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Background: This cross-sectional study evaluated the correlation between 
serum sodium levels (135–145 mmol/L) and biological aging in U.S. adults. 
Biological age, derived from multi-system biomarkers, provides a more accurate 
assessment of aging than chronological age. Hydration balance, reflected by 
serum sodium, may modulate age-related diseases and mortality, but its link to 
biological aging remains underexplored.

Methods: Using NHANES data (1999–2018), we  focused on normonatremic 
adults (≥20 years). The final cohort included 18,301 participants. Biological age 
was estimated using the Klemera and Doubal method, and ∆age (biological 
age—chronological age) was calculated. Associations were assessed using 
multivariate regression, generalized additive models, and threshold analysis. 
Subgroup analyses were conducted for variations across different populations.

Results: Nonlinear analysis revealed a U-shaped relationship between serum 
sodium and biological age. The lowest biological age occurred at 139.3 mmol/L: 
each 1 mmol/L increase below this threshold was associated with a reduction 
of 0.10 years in biological age (95% CI: −0.15, −0.05), whereas values above 
it showed a 0.08-year increase (95% CI: 0.04, 0.13). For ∆age, a negative 
association was observed below 141.2 mmol/L, with each increase linked 
to a 0.07-year decrease (95% CI: −0.10, −0.04). Subgroup analyses revealed 
significant interactions in diabetic and smoking populations.

Conclusion: Maintaining serum sodium levels within an optimal range (138–
142 mmol/L) may help delay biological aging. Hydration management may 
serve as a modifiable factor for healthy aging, particularly in high-risk groups 
such as individuals with diabetes or tobacco use.
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1 Introduction

As documented in the World Health Organization’s Global Health Observatory report 
(2019), worldwide longevity metrics demonstrated a surge of 6.3 years during the 21st 
century’s initial two decades, progressing from 66.8 years (2000) to 73.1 years (2019). However, 
healthy life expectancy (HALE) has not kept pace with this increase, highlighting a growing 
disparity between lifespan and health span. As the global population ages and the prevalence 
of age-related chronic diseases rises, identifying strategies to delay aging has become a critical 
focus in preventive medicine (1–3). Safe, practical, and widely applicable anti-aging 
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interventions could not only slow aging and extend healthy lifespan 
but also improve quality of life and reduce healthcare costs more 
effectively than disease-specific treatments (4, 5).

Biological aging refers to the progressive decline in physiological 
function across multiple systems. While aging is inevitable, 
interindividual heterogeneity in its progression underscores the need 
for personalized biomarkers (6). Chronological age often fails to 
accurately reflect the rate of physiological deterioration. In contrast, 
biological age, which is derived from age-dependent biomarkers and 
clinical data, provides a more reliable measure of an individual’s aging 
trajectory, remaining lifespan, and susceptibility to age-related 
diseases (7, 8).

The connection between hydration and health outcomes has been 
examined in prior research. Suboptimal hydration has been associated 
with cognitive impairments (9), reduced physical performance (10), 
multisystem diseases (11), and even reduced life expectancy (12). It 
may accelerate cellular senescence through mechanisms involving 
oxidative stress, impaired proteostasis, and mitochondrial dysfunction, 
whereas optimal hydration could mitigate age-related telomere 
attrition and inflammatory pathways (13, 14). Plasma osmolality—
maintained within the narrow range of 275–295 mosmol/kg—has 
been widely validated as a reliable and independent indicator of 
hydration status (15). However, due to its limited routine clinical 
application, indirect measures such as serum sodium, urine specific 
gravity, or urine color are commonly used to reflect hydration status. 
When hyperglycemia and renal failure are absent, serum sodium 
levels predominantly influence plasma osmolality (16, 17), establishing 
it as a key indicator of hydration status (18).

Evidence from previous cohort analyses suggests that serum 
sodium concentrations may serve as a predictive biomarker for 
morbidity and mortality. A cross-sectional analysis of adults aged 
51–70 with serum sodium concentrations below 135 mmol/L or above 
145 mmol/L demonstrated that inadequate hydration was linked to a 
higher likelihood of adverse health outcomes and mortality (19). 
Furthermore, a community-based study of 11,255 middle-aged adults 
(45–66 years) with normal serum sodium levels (135–146 mmol/L) 
showed that levels above 142 mmol/L were linked to faster aging, 
more chronic diseases, and early death (20). However, these studies 
focused on older or middle-aged populations and did not incorporate 
multidimensional biological aging metrics. To the best of our 
knowledge, no population-based studies have yet examined the 
association between serum sodium levels and biological aging among 
U.S. adults aged 20 years and above, despite the unique relevance of 
this population given widespread suboptimal hydration habits (15, 
21), high sodium diets (22), and rising rates of metabolic disorders 
(23) that exacerbate hydration imbalances. To address this gap, 
we  performed a cross-sectional analysis utilizing data from the 
National Health and Nutrition Examination Survey (NHANES) to 
explore the association between serum sodium concentrations and 
biological aging in a nationally representative cohort of U.S. adults.

2 Materials and methods

2.1 Study population

The NHANES is a nationwide cross-sectional survey conducted 
annually in the United States. It employs a complex sampling strategy 

to assess the population’s health and nutritional status. In this study, 
data from 10 cycles over 20 years (1999–2018) were analyzed.

Initially, 49,259 participants with available serum sodium and 
biological age data were included. Individuals below the age of 20 and 
pregnant women were excluded from the study. To ensure the absence 
of acute or chronic water-electrolyte imbalances, only participants 
with serum sodium levels falling within the normal range 
(135–145 mmol/L) were included.

Hyperglycemia may cause dehydration (24), while obesity can 
disrupt fluid distribution, resulting in elevated serum sodium levels 
(25). Therefore, participants with blood glucose levels > 140 mg/dL or 
a BMI > 35 kg/m2 were excluded. Since systolic blood pressure and 
cholesterol were used to calculate biological age, participants taking 
antihypertensive or lipid-lowering medications were excluded to avoid 
potential confounding. After applying these exclusion criteria, the 
final study cohort comprised 18,301 eligible participants (Figure 1).

2.2 Serum sodium measurement

Serum sodium levels were extracted from the NHANES 1999–
2018 standard biochemistry files. Sodium concentration in biological 
fluids was measured using the Beckman LX and DxC systems with the 
indirect (or diluted) I.S.E. method. Serum sodium concentrations are 
quantified in units of millimoles per liter (mmol/L). Participants were 
categorized into four quartiles based on serum sodium levels: 
135–138 mmol/L, 138–139 mmol/L, 139–141 mmol/L, and 
141–145 mmol/L.

2.3 Calculation of biological age and ∆age

Biological age was computed via the Klemera and Doubal method 
(Equations 1–4) (26), a widely used approach for estimating biological 
age that leverages multiple biomarkers to provide a comprehensive 
assessment of aging across different organ systems. Eight biomarkers, 
representing diverse organ systems and physiological processes, are 
integrated into this method: cardiovascular (systolic blood pressure), 
renal (blood urea nitrogen, creatinine), metabolic (total cholesterol, 
glycated hemoglobin, alkaline phosphatase), and immune/
inflammatory (CRP, albumin).
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In this notation, j and i indicate the total number of biomarkers 
and samples, respectively. For each biomarker j, the regression 
coefficients q (intercept), k (slope), and s (root mean square error, 
RMSE) were calculated by modeling its relationship with chronological 
age. CA denotes chronological age (true age), while 2

jr  represents the 
variance explained by regressing chronological age on each biomarker.

We also calculated ∆age (biological age—chronological age), 
where a positive value indicates that an individual is physiologically 
older than their chronological age, while a negative value suggests a 
younger physiological age. This metric provides a quantitative measure 
of the discrepancy between biological and chronological aging.

2.4 Covariates

To control potential confounding variables associated with serum 
sodium levels (as a surrogate of hydration status) and biological aging, 

we incorporated a comprehensive set of covariates into the analysis. 
Covariates included demographic factors (age, gender, race/ethnicity, 
education level, marital status, income-to-poverty ratio), lifestyle 
factors (tobacco use, alcohol consumption), health conditions 
(diabetes, kidney conditions, cancers), and clinical measures 
(triglycerides, body mass index [BMI]). These covariates were 
incorporated into the regression models as potential confounders.

Race/ethnicity was categorized into non-Hispanic White, 
non-Hispanic Black, Mexican American, and other/multiracial 
groups. Education level was classified into three tiers: less than high 
school, high school or equivalent, and post-secondary education. 
Marital status was grouped as married/cohabiting, widowed/divorced/
separated, and never married. Tobacco and alcohol use were treated 
as binary variables (yes/no). Diabetes, kidney conditions, and cancers 
were ascertained based on clinical diagnoses by physicians or 
healthcare professionals.

2.5 Statistical analysis

Statistical analyses were carried out with R software (version 4.2) 
and EmpowerStats (version 4.1). Continuous variables were described 
using means and standard deviations, whereas categorical variables 
were summarized as frequencies with percentages. To compare 
demographic characteristics across the four serum sodium quartiles, 
χ2 tests were applied to categorical variables, and one-way ANOVA 
was used for continuous variables.

Weighted multivariate linear regression models were used to 
assess the linear associations between serum sodium levels and 
biological age/∆age, accounting for the complex sampling design of 
NHANES. The crude model was unadjusted; the second model 
accounted for age, sex, and race; and the third model extended 
adjustments to include education, marital status, PIR, tobacco use, 
alcohol consumption, diabetes, weak/failing kidneys, cancer, 

FIGURE 1

Participants inclusion flowchart.
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triglyceride and BMI. For ∆age models, chronological age was not 
included as a covariate since ∆age is derived from it (biological age – 
chronological age). Generalized additive models with smoothed 
curve fitting were applied to assess nonlinear associations between 
serum sodium and biological age/∆age. Furthermore, threshold 
effect analysis was used to examine the dose–response relationship 
and identify potential turning points. Subgroup and interaction 
analyses assessed serum sodium and biological age/∆age 
relationships across populations. Significance was set at p  < 0.05 
(two-tailed).

3 Results

3.1 Participant characteristics

This study included 18,301 participants, with an average age of 
43.11 ± 16.73 years and 52.23% (9,558) being male. The mean serum 
sodium level was 139.36 ± 1.98 mmol/L, and the average biological age 
was 42.55 ± 16.17 years. Stratified by serum sodium quartiles, 18.14% 
of participants were in the lowest quartile (135–138 mmol/L), while 
27.12% were in the highest quartile (141–145 mmol/L). Table 1 presents 
the baseline characteristics of participants stratified by serum sodium 
quartiles (Q1: <138, Q2: 138–139, Q3: 139–141, Q4: ≥141 mmol/L). 
Statistically significant differences were observed across quartiles for 
age, sex, race/ethnicity, and prevalence of chronic conditions (p < 0.001). 
Notably, participants in the highest quartile (Q4) were older, more likely 
to be male, and had higher rates of diabetes and cancer compared to 
those in the lowest quartile (Q1). These variations underscore the 
importance of adjusting for these covariates in subsequent analyses.

3.2 Association between serum sodium and 
biological age and ∆age

Table  2 summarizes the results of multivariable regression 
analyses assessing the linear association between serum sodium and 
biological aging. In the unadjusted model (Model 1), each 1 mmol/L 
increase in serum sodium was associated with a significant 0.83-year 
increase in biological age (95% CI: 0.71–0.95). However, after 
adjusting for demographic and lifestyle covariates (Models 2 and 3), 
this association attenuated and became non-significant. For ∆age, a 
consistent negative association was observed in both adjusted models, 
with each 1 mmol/L increase in serum sodium associated with a 0.04–
0.06 year decrease in ∆age, suggesting that higher serum sodium may 
be linked to slower biological aging relative to chronological age.

As shown in Figure 2A and Table 3, a significant U-shaped nonlinear 
association was identified between serum sodium and biological age. 
Biological age declined with increasing sodium levels up to the inflection 
point (139.3 mmol/L), beyond which it began to rise again. Below this 
threshold, each 1 mmol/L increase in serum sodium was associated with 
a reduction of 0.10 years in biological age (95% CI: −0.15, −0.05), while 
above the threshold, the increase was 0.08 years (95% CI: 0.04, 0.13).

Similarly, for ∆age, Figure 2B and Table 3 reveal that sodium 
levels below 141.2 mmol/L were significantly associated with a lower 
∆age, indicating a younger biological profile relative to chronological 
age. Beyond 141.2 mmol/L, this association was no longer 
statistically significant.

Subgroup analyses illustrated in Figure  3 further support the 
robustness of the findings. Figure  3A indicates that the U-shaped 
association between serum sodium and biological age varied across 
subgroups, with significant modification observed in individuals with 
diabetes (P for interaction = 0.043). In Figure 3B, the inverse association 
between serum sodium and ∆age was consistent across most subgroups. 
Interestingly, in diabetic individuals, the association reversed (β = 0.16), 
suggesting greater biological aging with increasing sodium levels. 
Tobacco use also significantly modified the association with ∆age (P for 
interaction = 0.034), supporting the hypothesis that specific high-risk 
populations may be more sensitive to serum sodium variations.

4 Discussion

A significant dose–response relationship between serum sodium 
and biological age was observed in this cross-sectional study of 18,301 
participants. Notably, this study is the first to report a U-shaped 
relationship between serum sodium and biological age after controlling 
for confounding factors. Biological age reached its lowest point when 
serum sodium levels were around 138–142 mmol/L (Figure  2A). 
Meanwhile, our findings demonstrated a negative correlation between 
serum sodium levels and ∆age, which remained consistent across 
almost all subgroups. This suggests that elevated serum sodium levels 
are associated with a younger biological age. However, this negative 
correlation reached a threshold when serum sodium levels exceeded 
141.2 mmol/L (Figure  2B). These results indicate that maintaining 
optimal serum sodium levels may help delay the biological aging process.

Age-related degenerative changes are key contributing factors to 
the development of most chronic diseases. Previous studies have 
shown that elevated serum sodium concentrations (> 144 mmol/L) 
are associated with increased incidence and mortality risk among 
women aged over 50, likely due to dehydration-induced hypernatremia 
(27). Conversely, community-based subjects with serum sodium levels 
at the lower end of the normal range (135–137 mmol/L) exhibit higher 
mortality and cardiovascular disease incidence, which may 
be attributed to conditions causing electrolyte imbalances (28). These 
findings are consistent with our study’s conclusions, indicating that 
both elevated (> 142 mmol/L) and reduced (< 138 mmol/L) serum 
sodium levels may contribute to accelerated aging. Maintaining an 
optimal hydration homeostasis over time could potentially slow down 
the aging process, as well as the chronic diseases and mortality 
associated with aging.

The cohort study by Natalia et al. (20) demonstrated that the risk 
of chronic diseases and mortality increases regardless of whether 
serum sodium levels fall within the lower range (< 137 mmol/L) or the 
higher range (> 142 mmol/L). When investigating the relationship 
between serum sodium and biological age, their study indicates that 
even mild hypernatremia (> 142 mmol/L) may accelerate vascular 
endothelial dysfunction, thereby promoting biological aging. However, 
participants with serum sodium levels below 137 mmol/L did not 
exhibit a similar association. In the study cohort of 11,255 individuals, 
only 122 participants had serum sodium levels below 137 mmol/L. This 
subgroup was notably smaller compared to other serum sodium 
groups, resulting in wide confidence intervals. This may explain the 
inconsistency between the association of lower-range serum sodium 
levels with biological age and the outcomes related to chronic disease 
and mortality risk. In our study, which included 18,301 participants, 
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1,398 individuals had serum sodium levels below 137 mmol/L. This 
larger sample size provides a more robust representation of the aging 
status among participants in the lower serum sodium range.

To further explore the robustness of the U-shaped relationship, 
we conducted stratified analyses based on key demographic and 
health characteristics. In the stratified analysis of biological age, 

TABLE 1 Basic characteristics of participants by serum sodium range (mmol/L).

Characteristics Serum sodium quartile (mmol/L) p value

Q1 (<138)
N = 3,320

Q2 (138–139)
N = 2,978

Q3 (139–141)
N = 7,040

Q4 (≥141)
N = 4,963

Age (years) 41.75 ± 15.84 41.49 ± 15.69 42.37 ± 16.45 46.04 ± 17.92 <0.001

Gender, (%) <0.001

  Male 1,475 (44.43%) 1,448 (48.62%) 3,751 (53.28%) 2,884 (58.11%)

  Female 1845 (55.57%) 1,530 (51.38%) 3,289 (46.72%) 2079 (41.89%)

Race/ethnicity, (%) <0.001

  Non-Hispanic White 1,501 (45.21%) 1,282 (43.05%) 3,252 (46.19%) 2,343 (47.21%)

  Non-Hispanic Black 527 (15.87%) 487 (16.35%) 1,167 (16.58%) 880 (17.73%)

  Mexican American 753 (22.68%) 663 (22.26%) 1,477 (20.98%) 964 (19.42%)

  Other race/multiracial 539 (16.23%) 546 (18.33%) 1,144 (16.25%) 776 (15.64%)

Education, (%) 0.814

  Under high school 875 (26.36%) 787 (26.43%) 1806 (25.65%) 1,295 (26.09%)

  High school or equivalent 765 (23.04%) 654 (21.96%) 1,620 (23.01%) 1,158 (23.33%)

  Above high school 1,680 (50.60%) 1,537 (51.61%) 3,614 (51.34%) 2,510 (50.57%)

Marital status, (%) 0.003

  Married/cohabiting 2013 (60.63%) 1793 (60.21%) 4,377 (62.17%) 2,978 (60.00%)

  Widowed/divorced/

separated

571 (17.20%) 481 (16.15%) 1,101 (15.64%) 910 (18.34%)

  Never married 736 (22.17%) 704 (23.64%) 1,562 (22.19%) 1,075 (21.66%)

PIR 2.55 ± 1.56 2.54 ± 1.56 2.60 ± 1.58 2.58 ± 1.56 0.148

Tobacco use, (%) 0.001

  Current users 1817 (54.73%) 1741 (58.46%) 3,894 (55.31%) 2,678 (53.96%)

  No current users 1,503 (45.27%) 1,237 (41.54%) 3,146 (44.69%) 2,285 (46.04%)

Alcohol consumption, (%) <0.001

  Yes 2,792 (84.10%) 2,516 (84.49%) 5,912 (83.98%) 4,037 (81.34%)

  No 528 (15.90%) 462 (15.51%) 1,128 (16.02%) 926 (18.66%)

Diabetes, (%) 0.002

  Yes 57 (1.72%) 57 (1.91%) 145 (2.06%) 140 (2.82%)

  No 3,236 (97.47%) 2,897 (97.28%) 6,846 (97.24%) 4,767 (96.05%)

  Borderline 27 (0.81%) 24 (0.81%) 49 (0.70%) 56 (1.13%)

Weak/failing kidneys, (%) 0.562

  Yes 32 (0.96%) 32 (1.07%) 74 (1.05%) 63 (1.27%)

  No 3,288 (99.04%) 2,946 (98.93%) 6,966 (98.95%) 4,900 (98.73%)

Cancer, (%) <0.001

  Yes 186 (5.60%) 140 (4.70%) 371 (5.27%) 349 (7.03%)

  No 3,134 (94.40%) 2,838 (95.30%) 6,669 (94.73%) 4,614 (92.97%)

Triglyceride (mg/dL) 133.77 ± 115.55 138.01 ± 118.94 131.84 ± 104.75 133.23 ± 97.85 0.073

BMI (kg/m2) 26.22 ± 4.17 26.26 ± 4.18 26.22 ± 4.16 26.19 ± 4.15 0.912

Biological age (years) 41.28 ± 15.25 40.92 ± 15.20 41.79 ± 15.89 45.44 ± 17.31 <0.001

∆age (years) −0.47 ± 3.57 −0.57 ± 3.51 −0.58 ± 3.56 −0.59 ± 3.87 0.459

Mean ± SD or Median (IQR) for continuous variables: the P value was calculated by one-way ANOVA. N (%) for categorical variables: the P value was calculated by chi-square test. Q Quartile, 
PIR the ratio of income to poverty, BMI Body mass index, ∆age = biological age—chronological age.
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FIGURE 2

Nonlinear association between serum sodium and (A) biological age, and (B) ∆age. The solid red line represents the smooth curve fit between 
variables, and the blue band indicates the 95% confidence interval. Turning points were identified at 139.3 mmol/L for biological age (A) and 
141.2 mmol/L for ∆age (B). Models were adjusted for age, sex, race, education, marital status, income-to-poverty ratio, tobacco use, alcohol 
consumption, diabetes, kidney disease, cancer, triglycerides, and BMI. For ∆age, chronological age was excluded from adjustment.

this association exhibit differences among diabetic population. 
This phenomenon may be attributed to the increased susceptibility 
of diabetic patients to dehydration or electrolyte imbalances, 
resulting from osmotic diuresis, undiagnosed or inadequately 
managed conditions, contributing factors, or the use of certain 
antidiabetic medications (29). Therefore, adequate intake of water 
and fluids with appropriate electrolyte composition is crucial for 
preventing dehydration in this population. In a one-week human 
water intervention trial involving an additional daily water intake 
of 3 liters, approximately one-third of participants exhibited a 

reduction in copeptin levels (a marker of vasopressin) after 
increased water intake (30). High copeptin levels will increase 
cardiovascular disease and premature mortality risk in diabetic 
patients, suggesting that optimal hydration status may improve 
adverse outcomes by enhancing glucose metabolism (31). This may 
also explain why the negative correlation between serum sodium 
and ∆age shows significant variations between diabetic and 
non-diabetic patients. Smoking is known to significantly accelerate 
the aging process (32). Our findings indicate that the negative 
correlation between serum sodium and ∆age was not pronounced 

TABLE 2 Logistic regression analysis for the relationship between serum sodium (mmol/L) and biological aging.

Serum sodium quartiles Crude model
β (95% CI)

Model 2
β (95% CI)

Model 3
β (95% CI)

Biological age (continuous) 0.83 (0.71, 0.95) −0.01 (−0.04, 0.01) −0.00 (−0.03, 0.02)

Biological age (quartile)

  Quartile 1 Reference Reference Reference

  Quartile 2 −0.36 (−1.15, 0.44) −0.19 (−0.36, −0.02) −0.21 (−0.37, −0.05)

  Quartile 3 0.51 (−0.15, 1.17) −0.22 (−0.36, −0.08) −0.19 (−0.33, −0.06)

  Quartile 4 4.17 (3.46, 4.87) −0.11 (−0.26, 0.04) −0.08 (−0.22, 0.07)

  P for trend <0.001 0.163 0.415

∆age (continuous) −0.02 (−0.05, 0.01) −0.06 (−0.08, −0.03) −0.04 (−0.07, −0.02)

∆age (quartile)

  Quartile 1 Reference Reference Reference

  Quartile 2 −0.10 (−0.28, 0.08) −0.18 (−0.35, −0.00) −0.23 (−0.39, −0.06)

  Quartile 3 −0.11 (−0.26, 0.04) −0.25 (−0.40, −0.10) −0.23 (−0.37, −0.09)

  Quartile 4 −0.12 (−0.28, 0.04) −0.35 (−0.50, −0.19) −0.28 (−0.42, −0.13)

  P for trend 0.161 <0.001 <0.001

Data are presented as β, 95% confidence intervals. Crude model: no covariates were adjusted. Model 2: age, gender and race were adjusted. Model 3: age, gender, race, education, marital status, 
PIR, tobacco use, alcohol consumption, diabetes, weak/failing kidneys, cancer, triglyceride and BMI were adjusted. ∆age adjusted for all covariates except for age. ∆age = biological age—
chronological age.
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in smoking participants. Therefore, we recommend that individuals 
who smoke, have diabetes, or exhibit a biological age older than 
their chronological age, along with suboptimal serum sodium 
levels, should pay greater attention to hydration management.

The U-shaped relationship observed in this study may reflect 
the complex physiological responses elicited by deviations from 
optimal serum sodium levels. From a mechanistic perspective, 
both hypo- and hypernatremia, even within the clinically normal 
range, can trigger osmoregulatory stress at the cellular level. 
Hypohydration-induced hypertonicity elevates intracellular 
sodium concentrations, leading to increased vasopressin release 
and cellular shrinkage, which can stimulate pro-aging pathways 
such as oxidative stress and mitochondrial dysfunction (33, 34). 
Conversely, low-normal sodium levels may reflect underlying 
conditions like chronic inflammation, subclinical illness, or 
dilutional hyponatremia, each of which have been independently 
associated with frailty and biological aging (35, 36). Sodium 
imbalance also affects protein folding and degradation pathways 

(proteostasis), disrupts autophagy, and promotes inflammasome 
activation, contributing to cellular senescence (34, 37). These 
physiological alterations provide a plausible biological basis for 
our findings and support the notion that maintaining optimal 
hydration and sodium homeostasis may play a role in modulating 
the pace of biological aging.

Several limitations should be  acknowledged. First, the cross-
sectional design precludes causal inference between serum sodium 
levels and biological aging. Serum sodium was measured at a single 
time point, which may not reflect long-term hydration status. 
Although serum sodium is a practical hydration marker in large-scale 
studies, more direct measures—such as plasma osmolality and urine 
specific gravity—were not consistently available across the full 
NHANES cycles analyzed, and thus could not be  included. 
Additionally, important confounders such as dietary sodium intake 
and total water consumption were excluded due to inconsistent 
availability across survey years and the limitations of 24-h recall 
methods, which are subject to recall bias and may not accurately 

TABLE 3 Threshold effect analysis of serum sodium (mmol/L) on biological age (years)/∆age (years) using piece-wise linear regression.

Serum sodium threshold (mmol/L) Crude β (95% CI) P value Adjusted β (95% CI) P value

Biological age

Serum sodium < 139.3 mmol/L −0.04 (−0.28, 0.21) 0.770 −0.10 (−0.15, −0.05) < 0.001

Serum sodium ≥ 139.3 mmol/L 1.60 (1.38, 1.82) < 0.001 0.08 (0.04, 0.13) < 0.001

∆age

Serum sodium < 141.2 mmol/L −0.04 (−0.07, −0.00) 0.034 −0.07 (−0.10, −0.04) < 0.001

Serum sodium ≥ 141.2 mmol/L 0.06 (−0.04, 0.16) 0.217 0.08 (−0.01, 0.17) 0.081

Crude: no adjustment. Adjusted: biological age adjusted for age, gender, race, education, marital status, PIR, tobacco use, alcohol consumption, diabetes, weak/failing kidneys, cancer, 
triglyceride and BMI. ∆age adjusted for all covariates except for age. ∆age = biological age—chronological age.

FIGURE 3

Subgroup analysis for the association between serum sodium and (A) biological age, and (B) Δage.
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reflect absorption or physiological balance. These variables should 
be  considered in future studies employing more comprehensive 
dietary and hydration assessments. Despite these limitations, our 
study has notable strengths. It is the first to examine the association 
between serum sodium levels and biological aging in a nationally 
representative U.S. adult cohort. The large and diverse sample enabled 
robust subgroup analyses, enhancing the generalizability of our 
findings across different populations.

From a clinical and public health perspective, these findings 
underscore the potential utility of monitoring serum sodium levels—
not only to assess hydration status, but also as an indirect indicator of 
biological aging. Since serum sodium is a routinely measured 
biomarker in clinical practice, it could be integrated into screening 
programs to identify individuals at risk of accelerated aging, especially 
among vulnerable populations such as smokers and patients with 
diabetes. Maintaining serum sodium within an optimal range 
(138–142 mmol/L) may serve as a simple, cost-effective target for 
hydration management aimed at promoting healthy aging. These 
insights may inform future updates to hydration guidelines and 
preventive care strategies, particularly as the global population 
continues to age.

5 Conclusion

The study demonstrated that both lower (< 137 mmol/L) and 
higher (> 142 mmol/L) serum sodium levels, despite falling within the 
normal range, are associated with faster biological aging. Our findings 
indicate that maintaining optimal serum sodium levels could 
contribute to delaying biological aging. Future intervention-based 
randomized controlled trials should aim to establish causality and 
explore the mechanisms through which optimal serum sodium levels 
modulate biological aging.
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