, Kaplan–Meier 
curves demonstrated a higher cumulative incidence of all primary and 
secondary outcomes in the ZD group compared with the control 
group throughout the 1-year follow-up period (log-rank p < 0.001, 
Figures 2A–C).

Stratified analysis

Stratified analyses demonstrated that the association between ZD 
and significant risks of all-cause mortality, MACEs, and MAKEs 
remained consistent across most patient strata, including sex, age 
categories, presence of malnutrition, obesity, HF classifications, and 

HbA1c levels (Figures 3A–C). The only exception was observed for 
MACEs among patients with eGFR above 45 mL/min/1.73 m2, where 
the association did not reach statistical significance (Figure 3B). No 
significant interaction was observed across any of the subgroup 
variables (all P for interaction > 0.05), indicating a consistent 
association between zinc deficiency and adverse outcomes across 
strata (Figures 3A–C).

Sensitivity analysis

The associations between ZD and adverse outcomes remained 
consistent across sensitivity analyses. When arrhythmias were 
excluded from the MACE definition, the HR for MACE in the ZD 
group was 1.42 (95% CI: 1.17–1.72; p < 0.001). Similarly, when 

FIGURE 1

Study design and selection flow. HCO, healthcare organizations; HF, heart failure; y/o, years old; ZD, zinc deficiency.
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TABLE 1 Baseline characteristics of included subjects.

Variables Before matching After matching

ZD group 
(n = 7,280)

Control group 
(n = 4,505)

Std diff ZD group 
(n = 4,145)

Control group 
(n = 4,145)

Std diff

Age at index, years

Mean ± SD 66.2 ± 15.9 62.7 ± 14.4 0.215 63.5 ± 16.5 63.7 ± 16.2 0.009

Sex, n (%)

Female 3,969 (54.5) 2,562 (56.9) 0.047 2,342 (56.5) 2,346 (56.6) 0.002

Male 3,307 (45.4) 1,940 (43.1) 0.048 1,799 (43.4) 1,797 (43.4) 0.001

Race, n (%)

White 4,272 (58.7) 2,606 (57.9) 0.017 2,393 (57.7) 2,401 (57.9) 0.004

Black or African 

American

1,168 (16) 765 (17) 0.025 693 (16.7) 691 (16.7) 0.001

Asian 132 (1.8) 74 (1.6) 0.013 67 (1.6) 71 (1.7) 0.008

Other race 254 (3.5) 163 (3.6) 0.007 147 (3.6) 148 (3.6) 0.001

Unknown race 1,408 (19.3) 873 (19.4) 0.001 823 (19.9) 810 (19.5) 0.008

Estimated glomerular filtration rate, mL/min/1.73m2

Mean ± SD 70.1 ± 39.4 72.8 ± 34.2 0.075 72.2 ± 36.7 71.9 ± 34.7 0.009

≤ 45, n (%) 2,934 (40.3) 1,315 (29.2) 0.235 1,304 (31.5) 1,296 (31.3) 0.004

Albumin, g/dL

Mean ± SD 3.2 ± 0.7 3.7 ± 0.7 0.645 3.4 ± 0.7 3.6 ± 0.7 0.309

≤ 3.5, n (%) 4,938 (67.8) 2,097 (46.6) 0.440 2,089 (50.4) 2,093 (50.5) 0.002

HbA1c, %

Mean ± SD 6.3 ± 1.6 6.4 ± 1.5 0.058 6.3 ± 1.5 6.4 ± 1.5 0.074

≥ 9, n (%) 434 (6) 282 (6.3) 0.012 240 (5.8) 254 (6.1) 0.014

Left ventricular ejection fraction, %

Mean ± SD 54.7 ± 14.8 53.9 ± 14.7 0.050 55.0 ± 15.1 53.8 ± 14.8 0.076

< 40, n (%) 184 (2.5) 112 (2.5) 0.003 102 (2.5) 105 (2.5) 0.005

Comorbidities, n (%)

Hypertension 4,474 (61.5) 2,867 (63.6) 0.045 2,593 (62.6) 2,614 (63.1) 0.010

Hyperlipidemia 3,521 (48.4) 2,367 (52.5) 0.084 2,117 (51.1) 2,115 (51.0) 0.001

Overweight and obesity 2,510 (34.5) 1,904 (42.3) 0.161 1,657 (40.0) 1,671 (40.3) 0.007

Malnutrition 1,715 (23.6) 603 (13.4) 0.264 610 (14.7) 600 (14.5) 0.007

Type 2 diabetes mellitus 2,369 (32.5) 1,373 (30.5) 0.044 1,279 (30.9) 1,281 (30.9) 0.001

Nicotine dependence 945 (13.0) 432 (9.6) 0.107 410 (9.9) 419 (10.1) 0.007

Alcohol related disorders 576 (7.9) 217 (4.8) 0.127 225 (5.4) 216 (5.2) 0.010

Chronic lower 

respiratory diseases

2,543 (34.9) 1,520 (33.7) 0.025 1,399 (33.8) 1,410 (34.0) 0.006

Diseases of liver 1,686 (23.2) 804 (17.9) 0.132 766 (18.5) 763 (18.4) 0.002

Chronic kidney disease 2,339 (32.1) 1,065 (23.6) 0.190 1,054 (25.4) 1,040 (25.1) 0.008

Cerebrovascular diseases 764 (10.5) 372 (8.3) 0.077 352 (8.5) 357 (8.6) 0.004

Atrial fibrillation and 

flutter

2,314 (31.8) 1,221 (27.1) 0.103 1,173 (28.3) 1,163 (28.1) 0.005

Ischemic heart diseases 2,896 (39.8) 1,694 (37.6) 0.045 1,573 (38) 1,575 (38) 0.001

Systemic lupus 

erythematosus

145 (2.0) 84 (1.9) 0.009 84 (2.0) 83 (2.0) 0.002

(Continued)
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cardiomyopathy was included as an additional component, the HR 
was 1.41 (95% CI: 1.19–1.68; p < 0.001). These findings further 
support the robustness of our main results 
(Supplementary Table S4).

After additional matching based on inflammatory and 
nutritional markers (CRP, copper, selenium, prealbumin, 
transferrin, and UACR), 2,478 patients remained in each group 
(ZD and control). As shown in Supplementary Table S5, baseline 
characteristics between the two groups were well balanced across 
all covariates. In this matched cohort, the association between ZD 
and all-cause mortality remained statistically significant (HR: 1.43, 
95% CI: 1.20–1.69, p < 0.001), as did the associations with MACEs 
(HR: 1.17, 95% CI: 1.09–1.41), MAKEs (HR: 1.57, 95% CI: 1.08–
2.29), and all-cause hospitalization (HR: 1.23, 95% CI: 1.15–1.33) 
(Supplementary Table S6).

Discussion

In this large, multicenter retrospective cohort study of over 8,000 
patients with HF, we found that ZD was associated with a significantly 
higher risk of all-cause mortality, MACE, MAKE, and increased 
all-cause hospitalization within 1 year of follow-up. These findings 
contribute important new evidence to the growing body of literature 
linking ZD to adverse clinical outcomes in HF and highlight the 
potential clinical relevance of maintaining optimal zinc levels in this 
high-risk population.

A salient observation from the study is the consistently higher 
hazard for all three primary outcomes—mortality, MACEs, and 
MAKEs—in patients with ZD compared to those with normal zinc 
levels, even after robust PSM. These results reinforce and extend 
earlier, smaller investigations that have implicated suboptimal zinc 

TABLE 1 (Continued)

Variables Before matching After matching

ZD group 
(n = 7,280)

Control group 
(n = 4,505)

Std diff ZD group 
(n = 4,145)

Control group 
(n = 4,145)

Std diff

Neoplasms 2,355 (32.4) 1,362 (30.2) 0.046 1,289 (31.1) 1,270 (30.6) 0.010

Heart failure drugs, n (%)

ACEis 1,553 (21.3) 979 (21.7) 0.010 907 (21.9) 897 (21.6) 0.006

ARBs 1,665 (22.9) 1,131 (25.1) 0.052 1,021 (24.6) 1,021 (24.6) < 0.001

Beta blockers 4,220 (58.0) 2,540 (56.4) 0.032 2,306 (55.6) 2,342 (56.5) 0.018

Calcium channel 

blockers

2,400 (33.0) 1,385 (30.7) 0.048 1,290 (31.1) 1,286 (31) 0.002

Diuretics 4,880 (67.0) 2,751 (61.1) 0.125 2,554 (61.6) 2,579 (62.2) 0.012

Potassium sparing 

diuretics

1,619 (22.2) 935 (20.8) 0.036 855 (20.6) 864 (20.8) 0.005

ARNI 300 (4.1) 191 (4.2) 0.006 182 (4.4) 173 (4.2) 0.011

SGLT2i 588 (8.1) 387 (8.6) 0.019 347 (8.4) 345 (8.3) 0.002

Lipid-lowering medications, n (%)

HMG CoA reductase 

inhibitors

3,050 (41.9) 1,887 (41.9) < 0.001 1,705 (41.1) 1,734 (41.8) 0.014

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor; SGLT2i, sodium-glucose cotransporter-2 inhibitor; Std 
Diff, standardized difference; ZD, zinc deficiency.
Standardized difference (Std diff) < 0.1 is considered a small difference.

TABLE 2 Primary and secondary outcomes between the zinc deficiency group and the control group.

Outcome ZD group (n = 4,145) Control group (n = 4,145) HR (95% CI) P value E-value 
(95% LCL)

Events (n) Incidence rate
per 100 

person-years

Events (n) Incidence rate
per 100 

person-years

Primary outcome

All-cause mortality 558 13.47 405 9.78 1.46 (1.29, 1.66) <0.001 2.28 (1.90)

MACEs 658 15.89 481 11.61 1.46 (1.30, 1.64) <0.001 2.28 (1.92)

MAKEs 652 15.74 460 11.11 1.51 (1.34, 1.70) <0.001 2.39 (2.01)

Secondary outcomes

All-cause hospitalization 2,102 50.75 1,894 45.72 1.24 (1.16, 1.32) <0.001 1.59 (1.45)

MACE, major adverse cardiovascular event; MAKE, major adverse kidney event; ZD, zinc deficiency.
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status in increased cardiovascular risk. For instance, a previous 
longitudinal study demonstrated that patients with HF and serum zinc 
levels below 62 μg/dL had elevated risks of cardiovascular and 
all-cause mortality (24). Similarly, a pilot study suggested that 
supplementation with intravenous zinc in selected patients led to 
partial improvement in LVEF (25), hinting at a possible therapeutic 
benefit. By leveraging a large-scale dataset derived from multiple 
healthcare organizations, our study provides a strong epidemiologic 
foundation indicating that ZD may be a critical, modifiable risk factor 
in HF management.

Multiple mechanistic pathways may underlie the observed 
increased risk associated with ZD. Zinc is integral to numerous 
enzymatic processes and regulatory pathways that maintain 
cardiovascular homeostasis. In vitro and animal studies have 
shown that zinc plays a key role in mediating antioxidant defenses, 
mitigating oxidative stress, and regulating inflammatory responses 
(6–12). A deficiency in zinc may intensify pro-inflammatory and 
pro-oxidative states, both of which can accelerate atherosclerosis, 
impair vascular endothelial function, and exacerbate myocardial 
remodeling. Additionally, zinc participates in cellular signaling 
pathways that modulate myocardial contractility, cellular 
apoptosis, and tissue repair (34–37). Consequently, suboptimal 
zinc status could predispose patients with HF to worsening 
cardiac function and increased susceptibility to arrhythmogenic 
events, thereby contributing to higher risks of MACEs and 
mortality (14).

Furthermore, prior work has shown that patients with HF are 
prone to hyperzincuria, especially when on diuretics and renin-
angiotensin-aldosterone system inhibitors (15–19). Although these 
medications confer substantial benefits in HF, they may inadvertently 
lower systemic zinc levels over time. Similarly, when zinc is depleted, 
the kidney may be more susceptible to tubular damage, fibrosis, and 
hemodynamic strain, especially under the chronic congestion and 
reduced perfusion characteristic of HF (38–40). Additionally, older 
age, malnutrition, and malabsorption syndromes—prevalent in many 
HF populations—can further impair zinc status, amplifying the 
cardiorenal burden. By undermining the kidney’s capacity to handle 
physiological stress, sustain filtration, and mitigate pro-inflammatory 

responses, insufficient zinc can exacerbate the progression to 
end-stage kidney disease or dialysis dependence (14, 41).

In recent years, a growing number of systematic reviews have 
examined the relationship between zinc status and cardiovascular 
outcomes (7, 14). For example, Rosenblum et al. (14) conducted a 
systematic review highlighting the potential link between zinc 
deficiency and adverse prognosis in patients with HF. However, 
the current body of evidence remains limited, and the 
heterogeneity among existing studies has precluded the conduct 
of a robust meta-analysis. Our study contributes novel data that 
complement prior findings by adopting a large-scale, multicenter 
cohort design using standardized real-world electronic medical 
records and rigorous propensity score matching. This 
methodological approach allows for a more granular and 
contemporary assessment of zinc deficiency in patients with HF, 
with uniform outcome definitions and consistent follow-up 
durations. Importantly, our results may serve as a valuable 
contribution to future meta-analyses and help inform clinical risk 
stratification strategies. These findings reinforce the emerging 
evidence and underscore the potential clinical relevance of zinc 
assessment in the management of HF.

Our findings underscore the potential clinical importance of 
assessing zinc status in HF. While worldwide trends and prevalence of 
ZD have shown some stability with notable reductions in general 
populations, disease-specific populations present a different picture 
(42). In our study, the prevalence of ZD in patients with HF was 62%, 
which aligns with previous research showing 66% in patients with HF, 
while other conditions like diabetes showed lower rates at 23% (30). 
The burden of ZD extends to other chronic conditions as well  - 
affecting 30–66% of patients undergoing dialysis and 50–70% of 
cancer patients (38, 41, 43–46). Given that ZD is relatively common 
and potentially correctable, systematic screening and early detection 
could offer a new avenue for risk stratification and intervention. This 
is particularly relevant given the consistent associations with not only 
mortality but also MACEs and MAKEs, suggesting that ZD may affect 
both cardiac and renal trajectories in HF. Intriguingly, we also found 
a higher risk of all-cause hospitalization among ZD patients. This may 
have important economic and healthcare resource implications, 

FIGURE 2

Kaplan–Meier time-to-event free curves of the primary outcomes: (A) all-cause mortality; (B) major adverse cardiovascular events; and (C) major 
adverse kidney events. ZD, zinc deficiency.
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FIGURE 3 (Continued)
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considering that HF is already among the most resource-intensive 
conditions globally. Optimizing zinc levels might conceivably help 
reduce the frequency of hospital admissions, although this hypothesis 
should be tested in prospective trials.

The strengths of our study include a large cohort of patients with 
HF and ZD sourced from TriNetX, a global repository of real-world 
data encompassing multiple institutions and countries. This broad 
dataset enhances the generalizability of our findings to a wider 
population. Additionally, our study incorporates various stratified 
analyses and demonstrates high E-values, further supporting the 
robustness of our results. To address confounding factors, we used an 
integrated PSM function, ensuring a balanced comparison of baseline 
characteristics, including demographics and comorbidities, between 
the two groups.

However, our study has some limitations. First, its observational 
design prevents us from establishing causality. Second, ZD may act as 
a mediator of more advanced disease severity or overall malnutrition 
rather than being a direct contributor to negative outcomes. Third, 
reliance on EMRs and administrative billing codes may introduce 
misclassification bias in both HF diagnosis and serum zinc level 
measurements. To mitigate this, we applied validated ICD-10-CM 
codes and LOINC codes for zinc testing. Fourth, we lacked data on 

dietary zinc intake, the use of over-the-counter zinc supplements, and 
the exact timing and dosage of prescription medications, all of which 
could influence the observed association between ZD and HF 
outcomes. Fifth, our study focused on 1-year outcomes, which, while 
clinically meaningful, may not fully capture the long-term effects of 
ZD on disease progression and survival. A longer observation period 
could provide additional insights into risk magnitude and other 
clinically relevant endpoints. Finally, due to the aggregate and 
de-identified nature of the TriNetX platform, we  were unable to 
perform advanced model-based metrics such as net reclassification 
improvement (NRI) or integrated discrimination improvement (IDI) 
to formally evaluate the incremental predictive value of serum zinc as 
a biomarker. Future studies using patient-level data and comprehensive 
risk prediction modeling are warranted to further assess the 
prognostic utility of zinc in clinical practice.

Conclusion

The study demonstrates that ZD is significantly associated with 
elevated risks of all-cause mortality, MACEs, MAKEs, and all-cause 
hospitalization in patients with HF. These associations persisted 

FIGURE 3

Stratified analysis of primary outcomes: (A) all-cause mortality; (B) major adverse cardiovascular events; and (C) major adverse kidney events. eGFR, 
estimated glomerular filtration rate; HbA1c, hemoglobin A1c; y/o, years old; ZD, zinc deficiency. Subgroup analyses were conducted using 
independently matched sub-cohorts based on propensity score matching within each stratum. Therefore, the number of patients and events may 
differ from those in the overall matched cohort.
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despite careful adjustment for known prognostic factors. Although 
observational in nature, our results suggest that assessing and 
correcting ZD may represent a valuable yet underrecognized approach 
to improving outcomes in HF. Future prospective studies and RCTs 
are warranted to determine whether targeted interventions aimed at 
maintaining adequate zinc status can tangibly benefit this population.
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